APMV AND USES THEREOF FOR THE TREATMENT OF CANCER

Abstract
In one aspect, provided herein are naturally occurring and recombinantly produced avian paramyxovirus (APMV) (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) and uses of such APMV for the treatment of cancer. In particular, provided herein are methods for treating cancer comprising administering a naturally occurring or recombinantly produced APMV-4 strain to a subject in need thereof. In another aspect, provided herein are recombinant APMV comprising a packaged genome, wherein the packaged genome comprises a transgene. In particular, described herein are recombinant APMV (e g., APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9). In another aspect, provided herein are methods for treating cancer comprising administering a recombinant APMV (e g., APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9) to a subject in need thereof, wherein the recombinant APMV comprises a packaged genome comprising a transgene. In particular, provided herein are methods for treating cancer comprising administering a recombinant APMV-4 to a subject in need thereof, wherein the recombinant APMV-4 comprises a packaged genome comprising a transgene. In specific aspects, the use of APMV serotypes other than APMV-1 (such as described herein, in particular AMPV-4) to treat cancer is based, in part, on the similar or enhanced in vivo anti-tumor activities when compared to oncolytic NDV La Sota-L289A strain.
Description
1. INTRODUCTION

In one aspect, provided herein are naturally occurring and recombinantly produced avian paramyxovirus (APMV) (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) and uses of such APMV for the treatment of cancer. In particular, provided herein are methods for treating cancer comprising administering a naturally occurring or recombinantly produced APMV-4 strain to a subject in need thereof. In another aspect, provided herein are recombinant APMVs comprising a packaged genome, wherein the packaged genome comprises a transgene. In particular, described herein are recombinant APMV (e.g., APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9). In another aspect, provided herein are methods for treating cancer comprising administering a recombinant APMV (e.g., APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9) to a subject in need thereof, wherein the recombinant APMV comprises a packaged genome comprising a transgene. In particular, provided herein are methods for treating cancer comprising administering a recombinant APMV-4 to a subject in need thereof, wherein the recombinant APMV-4 comprises a packaged genome comprising a transgene. In specific aspects, the use of APMV serotypes other than APMV-1 (such as described herein, in particular AMPV-4) to treat cancer is based, in part, on the similar or enhanced in vivo anti-tumor activities when compared to oncolytic NDV La Sota-L289A strain.


2. BACKGROUND

The family Paramyxoviridae includes important respiratory and systemic pathogens of humans (mumps, measles, human parainfluenza viruses) and animals (Sendai, canine disempter viruses, Newcastle disease viruses), including several zoonotic emerging viruses (Hendra and Nipah viruses). Paramyxoviruses are enveloped pleomorphic viruses containing a non-segmented, negative-sense, single stranded RNA genome which encodes 6-10 viral genes and that replicate in the cytoplasm of the host cell. All the paramyxoviruses isolated from avian species, with the only exception of the avian metapneumovirus, are classified into the genus Avulavirus (1). With a size range of 14900-17000 nucleotides, the genome of all avian avulaviruses encodes 6 structural proteins involved in viral replication cycle: the nucleoprotein (NP), the phosphoprotein (P) and the large polymerase protein (L) are, in association with the viral RNA, the components of the ribonucleotide protein complex (RNP). The RNP exerts dual function acting as a nucleocapside (i) and as the replication machinery of the virus (ii). The matrix protein (M) assembles between the viral envelope and the nucleocapside and participates actively during the processes of virus assembly and budding (2). The hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins, in conjunction with a host-derived lipid bilayer constitute the external envelope of the virus.


The Avulavirus genus is further divided into different serotypes based on hemagglutination inhibition (HI) and neuraminidase inhibition (NI) assays (3, 4). The most recent taxonomic revision of the group recognizes 13 serotypes of avian avulaviruses (Table 1), noted as APMVs (from avian paramyxovirus).









TABLE 1







Review of the Accepted Serotypes Included Within the Avulavirus Gene















PATH.
PLACE OF



SEROTYPE
YEAR
HOST
CHICKENS
ISOLATION
REF





APMV-1
1926
Chicken
Avirulent/Virulent
Java (Indonesia),
[61]






Newcastle upon Tyne






(England)


APMV-2
1956
Chicken and turkey
Avirulent/Virulent
Yucaipa and California
[62]






(USA) England and






Kenya


APMV-3
1967
Turkey and parakeet
Avirulent
Ontario,
[63-65]






Wisconsin(USA)






England, France and the






Netherlands


APMV-4
1976
Wild Duck, chicken,
Avirulent/Virulent
Mississippi, Hong-
[66, 67]




geese and mallard duck

Kong, Korea and South






Africa


APMV-5
1974
Budgerigar
Avirulent/Virulent
Japan and UK
[68, 69]


APMV-6
1977
Domestic duck, geese,
Avirulent
Hong-Kong, Taiwan,
[70-71]




turkey and mallard duck

Italy and New Zealand


APMV-7
1975
Hunter-killed dove,
Virulent
Tennessee (USA)
[72-74]




turkey and ostrich


APMV-8
1976
Feral Canadian goose
Avirulent
USA and Japan
[75, 76]




and pintail


APMV-9
1978
Domestic and feral duck
Virulent
New York (USA) and
[77-78]






Italy


APMV-10
2007
Rockhopper Penguin
Avirulent
Falkland Islands
[79]


APMV-11
2010
Common snipe
Avirulent
France
[80]


APMV-12
2005
Wigeon
Avirulent
Italy
[81]


APMV-13
2000
Geese
N.D
Shimane (Japan) and
[82-83]






Kazakhstan










APMVs have been isolated from a wide-range of domestic and wild birds. Clinical signs of the infection vary from asymptomatic to high morbidity and mortality in a strain-specific and host-dependent manner (5). Avian avulavirus 1 (APMV-1), commonly known as Newcastle disease virus (NDV), is the only well-characterized serotype due to the high mortality rates and economic losses caused by virulent strains in the poultry industry (6, 7). Regardless of the devastating impact of highly pathogenic strains, Newcastle disease can be controlled by the prophylactic administration of live attenuated and/or killed virus vaccines (8, 9). APMV-1 strains have been classified into three different pathotypes, velogenic (highly virulent), mesogenic (intermediate virulence) and lentogenic (low-virulence or avirulent), in accordance with the severity of the clinical signs displayed by affected chickens (10). Despite its prevalence and worldwide distribution, APMV-1 viruses do not represent a human threat. Occasional human infections are restricted to direct contact with sick birds and resolved with mild flu-like symptoms or conjunctivitis (11). Reported APMV-1 infections in mammals have demonstrated that these avian viruses are neither capable to establish persistent infection nor to counteract the antiviral innate response in mammalian cells (12-14). Furthermore, different strains of NDV have shown to act as strong stimulators of humoral and cellular immune responses at both the local and systemic levels (15-19). Reverse genetics systems have been developed that allow the genetic manipulation of the NDV genome (20-22). Based on the safety and immunostimulatory properties displayed by APMV-1 strains in mammals, several recombinant NDV vaccine strains have been used as vaccine vectors in poultry and mammals to express antigens of different pathogens (22-28).


Over the past three decades there has been an increased interest in the use of AMPV-1 as an antineoplastic agent (29). The inherent anti-tumor capacity of APMV-1 strains combines two properties that define an oncolytic virus (OV): induction of specific tumor cell death (30) accompanied by the elicitation of antitumor immunity and long-term tumor remission (31-34). From the first reports in the 60′s about the anti-tumor potential of NDV (35, 36) until now, different APMV-1 strains have directly been applied as anti-cancer therapy in animal models and/or cancer patients by different routes (intra-tumoral, locoregional or systemic) (37-39) or been used as viral oncolysates (40, 41), live cell tumor vaccines (NDV-ATV) (34, 42-46), or DC vaccines pulsed with viral oncolysates (47-49) to treat tumors. Although AMPV-1 has been in clinical studies to examine its anti-cancer effects, it has not been approved for the treatment of any human cancers.


Nowadays, multiple research groups work towards the development of more efficient AMPV-1 -based anti-tumor strategies that could overcome tumor-associated mechanisms of resistance (50-59). For example, recent studies have shown that AMPV-1 ultimately induces the upregulation of PD-L1 expression in tumor cells and tumor-infiltrating immune cells (Zamarin et al., 2018, J. Clin. Invest. 128: 1413-1428), providing a strong rationale for clinical exploration of combinations of immunoregulatory antibodies.


In contrast to what is known about APMV-1 strains, there is limited information associated with the biology of other avian avulavirus serotypes. Although the anti-tumor potential of NDV has been tested, no NDV-based anti-tumor therapy has been approved for the treatment of cancer. Thus, there is need for therapies for the treatment of cancer.


3. SUMMARY

In one aspect, provided herein are naturally occurring and recombinantly produced avian paramyxovirus (APMV) (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) and uses of such APMV for the treatment of cancer. In a specific embodiment, the APMV (e.g., APMV-4) is administered to the human subject intratumorally or intravenously. In another specific embodiment, the APMV (e.g., APMV-4) is administered at a dose of 106 to 1012 plaque-forming units (pfu).


The use of APMV serotypes other than APMV-1 to treat cancer is based, in part, on the similar or enhanced in vivo anti-tumor activities when compared to oncolytic NDV La Sota-L289A strain. In particular, the use of APMV-4 to treat cancer is based, in part, on the statistically significant anti-tumor activity observed in different animal models for various tumors. See Section 6 infra.


In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a naturally occurring APMV (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain), wherein the APMV has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In another specific embodiment, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain), wherein the recombinant APMV has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a specific embodiment, the APMV (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) is administered to the human subject intratumorally or intravenously. In another specific embodiment, the APMV is administered at a dose of 106 to 1012 pfu. In some embodiments, the method for treating cancer further comprises administering the subject a checkpoint inhibitor. In certain embodiments, the method for treating cancer further comprises administering the subject a monoclonal antibody that specifically binds to PD-1 and blocks the binding of PD-1 to PD-L1 and PD-L2.


In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a naturally occurring APMV-4, wherein the APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In another specific embodiment, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV-4, wherein the recombinant APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a specific embodiment, the APMV-4 is administered to the human subject intratumorally or intravenously. In another specific embodiment, the APMV-4 is administered at a dose of 106 to 1012 pfu. In some embodiments, the method for treating cancer further comprises administering the subject a checkpoint inhibitor. In certain embodiments, the method for treating cancer further comprises administering the subject a monoclonal antibody that specifically binds to PD-1 and blocks the binding of PD-1 to PD-L1 and PD-L2.


In certain embodiments, the APMV-4 that is administered to a subject in accordance with the methods described herein is an APMV-4 that when administered to a B16-F10 syngeneic murine melanoma model decreases tumor growth and increases survival of the B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in a B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS). In some embodiments, the APMV-4 that is administered to a subject in accordance with the methods described herein is an APMV-4 that when administered to a B16-F10 syngeneic murine melanoma model results in a greater decrease in tumor growth and a longer survival time of the B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in a B16-F10 syngeneic murine melanoma model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In certain embodiments, the APMV-4 that is administered to a subject in accordance with the methods described herein is an APMV-4 that when administered to a BALBc syngeneic murine colon carcinoma tumor model decreases tumor growth and increases survival of the BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival of a BALBc syngeneic murine colon carcinoma tumor model administered PBS. In some embodiments, the APMV-4 that is administered to a subject in accordance with the methods described herein is an APMV-4 that when administered to a BALBc syngeneic murine colon carcinoma tumor model results in a greater decrease in tumor growth and a longer survival time of the BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in a BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In certain embodiments, the APMV-4 that is administered to a subject in accordance with the methods described herein is an APMV-4 that when administered to a C57BL/6 syngeneic lung carcinoma tumor model decreases tumor growth and increases survival of the C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival in a C57BL/6 syngeneic murine lung carcinoma tumor model administered phosphate buffered saline (PBS). In some embodiments, the APMV-4 that is administered to a subject in accordance with the methods described herein is an APMV-4 that when administered to a C57BL/6 syngeneic murine lung carcinoma tumor model results in a greater decrease in tumor growth and a longer survival time of the C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a naturally occurring APMV-8, wherein the APMV-8 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV-8, wherein the recombinant APMV-8 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a particular embodiment, the APMV-8 is APMV-8 Goose/Delaware/1053/1976. In certain embodiments, the APMV-8 that is administered to a subject in accordance with the methods described herein is an APMV-8 that decreases tumor growth and increases survival in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in a BALBc syngeneic murine colon carcinoma tumor model administered PBS. In some embodiment, the APMV-8 that is administered to a subject in accordance with the methods described herein is an APMV-8 that results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in a BALBc syngeneic murine colon carcinoma tumor model administered a genetically modified NDV, wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In another aspect, provided herein is a recombinant APMV (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) comprising a packaged genome comprising a transgene encoding a heterologous sequence. In a specific embodiment, provided herein is a recombinant APMV (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) comprising a packaged genome comprising a transgene encoding a cytokine, interleukin-15 (IL-15) receptor alpha (IL-15Ra)-IL-15, human papillomavirus (HPV)-16 E6 protein or HPV-16 E7 protein. In certain embodiments, the APMV (e.g., an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 strain) has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a specific embodiment, a recombinant APMV described herein comprises an APMV-7 or APMV-8 backbone. In another specific embodiment, a recombinant APMV described herein comprises the APMV-8 Goose/Delaware/1053/1976 backbone. In another specific embodiment, a recombinant APMV described herein comprises the APMV-7 Dove/Tennessee/4/1975 backbone. In another specific embodiment, the recombinant APMV comprises an APMV-4 backbone. In a specific embodiment, a recombinant APMV described herein comprises an APMV-4 Duck/Hong Kong/D3/1975 strain backbone, an APMV-4 Duck/China/G302/2012 strain backbone, APMV4/mallard/Belgium/15129/07 strain backbone; APMV4Uriah-aalge/Russia/Tyuleniy_Island/115/2015 strain backbone, APMV4/Egyptian goose/South Africa/NJ468/2010 strain backbone, or APMV4/duck/Delaware/549227/2010 strain backbone. In a specific embodiment, the transgene is inserted between two transcription units of the APMV packaged genome (e.g., APMV M and P transcription units). In one embodiment, the cytokine is interleukin-12 (IL-12). In a specific embodiment, the IL-12 is encoded by a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO:16 or 17. In another embodiment, the cytokine is interleukin-2 (IL-2). In a specific embodiment, the IL-2 is encoded by a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO:15. In another embodiment, the cytokine is granulocyte-macrophage colony-stimulating factor (GM-CSF). In a specific embodiment, the GM-CSF is encoded by a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO:21. In another embodiment, the transgene comprises a nucleotide sequence encoding IL-15Ra-IL15. In a specific embodiment, the nucleotide sequence encoding IL-15Ra-IL-15 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:18. In another embodiment, the transgene comprises a nucleotide sequence encoding HPV-16 E6 protein. In a specific embodiment, the nucleotide sequence encoding the HPV-16 E6 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:19. In another embodiment, the transgene comprises a nucleotide sequence encoding HPV-16 E7 protein. In a specific embodiment, the nucleotide sequence encoding the HPV-16 E7 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:20.


In a specific embodiment, provided herein is a recombinant APMV-4 comprising a packaged genome comprising a transgene encoding a cytokine, IL-15Ra-IL-15, HPV-16 E6 protein or HPV-16 E7 protein, and wherein the APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a specific embodiment, the transgene is inserted between two transcription units of the APMV-4 packaged genome (e.g., APMV-4 M and P transcription units). In one embodiment, the cytokine is IL-12. In a specific embodiment, the IL-12 is encoded by a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO:16 or 17. In another embodiment, the cytokine is IL-2. In a specific embodiment, the IL-2 is encoded by a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO:15. In another embodiment, the cytokine is GM-CSF. In a specific embodiment, the GM-CSF is encoded by a nucleotide sequence comprising the nucleotide sequence of SEQ ID NO:21. In another embodiment, the transgene comprises a nucleotide sequence encoding IL-15Ra-IL15. In a specific embodiment, the nucleotide sequence encoding IL-15Ra-IL-15 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:18. In another embodiment, the transgene comprises a nucleotide sequence encoding HPV-16 E6 protein. In a specific embodiment, the nucleotide sequence encoding the HPV-16 E6 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:19. In another embodiment, the transgene comprises a nucleotide sequence encoding HPV-16 E7 protein. In a specific embodiment, the nucleotide sequence encoding the HPV-16 E7 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:20.


In another specific embodiment, provided herein is a recombinant APMV-4 comprising a packaged genome comprising a transgene encoding IL-12. In a specific embodiment, the APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In another specific embodiment, the packaged genome of the APMV-4 comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:14.


In a specific embodiment, a recombinant APMV-4 described herein comprises an APMV-4 Duck/Hong Kong/D3/1975 strain backbone. In another embodiment, a recombinant APMV-4 described herein comprises an APMV-4 Duck/China/G302/2012 strain backbone, APMV4/mallard/Belgium/15129/07 strain backbone; APMV4Uriah-aalge/Russia/Tyuleniy_Island/115/2015 strain backbone, APMV4/Egyptian goose/South Africa/NJ468/2010 strain backbone, or APMV4/duck/Delaware/549227/2010 strain backbone.


In specific embodiments, provided herein is a method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV described herein. In certain embodiments, a recombinant APMV described herein is administered to the human subject intratumorally or intravenously. In some embodiments, a recombinant APMV described herein is administered at a dose of 106 to 1012 pfu. In a specific embodiment, a recombinant APMV described herein comprises an APMV-4 or APMV-8 backbone. In some embodiments, the method for treating cancer further comprises administering the subject a checkpoint inhibitor. In certain embodiments, the method for treating cancer further comprises administering the subject a monoclonal antibody that specifically binds to PD-1 and blocks the binding of PD-1 to PD-L1 and PD-L2.


In certain embodiments, the cancer treated in accordance with the methods described herein is melanoma, lung carcinoma, colon carcinoma, B-cell lymphoma, T-cell lymphoma, or breast cancer. In a specific embodiment, the cancer treated in accordance with the methods described herein is metastatic. In another specific embodiment, the cancer treated in accordance with the methods described herein is unresectable.


3.1 Terminology

As used herein, the term “about” or “approximately” when used in conjunction with a number refers to any number within 1, 5 or 10% of the referenced number.


As used herein, the terms “antibody” and “antibodies” refer to molecules that contain an antigen-binding site, e.g., immunoglobulins. Antibodies include, but are not limited to, monoclonal antibodies, bispecific antibodies, multispecific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, polyclonal antibodies, single domain antibodies, camelized antibodies, single-chain Fvs (scFv), single chain antibodies, Fab fragments, F(ab') fragments, disulfide-linked bispecific Fvs (sdFv), intrabodies, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id and anti-anti-Id antibodies to antibodies), and epitope-binding fragments of any of the above. In particular, antibodies include immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass. In a specific embodiment, an antibody is a human or humanized antibody. In another specific embodiment, an antibody is a monoclonal antibody or scFv. In certain embodiments, an antibody is a human or humanized monoclonal antibody or scFv. In other specific embodiments, the antibody is a bispecific antibody.


As used herein, the term “derivative” in the context of proteins or polypeptides includes: (a) a polypeptide that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical to a native polypeptide; (b) a polypeptide encoded by a nucleic acid sequence that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical to a nucleic acid sequence encoding a native polypeptide; (c) a polypeptide that contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., any one or more, or all of an addition(s), deletion(s) or substitution(s)) relative to a native polypeptide; (d) a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native polypeptide; (e) a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native polypeptide of at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids; or (f) a fragment of a native polypeptide. Derivatives also include a polypeptide that comprises the amino acid sequence of a naturally occurring mature form of a mammalian polypeptide and a heterologous signal peptide amino acid sequence. In addition, derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, derivatives include polypeptides comprising one or more non-classical amino acids. In one embodiment, a derivative is isolated. In specific embodiments, a derivative retains one or more functions of the native polypeptide from which it was derived.


As used herein, the term “elderly human” refers to a human 65 years or older.


As used herein, the term “fragment” in the context of a nucleotide sequence refers to a nucleotide sequence comprising a nucleic acid sequence of at least 5 contiguous nucleic acid bases, at least 10 contiguous nucleic acid bases, at least 15 contiguous nucleic acid bases, at least 20 contiguous nucleic acid bases, at least 25 contiguous nucleic acid bases, at least 40 contiguous nucleic acid bases, at least 50 contiguous nucleic acid bases, at least 60 contiguous nucleic acid bases, at least 70 contiguous nucleic acid bases, at least 80 contiguous nucleic acid bases, at least 90 contiguous nucleic acid bases, at least 100 contiguous nucleic acid bases, at least 125 contiguous nucleic acid bases, at least 150 contiguous nucleic acid bases, at least 175 contiguous nucleic acid bases, at least 200 contiguous nucleic acid bases, or at least 250 contiguous nucleic acid bases of the nucleotide sequence of the gene of interest. The nucleic acid may be RNA, DNA, or a chemically modified variant thereof.


As used herein, the term “fragment” is the context of a fragment of a proteinaceous agent (e.g., a protein or polypeptide) refers to a fragment that is composed of 8 or more contiguous amino acids, 10 or more contiguous amino acids, 15 or more contiguous amino acids, 20 or more contiguous amino acids, 25 or more contiguous amino acids, 50 or more contiguous amino acids, 75 or more contiguous amino acids, 100 or more contiguous amino acids, 150 or more contiguous amino acids, 200 or more contiguous amino acids, 10 to 150 contiguous amino acids, 10 to 200 contiguous amino acids, 10 to 250 contiguous amino acids, 10 to 300 contiguous amino acids, 50 to 100 contiguous amino acids, 50 to 150 contiguous amino acids, 50 to 200 contiguous amino acids, 50 to 250 contiguous amino acids or 50 to 300 contiguous amino acids of a proteinaceous agent.


As used herein, the term “heterologous” to refers an entity not found in nature to be associated with (e.g., encoded by, expressed by the genome of, or both) a naturally occurring APMV. In a specific embodiment, a heterologous sequence encodes a protein that is not found associated with naturally occurring APMV.


As used herein, the term “human adult” refers to a human that is 18 years or older.


As used herein, the term “human child” refers to a human that is 1 year to 18 years old.


As used herein, the term “human infant” refers to a newborn to 1-year-old year human.


As used herein, the term “human toddler” refers to a human that is 1 year to 3 years old.


As used herein, the term “in combination” in the context of the administration of (a) therapy(ies) to a subject, refers to the use of more than one therapy. The use of the term “in combination” does not restrict the order in which therapies are administered to a subject. A first therapy can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy to a subject. For example, a recombinant APMV described herein may be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before) concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of another therapy.


As used herein, the phrases “interferon-deficient systems,” “interferon-deficient substrates,” “IFN deficient systems” or “IFN-deficient substrates” refer to systems, e.g., cells, cell lines and animals, such as mice, chickens, turkeys, rabbits, rats, horses etc., which do not produce one, two or more types of IFN, or do not produce any type of IFN, or produce low levels of one, two or more types of IFN, or produce low levels of any IFN (i.e., a reduction in any IFN expression of 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90% or more when compared to IFN-competent systems under the same conditions), do not respond or respond less efficiently to one, two or more types of IFN, or do not respond to any type of IFN, have a delayed response to one, two or more types of IFN, and/or are deficient in the activity of antiviral genes induced by one, two or more types of IFN, or induced by any type of IFN.


As used herein, the phrase “multiplicity of infection” or “MOI” has its customary meaning. Generally, MOI is the average number of virus per infected cell. The MOI is determined by dividing the number of virus added (ml added×Pfu) by the number of cells added (ml added×cells/ml).


As used herein, the term “native” in the context of proteins or polypeptides refers to any naturally occurring amino acid sequence, including immature or precursor and mature forms of a protein. In a specific embodiment, the native polypeptide is a human protein or polypeptide.


As used herein, the term “naturally occurring” in the context of an APMV refers to an APMV found in nature, which is not modified by the hand of man. In other words, a naturally occurring APMV is not genetically engineered or otherwise altered by the hand of man.


As used herein, the terms “subject” or “patient” are used interchangeably. As used herein, the terms “subject” and “subjects” refers to an animal. In some embodiments, the subject is a mammal including a non-primate (e.g., a camel, donkey, zebra, bovine, horse, horse, cat, dog, rat, and mouse) and a primate (e.g., a monkey, chimpanzee, and a human). In some embodiments, the subject is a non-human mammal. In certain embodiments, the subject is a pet (e.g., dog or cat) or farm animal (e.g., a horse, pig or cow). In specific embodiments, the subject is a human. In certain embodiments, the mammal (e.g., human) is 4 to 6 months old, 6 to 12 months old, 1 to 5 years old, 5 to 10 years old, 10 to 15 years old, 15 to 20 years old, 20 to 25 years old, 25 to 30 years old, 30 to 35 years old, 35 to 40 years old, 40 to 45 years old, 45 to 50 years old, 50 to 55 years old, 55 to 60 years old, 60 to 65 years old, 65 to 70 years old, 70 to 75 years old, 75 to 80 years old, 80 to 85 years old, 85 to 90 years old, 90 to 95 years old or 95 to 100 years old. In specific embodiments, the subject is an animal that is not avian.


As used herein, the terms “therapies” and “therapy” can refer to any protocol(s), method(s), agent(s) or a combination thereof that can be used in the treatment cancer. In certain embodiments, the term “therapy” refers to an APMV described herein. In other embodiments, the term “therapy” refers to an agent that is not an APMV described herein.





4. BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1B. Infectivity and cytotoxicity of APMVs in a B16-F10 murine melanoma cancer cell line. FIG. 1A depicts microscopy images of B16-F10 murine melanoma cells infected by APMVs. Cells were infected at an MOI of 1 FFU/cell, fixed 20 hours after infection, and stained with polyclonal anti-APMV species-specific serum (red), polyclonal anti-NDV serum (green), and Hoechst for nuclear contrast. FIG. 1B depicts in vitro cytotoxicity. B16-F10 cells were infected at an MOI of 1 FFU/cell and their viability was determined by CellTiter-Fluor™ viability assay at 24 hours after infection. Bars represent mean values±standard deviation (SD) (n=3; **, P<0.01; ***, P<0.001; ****, P<0.0001).



FIGS. 2A-2C. Oncolytic capacity of APMVs in a syngenic murine melanoma tumor model. FIG. 2A depicts individual tumor growth curves. Each point represents tumor volume per mouse at the indicated time points. FIG. 2B depicts analysis of tumor growth rate. Points represent average of tumor volume per experimental group at the indicated time points. Error bars correspond to SD of each group. FIG. 2C depicts overall survival of treated B16-F10 tumor-bearing mice (*, P<0.03).



FIG. 3A-3D. Oncolytic capacity of APMVs in a syngenic murine colon carcinoma model. FIG. 3A depicts individual tumor growth curves. Each point represents tumor volume per mouse at the indicated time points. FIG. 3B represents analysis of the tumor growth rate. Each point represents tumor volume per treatment group at the indicated time points. FIG. 3C depicts overall survival of the treated CT26 tumor-bearing mice. FIG. 3D depicts overall survival of the treated CT26 tumor-bearing mice, where tumor-free survivors were re-challenged by intradermal injection of CT26 cells in the flank of the posterior left leg (contralateral).



FIGS. 4A-4C. Oncolytic capacity of APMV-4 in a syngenic murine lung carcinoma model. FIG. 4A depicts individual tumor growth curves. Each point represents tumor volume per mouse at the indicated time points. FIG. 4B represents analysis of the tumor growth rate. Points represent average tumor volume per experimental group at the indicated time point; right side: statistical analysis of control of tumor growth after third injection. Error bars correspond to SD of each group. FIG. 4C depicts overall survival of the treated TC-1 tumor-bearing mice (**, P<0.03).





5. DETAILED DESCRIPTION
5.1 Avian Paramyoxviruses
5.1.1 APMV

Any APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain may be serve, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, genetically engineered viruses, or a combination thereof may be used in the methods for treating cancer described herein. In certain embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is a lytic strain. In other embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is a non-lytic strain. In a specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is naturally occurring. In a specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is avirulent in an avian(s) by a method(s) described herein or known to one of skill in the art. In a specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is recombinantly produced. In certain embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is genetically engineered to be attenuated in a manner that attenuates the pathogenicity of the virus in birds.


In another specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In certain specific embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is not pathogenic as assessed by intracranial injection of 1-day-old chicks with the virus, and disease development and death as scored for 8 days. In some embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein has an intracranial pathogenicity index of less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2 or less than 0.1. In some embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein has an intracranial pathogenicity index between 0.7 to 0.1, 0.6 to 0.1, 0.5 to 0.1 or 0.4 to 0.1. In certain embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein has an intracranial pathogenicity index of zero. See, e.g,. one or more of the following references for a description of an assay that may be used to assess the pathogenicity of an APMV in birds: Hines, N. L. and C. L. Miller, Avian paramyxovirus serotype-1: a review of disease distribution, clinical symptoms, and laboratory diagnostics. Vet Med Int, 2012. 2012: p. 708216; Kim S-H, Xiao S, Shive H, Collins PL, Samal S K., 2012: Replication, Neurotropism, and Pathogenicity of Avian Paramyxovirus Serotypes 1-9 in Chickens and Ducks. PLoS ONE. ;7(4): e34927; Subbiah, M., Xiao, S., Khattar, S. K., Dias, F. M., Collins, P. L., & Samal, S. K., 2010: Pathogenesis of two strains of Avian Paramyxovirus serotype 2, Yucaipa and Bangor, in chickens and turkeys. Avian Diseases, 54(3), 1050-1057; Kumar S, Militino Dias F, Nayak B, Collins PL, Samal S. K., 2010: Experimental avian paramyxovirus serotype-3 infection in chickens and turkeys. Veterinary Research.; 41(5):72; Ryota Tsunekuni, Hirokazu Hikono, Takehiko Saito., 2014: Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease virus. Veterinary Immunology and Immunopathology; 160(3-4):184-191; and www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.03.14_NEWCASTLE DIS.pdf, each of which is incorporated herein by reference in its entirety. In a specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain is a recombinant APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain, respectively.


In another specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In a specific embodiment, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is used in a method of treating cancer described herein is a recombinant APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain, respectively, and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.


In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein decreases tumor growth and increases survival in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS). In another specific embodiments, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein results in a greater decrease in tumor growth and a longer survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in the B16-F10 syngeneic murine melanoma model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A (for a description of the L289A mutation, see, e.g., Sergel et al. (2000) A Single Amino Acid Change in the Newcastle Disease Virus Fusion Protein Alters the Requirement for HN Protein in Fusion. Journal of Virology 74(11): 5101-5107, which is incorporated herein by reference in its entirety). In another specific embodiments, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein results in a comparable decrease in tumor growth and increase survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in the B16-F10 syngeneic murine melanoma model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein decreases tumor growth and increases survival in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein results in a comparable decrease in tumor growth and increase survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein decreases tumor growth and increases survival in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival in C57BL/6 syngeneic murine lung carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein results in a greater decrease in tumor growth and a longer survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in the C57BL/6 syngeneic murine lung carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that is used in a method of treating cancer described herein results in a comparable decrease in tumor growth and increase survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in the C57BL/6 syngeneic murine lung carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO: 13.


In a specific embodiment, an APMV strain is used in a method for treating cancer described herein is an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 described in Section 6, infra. In one embodiment, an APMV-2 strain is used in a method for treating cancer described herein, wherein the APMV-2 strain is APMV-2 Chicken/California/Yucaipa/1956. See, e.g., GenBank No. EU338414.1 or SEQ ID NO:1 for the complete genomic cDNA sequence of APMV-2 Chicken/California/Yucaipa/1956. In another embodiment, an APMV-3 strain is used in a method for treating cancer described herein, wherein the APMV-3 strain is APMV-3 turkey/Wisconsin/68. See, e.g., GenBank No. EU782025.1 or SEQ ID NO:2 for the complete genomic cDNA sequence of APMV-3 turkey/Wisconsin/68. In another embodiment, an APMV-6 strain is used in a method for treating cancer described herein, wherein the APMV-6 strain is APMV-6/duck/Hong Kong/18/199/77. See, e.g., GenBank No. EU622637.2 or SEQ ID NO:9 for the complete genomic cDNA sequence of APMV-6/duck/Hong Kong/18/199/77. In another embodiment, an APMV-7 strain is used in a method for treating cancer described herein, wherein the APMV-7 strain is APMV-7/dove/Tennessee/4/75. See, e.g., GenBank No. FJ231524.1 or SEQ ID NO:10 for the complete genomic cDNA of APMV-7/dove/Tennessee/4/75. In another embodiment, an APMV-8 strain is used in a method for treating cancer described herein, wherein the APMV-8 strain is APMV-8/Goose/Delaware/1053/76. See, e.g., GenBank No. FJ619036.1 or SEQ ID NO:11 for the complete genomic cDNA sequence of APMV-8/Goose/Delaware/1053/76. In another embodiment, an APMV-9 is used in a method for treating cancer described herein, wherein the APMV-9 strain is APMV-9 duck/New York/22/1978. See, e.g., GenBank No. NC_025390.1 or SEQ ID NO:12 for the complete genomic cDNA sequence of APMV-9 duck/New York/22/1978.


In a specific embodiment, an APMV-4 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-4 strain that is naturally occurring is used in a method of treating cancer described herein. In a preferred embodiment, an APMV-4 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a preferred embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV-4/Duck/Hong Kong/D3/1975 strain. See, e.g., GenBank No. FJ177514.1 or SEQ ID NO:4 for the complete genomic cDNA sequence of APMV-4/duck/Hong Kong/D3/75. In a specific embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV-4/Duck/China/G302/2012 strain, APMV4/mallard/Belgium/15129/07 strain, APMV4/Uriah_aalge/Russia/Tyuleniy_Island/115/2015 strain, APMV-4/Egyptian goose/South Africa/N1468/2010 strain, or APMV4/duck/Delaware/549227/2010 strain. In a specific embodiment, the APMV-4 that is used in a method of treating cancer described herein is an APMV-4 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-4/Duck/Hong Kong/D3/1975 strain.


In one embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV-4/Duck/China/G302/2012 strain. See, e.g., GenBank No. KC439346.1 or SEQ ID NO:7 for the complete genomic cDNA sequence of APMV-4/Duck/China/G302/2012 strain. In another embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV-4/Uriah_aalge/Russia/Tyuleniy_Island/115/2015 strain. See, e.g., GenBank No. KU601399.1 or SEQ ID NO:5 for the complete genomic cDNA sequence of APMV-4/Uriah_aalge/Russia/Tyuleniy_Island/115/2015 strain. In another embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV4/duck/Delaware/549227/2010 strain. See, e.g., GenBank No. JX987283.1 or SEQ ID NO:8 for the complete genomic cDNA sequence of APMV4/duck/Delaware/549227/2010 strain. In another embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV4/mallard/Belgium/15129/07 strain. See, e.g., GenBank No. JN571485 or SEQ ID NO:3 for the complete genomic cDNA sequence of APMV4/mallard/Belgium/15129/07 strain. In another embodiment, the APMV-4 that is used in a method of treating cancer described herein is APMV-4/Egyptian goose/South Africa/N1468/2010 strain. See, e.g., GenBank No. JX133079.1 or SEQ ID NO:6 for the complete genomic cDNA sequence of APMV-4/Egyptian goose/South Africa/N1468/2010 strain.


In a specific embodiment, an APMV-4 that is used in a method of treating cancer described herein decreases tumor growth and increases survival in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS). In another specific embodiment, an APMV-4 that is used in a method of treating cancer described herein results in a greater decrease in tumor growth and a longer survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in the B16-F10 syngeneic murine melanoma model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, an APMV-4 that is used in a method of treating cancer described herein decreases tumor growth and increases survival in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, an APMV-4 that is used in a method of treating cancer described herein results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO: 13.


In a specific embodiment, an APMV-4 that is used in a method of treating cancer described herein decreases tumor growth and increases survival in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival in C57BL/6 syngeneic murine lung carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, an APMV-4 that is used in a method of treating cancer described herein results in a greater decrease in tumor growth and a longer survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in the C57BL/6 syngeneic murine lung carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO: 13.


In a specific embodiment, an APMV-8 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-8 strain that is naturally occurring is used in a method of treating cancer described herein. In a specific embodiment, an APMV-8 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a specific embodiment, the APMV-8 that is used in a method of treating cancer described herein is APMV-8/Goose/Delaware/1053/76. See, e.g., GenBank No. FJ619036.1 or SEQ ID NO:11 for the complete genomic cDNA sequence of APMV-8/Goose/Delaware/1053/76. In a specific embodiment, the APMV-8 that is used in a method of treating cancer described herein is an APMV-8 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-8/Goose/Delaware/1053/76.


In a specific embodiment, an APMV-7 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-7 strain that is naturally occurring is used in a method of treating cancer described herein. In a preferred embodiment, an APMV-7 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a specific embodiment, the APMV-7 that is used in a method of treating cancer described herein is APMV-7/dove/Tennessee/4/75. See, e.g., GenBank No. FJ231524.1 or SEQ ID NO:10 for the complete genomic cDNA of APMV-7/dove/Tennessee/4/75. In a specific embodiment, the APMV-7 that is used in a method of treating cancer described herein is and APMV-7 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-7/dove/Tennessee/4/75.


In a specific embodiment, an APMV-2 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-2 strain that is naturally occurring is used in a method of treating cancer described herein. In a preferred embodiment, an APMV-2 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a specific embodiment, the APMV-2 that is used in a method of treating cancer described herein is APMV-2 Chicken/California/Yucaipa/1956. See, e.g., GenBank No. EU338414.1 or SEQ ID NO:1 for the complete genomic cDNA sequence of APMV-2 Chicken/California/Yucaipa/1956. In a specific embodiment, the APMV-2 that is used in a method of treating cancer described herein is and APMV-2 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-2 Chicken/California/Yucaipa/1956.


In a specific embodiment, an APMV-3 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-3 strain that is naturally occurring is used in a method of treating cancer described herein. In a preferred embodiment, an APMV-3 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a specific embodiment, the APMV-3 that is used in a method of treating cancer described herein is APMV-3 turkey/Wisconsin/68. See, e.g., GenBank No. EU782025.1 or SEQ ID NO:2 for the complete genomic cDNA sequence of APMV-3 turkey/Wisconsin/68. In a specific embodiment, the APMV-3 that is used in a method of treating cancer described herein is and APMV-3 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-3 turkey/Wisconsin/68.


In a specific embodiment, an APMV-6 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-6 strain that is naturally occurring is used in a method of treating cancer described herein. In a preferred embodiment, an APMV-6 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a specific embodiment, the APMV-6 that is used in a method of treating cancer described herein is APMV-6/duck/Hong Kong/18/199/77. See, e.g., GenBank No. EU622637.2 or SEQ ID NO:9 for the complete genomic cDNA sequence of APMV-6/duck/Hong Kong/18/199/77. In a specific embodiment, the APMV-6 that is used in a method of treating cancer described herein is an APMV-6 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-6/duck/Hong Kong/18/199/77.


In a specific embodiment, an APMV-9 strain is used in a method for treating cancer described herein. In another embodiment, an APMV-9 strain that is naturally occurring is used in a method of treating cancer described herein. In a preferred embodiment, an APMV-9 strain that is naturally occurring and has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7 is used in a method of treating cancer described herein. In a specific embodiment, the APMV-9 that is used in a method of treating cancer described herein is APMV-9 duck/New York/22/1978. See, e.g., GenBank No. NC_025390.1 or SEQ ID NO:12 for the complete genomic cDNA sequence of APMV-9 duck/New York/22/1978. In a specific embodiment, the APMV-9 that is used in a method of treating cancer described herein is an APMV-9 with a genome that has 80%, 85%, 90%, 95% or higher percent identity to the genome of APMV-9 duck/New York/22/1978.


5.1.2 Recombinant APMV

In one aspect, presented herein are recombinant APMVs comprising a packaged genome, wherein the packaged genome comprises a transgene. See, e.g., Section 5.1.2.2 and Section 7 for examples of transgenes which may be incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.2.1 and Section 6 for examples of APMVs, the genome of which a transgene may be incorporated. In a particular embodiment, the genome of the APMV, which the transgene is incorporated, is the genome of an APMV-4 (e.g., an APMV-4 strain described herein), APMV-7 strain (e.g., an APMV-7 strain described herein) or APMV-8 strain (e.g., an APMV-8 strain described herein). In another embodiment, the genome of the APMV in which the transgene is incorporated is the genome of an APMV-6 (e.g., an APMV-6 strain described herein) or APMV-9 strain (e.g., an APMV-9 strain described herein). In a specific embodiment, provided herein is a recombinant APMV-4 comprising a packaged genome, wherein the packaged genome comprises a transgene. In a preferred embodiment, provided herein is a recombinant APMV-4 comprising a packaged genome, wherein the packaged genome comprises (consists of) the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:14. In a specific embodiment, the protein encoded by the transgene is expressed by cells infected with the recombinant APMV.


In certain embodiments, the genome of the recombinant APMV does not comprise a heterologous sequence encoding a heterologous protein other than the protein encoded by the transgene. In certain embodiments, a recombinant APMV described herein comprises a packaged genome, wherein the genome comprises (or consists of) the genes found in APMV and a transgene. In certain embodiments, a recombinant APMV described herein comprises a packaged genome, wherein the genome comprises (or consists of) the transcription units found in APMV (e.g., transcription units for APMV nucleocapsid, protein, phosphoprotein, matrix protein, fusion protein, hemagglutinin-neuraminidase protein, and large polymerase protein) and a transgene (e.g., in Section 5.1.2.2), but does not include another other transgenes.


5.1.2.1 Backbone of the Recombinant APMV

Any APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain may serve as the “backbone” that is engineered to encode a transgene described herein, including, but not limited to, naturally-occurring strains, variants or mutants, mutagenized viruses, or genetically engineered viruses, or any combination thereof In certain embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein is a lytic strain. In other embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein is a non-lytic strain. In a specific embodiment, a transgene described herein is incorporated into the genome of APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is avirulent in an avian(s) by a method(s) described herein or known to one of skill in the art. In certain embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein is genetically engineered to be attenuated in a manner that attenuates the pathogenicity of the virus in birds.


In another specific embodiment, a transgene is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7. In certain specific embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein is not pathogenic as assessed by intracranial injection of 1-day-old chicks with the virus, and disease development and death as scored for 8 days. In some embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein has an intracranial pathogenicity index of less than 0.7, less than 0.6, less than 0.5, less than 0.4, less than 0.3, less than 0.2 or less than 0.1. In some embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein has an intracranial pathogenicity index between 0.7 to 0.1, 0.6 to 0.1, 0.5 to 0.1 or 0.4 to 0.1. In certain embodiments, the APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 strain that is engineered to encode a transgene described herein has an intracranial pathogenicity index of zero. See, e.g,. one or more of the following references for a description of an assay that may be used to assess the pathogenicity of an APMV in birds: Hines, N. L. and C. L. Miller, Avian paramyxovirus serotype-1: a review of disease distribution, clinical symptoms, and laboratory diagnostics. Vet Med Int, 2012. 2012: p. 708216; Kim S-H, Xiao S, Shive H, Collins P L, Samal S K., 2012: Replication, Neurotropism, and Pathogenicity of Avian Paramyxovirus Serotypes 1-9 in Chickens and Ducks. PLoS ONE.; 7(4): e34927; Subbiah, M., Xiao, S., Khattar, S. K., Dias, F. M., Collins, P. L., & Samal, S. K., 2010: Pathogenesis of two strains of Avian Paramyxovirus serotype 2, Yucaipa and Bangor, in chickens and turkeys. Avian Diseases, 54(3), 1050-1057; Kumar S, Militino Dias F, Nayak B, Collins P L, Samal S. K., 2010: Experimental avian paramyxovirus serotype-3 infection in chickens and turkeys. Veterinary Research.; 41(5):72; Ryota Tsunekuni, Hirokazu Hikono, Takehiko Saito.,2014: Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease virus. Veterinary Immunology and Immunopathology; 160(3-4):184-191; and www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.03.14 NEWCASTLE DIS.pdf, each of which is incorporated herein by reference in its entirety.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that decreases tumor growth and increases survival in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS). In another specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that results in a greater decrease in tumor growth and a longer survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in the B16-F10 syngeneic murine melanoma model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In another specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that results in a comparable decrease in tumor growth and increase survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in the B16-F10 syngeneic murine melanoma model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that decreases tumor growth and increases survival in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that results in a comparable decrease in tumor growth and increase survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that decreases tumor growth and increases survival in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival in C57BL/6 syngeneic murine lung carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that results in a greater decrease in tumor growth and a longer survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in the C57BL/6 syngeneic murine lung carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, or APMV-9 that results in a comparable decrease in tumor growth and increase survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in the C57BL/6 syngeneic murine lung carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-4 strain. In a preferred embodiment, a transgene described herein is incorporated into the genome of APMV-4/Duck/Hong Kong/D3/1975 strain. One example of a cDNA sequence of the genome of the APMV-4/Duck/Hong Kong/D3/1975 strain may be found in SEQ ID NO:4. In a specific embodiment, the nucleotide sequence of a transgene described herein is incorporated into the genome of APMV-4/Duck/China/G302/2012 strain, APMV4/mallard/Belgium/15129/07 strain, APMV4/Uriah_aalge/Russia/Tyuleniy_Island/115/2015 strain, APMV4/Egyptian goose/South Africa/N1468/2010 strain, or APMV-4/duck/Delaware/549227/2010 strain. One example of a cDNA sequence of the genome of the APMV-4/Duck/China/G302/2012 strain may be found in SEQ ID NO:7. An example of a cDNA sequence of the genome of the APMV4/mallard/Belgium/15129/07 strain may be found in SEQ ID NO:3. An example of a cDNA sequence of the genome of the APMV4/Uriah_aalge/Russia/Tyuleniy_Island/115/2015 strain may be found in SEQ ID NO:5. An example of a cDNA sequence of the genome of the APMV4/Egyptian goose/South Africa/N1468/2010 strain may be found in SEQ ID NO:6. An example of a cDNA sequence of the genome of the APMV-4/duck/Delaware/549227/2010 strain may be found in SEQ ID NO:8.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-4 that decreases tumor growth and increases survival in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS). In another specific embodiments, a transgene described herein is incorporated into the genome of an APMV-4 that results in a greater decrease in tumor growth and a longer survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in the B16-F10 syngeneic murine melanoma model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-4 that decreases tumor growth and increases survival in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-4 that results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-4 that decreases tumor growth and increases survival in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival in C57BL/6 syngeneic murine lung carcinoma tumor model administered phosphate buffered saline (PBS). In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-4 that results in a greater decrease in tumor growth and a longer survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in the C57BL/6 syngeneic murine lung carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A. In a specific embodiment, the modified NDV comprises a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-7 strain. In a particular embodiment, a transgene described herein is incorporated into the genome of is APMV-7/dove/Tennessee/4/75. See, e.g., GenBank No. FJ231524.1 or SEQ ID NO:10 for the complete genomic cDNA of APMV-7/dove/Tennessee/4/75.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-8 strain. In a particular embodiment, a transgene described herein is incorporated into the genome of APMV-8/Goose/Delaware/1053/76. See, e.g., GenBank No. FJ619036.1 or SEQ ID NO:11 for the complete genomic cDNA sequence of APMV-8/Goose/Delaware/1053/76.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-9 strain. In a particular embodiment, a transgene described herein is incorporated into the genome of APMV-9 duck/New York/22/1978. See, e.g., GenBank No. NC_025390.1 or SEQ ID NO:12 for the complete genomic cDNA sequence of APMV-9 duck/New York/22/1978.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-2 strain. In a particular embodiment, a transgene described herein is incorporated into the genome of APMV-2 Chicken/California/Yucaipa/1956. See, e.g., GenBank No. EU338414.1 or SEQ ID NO:1 for the complete genomic cDNA sequence of APMV-2 Chicken/California/Yucaipa/1956.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-3 strain. In a particular embodiment, a transgene described herein is incorporated into the genome of APMV-3 turkey/Wisconsin/68. See, e.g., GenBank No. EU782025.1 or SEQ ID NO:2 for the complete genomic cDNA sequence of APMV-3 turkey/Wisconsin/68.


In a specific embodiment, a transgene described herein is incorporated into the genome of an APMV-6 strain. In a particular embodiment, a transgene described herein is incorporated into the genome of APMV-6/duck/Hong Kong/18/199/77. See, e.g., GenBank No. EU622637.2 or SEQ ID NO:9 for the complete genomic cDNA sequence of APMV-6/duck/Hong Kong/18/199/77.


One skilled in the art will understand that the APMV genomic RNA sequence is the reverse complement of a cDNA sequence encoding the APMV genome. Thus, any program that generates converts a nucleotide sequence to its reverse complement sequence may be utilized to convert a cDNA sequence encoding an APMV genome into the genomic RNA sequence (see, e.g., www.bioinformatics.org/sms/rev_comp.html, www.fr33.net/seqedit.php, and DNAStar). Accordingly, the nucleotide sequences provided in Tables 2 and 3, infra, may be readily converted to the negative-sense RNA sequence of the APMV genome by one of skill in the art.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-4 strain, wherein the genome comprises the transcription units of the APMV-4 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-4 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-4 strain, wherein the genome comprises a transcription unit encoding the APMV-4 nucleocapsid (N) protein, a transcription unit encoding the APMV-4 phosphoprotein (P), a transcription unit encoding the APMV-4 matrix (M) protein, a transcription unit encoding the APMV-4 fusion (F) protein, a transcription unit encoding the APMV-4 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-4 large polymerase (L) protein. The transgene may be incorporated into the APMV-4 genome between two transcription units of an APMV-4 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-4 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-4 strain is the APMV-4/Duck/Hong Kong/D3/1975 strain, APMV-4/Duck/China/G302/2012 strain, APMV4/mallard/Belgium/15129/07 strain, APMV4Uriah-aalge/Russia/Tyuleniy_Island/115/2015 strain, APMV4/Egyptian goose/South Africa/NJ468/2010 strain, or APMV4/duck/Delaware/549227/2010 strain.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-8 strain, wherein the genome comprises the transcription units of the APMV-8 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-8 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-8 strain, wherein the genome comprises a transcription unit encoding the APMV-8 nucleocapsid (N) protein, a transcription unit encoding the APMV-8 phosphoprotein (P), a transcription unit encoding the APMV-8 matrix (M) protein, a transcription unit encoding the APMV-8 fusion (F) protein, a transcription unit encoding the APMV-8 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-8 large polymerase (L) protein. The transgene may be incorporated into the APMV-8 genome between two transcription units of an APMV-8 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-8 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-8 strain is the APMV-8/Goose/Delaware/1053/76 strain.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-9 strain, wherein the genome comprises the transcription units of the APMV-9 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-9 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-9 strain, wherein the genome comprises a transcription unit encoding the APMV-9 nucleocapsid (N) protein, a transcription unit encoding the APMV-9 phosphoprotein (P), a transcription unit encoding the APMV-9 matrix (M) protein, a transcription unit encoding the APMV-9 fusion (F) protein, a transcription unit encoding the APMV-9 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-9 large polymerase (L) protein. The transgene may be incorporated into the APMV-9 genome between two transcription units of an APMV-9 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-9 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-9 strain is the APMV-9 duck/New York/22/1978 strain.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-7 strain, wherein the genome comprises the transcription units of the APMV-7 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-7 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-7 strain, wherein the genome comprises a transcription unit encoding the APMV-7 nucleocapsid (N) protein, a transcription unit encoding the APMV-7 phosphoprotein (P), a transcription unit encoding the APMV-7 matrix (M) protein, a transcription unit encoding the APMV-7 fusion (F) protein, a transcription unit encoding the APMV-7 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-7 large polymerase (L) protein. The transgene may be incorporated into the APMV-7 genome between two transcription units of an APMV-7 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-7 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-7 strain is the APMV-7/dove/Tennessee/4/75 strain.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-2 strain, wherein the genome comprises the transcription units of the APMV-2 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-2 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-2 strain, wherein the genome comprises a transcription unit encoding the APMV-2 nucleocapsid (N) protein, a transcription unit encoding the APMV-2 phosphoprotein (P), a transcription unit encoding the APMV-2 matrix (M) protein, a transcription unit encoding the APMV-2 fusion (F) protein, a transcription unit encoding the APMV-2 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-2 large polymerase (L) protein. The transgene may be incorporated into the APMV-2 genome between two transcription units of an APMV-2 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-2 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-2 strain is the APMV-2 Chicken/California/Yucaipa/1956 strain.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-3 strain, wherein the genome comprises the transcription units of the APMV-3 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-3 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-3 strain, wherein the genome comprises a transcription unit encoding the APMV-3 nucleocapsid (N) protein, a transcription unit encoding the APMV-3 phosphoprotein (P), a transcription unit encoding the APMV-3 matrix (M) protein, a transcription unit encoding the APMV-3 fusion (F) protein, a transcription unit encoding the APMV-3 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-3 large polymerase (L) protein. The transgene may be incorporated into the APMV-3 genome between two transcription units of an APMV-3 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-3 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-3 strain is the APMV-3 turkey/Wisconsin/68 strain.


In a specific embodiment, a transgene is incorporated into the genome of an APMV-6 strain, wherein the genome comprises the transcription units of the APMV-6 strain necessary for infection and replication of the virus in a substrate (e.g., a cell line susceptible to APMV-6 infection), subject (e.g., a human subject), or both. In a specific embodiment, a transgene is incorporated into the genome of an APMV-6 strain, wherein the genome comprises a transcription unit encoding the APMV-6 nucleocapsid (N) protein, a transcription unit encoding the APMV-6 phosphoprotein (P), a transcription unit encoding the APMV-6 matrix (M) protein, a transcription unit encoding the APMV-6 fusion (F) protein, a transcription unit encoding the APMV-6 hemagglutinin-neuraminidase (HN) protein, and a transcription unit encoding the APMV-6 large polymerase (L) protein. The transgene may be incorporated into the APMV-6 genome between two transcription units of an APMV-6 described herein (e.g., between the M and P transcription units or between the HN and L transcription units). In certain embodiments, the genome of the APMV-6 does not encode a heterologous protein other than a transgene described herein. In a specific embodiment, the APMV-6 strain is the APMV-6/duck/Hong Kong/18/199/77 strain.


5.1.2.2 Transgenes

In a specific embodiment, a transgene encoding a cytokine is incorporated into the genome of an APMV described herein. For example, the transgene may encode IL-2, IL-15Ra-IL-15, or GM-CSF. In another specific embodiment, a transgene encoding a tumor antigen is incorporated into the genome of an APMV described herein. For example, the transgene may encode a human papillomavirus (HPV) antigen, such as E6 or E7 (e.g., HPV-16 E6 or E7 protein) or other tumor antigens may be incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.1 and Section 5.1.2.1, supra, for types and strains of APMV that may be used.


In certain embodiments, a transgene encoding a protein described herein (e.g., human IL-2, human IL-12, human GM-CSF, or human IL-15Ra-IL-15 protein, or a tumor antigen) comprises APMV regulatory signals (e.g., gene end, intergenic, and gene start sequences) and Kozak sequences. In some embodiments, a transgene encoding a protein described herein (e.g., human IL-2, human IL-12, human GM-CSF, human IL-15Ra-IL15 protein or tumor antigen) comprises APMV regulatory signals (e.g., gene end, intergenic, and gene start sequences), Kozak sequences and restriction sites to facilitate cloning. In certain embodiments, a transgene encoding a protein described herein (e.g., human IL-2, human IL-12, human GM-CSF, human IL-15Ra-IL15 protein or tumor antigen) comprises APMV regulatory signals (e.g., gene end, intergenic and gene start sequences), Kozak sequences, restriction sites to facilitate cloning, and additional nucleotides in the non-coding region to ensure compliance with the rule of six. In a preferred embodiment, the transgene complies with the rule of six.


IL-2


In a specific embodiment, a transgene encoding IL-2 is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.1 and Section 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes human IL-2. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. For example, a transgene encoding a human IL-2 comprising the amino acid sequence set forth in GenBank No. NO_000577.2 may be incorporated into the genome of any APMV type or strain described herein. In a specific embodiment, such a transgene comprises the sequence set forth in SEQ ID NO:15. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same IL-2 protein. In a specific embodiment, a transgene comprising the nucleotide sequence encoding IL-2 (e.g., human IL-2) is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization. In some embodiments, the transgene encoding a human IL-2 protein comprises the amino acid sequence encoded by the nucleic acid sequence comprising the sequence set forth in SEQ ID NO:15. The transgene encoding IL-2 (e.g., human IL-2) may be incorporated between any two APMV transcription units (e.g., between the APMV P and M transcription units, or between the HN and L transcription units).


“Interleukin-2” and “IL-2” refer to any IL-2 known to those of skill in the art. In certain embodiments, the IL-2 may be human, dog, cat, horse, pig, or cow IL-2. In a specific embodiment, the IL-2 is human IL-2. GenBank™ accession number NG_016779.1 (GI number 291219938) provides an exemplary human IL-2 nucleic acid sequence. GenBank™ accession number NP_000577.2 (GI number 28178861) provides an exemplary human IL-2 amino acid sequence. As used herein, the terms “interleukin-2” and “IL-2” encompass interleukin-2 polypeptides that are modified by post-translational processing such as signal peptide cleavage, disulfide bond formation, glycosylation (e.g., N-linked glycosylation), protease cleavage and lipid modification (e.g., S-palmitoylation). In some embodiments, IL-2 consists of a single polypeptide chain that includes a signal sequence. In other embodiments, IL-2 consists of a single polypeptide chain that does not include a signal sequence. The signal sequence can be the naturally occurring signal peptide sequence or a variant thereof. In some embodiments, the signal peptide is an IL-2 signal peptide. In some embodiments, the signal peptide is heterologous to an IL-2 signal peptide.


In a specific embodiment, a transgene encoding an IL-2 derivative is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes a human IL-2 derivative. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. In a specific embodiment, an IL-2 derivative has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 98%, or 99% amino acid sequence identity to an IL-2 known to those of skill in the art. Methods/techniques known in the art may be used to determine sequence identity (see, e.g., “Best Fit” or “Gap” program of the Sequence Analysis Software Package, version 10; Genetics Computer Group, Inc.). In a specific embodiment, an IL-2 derivative comprises deleted forms of a known IL-2 (e.g., human IL-2), wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues are deleted from the known IL-2 (e.g., human IL-2). Also provided herein are IL-2 derivatives comprising deleted forms of a known IL-2, wherein about 1-3, 3-5, 5-7, 7-10, 10-15, or 15-20 amino acid residues are deleted from the known IL-2 (e.g., human IL-2). Further provided herein are IL-2 derivatives comprising altered forms of a known IL-2 (e.g., human IL-2), wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues of the known IL-2 are substituted (e.g., conservatively substituted) with other amino acids. In a specific embodiment, the known IL-2 is human IL-2, such as, e.g., provided in GenBank™ accession number NP_000577.2 (GI number 28178861). In some embodiments, an IL-2 derivative comprises up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservatively substituted amino acids. Examples of conservative amino acid substitutions include, e.g., replacement of an amino acid of one class with another amino acid of the same class. In a particular embodiment, a conservative substitution does not alter the structure or function, or both, of a polypeptide. Classes of amino acids may include hydrophobic (Met, Ala, Val, Leu, Ile), neutral hydrophylic (Cys, Ser, Thr), acidic (Asp, Glu), basic (Asn, Gln, His, Lys, Arg), conformation disruptors (Gly, Pro) and aromatic (Trp, Tyr, Phe).


In a specific embodiment, an IL-2 derivative is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a native IL-2 (e.g., human IL-2). In another specific embodiment, an IL-2 derivative is a polypeptide encoded by a nucleic acid sequence that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a nucleic acid sequence encoding a native IL-2. In a specific embodiment, the native IL-2 is human IL-2, such as, e.g., provided in GenBank™ accession number NP_000577.2 (GI number 28178861) or GenBank™ accession number NG_016779.1 (GI number 291219938). In another specific embodiment, an IL-2 derivative contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., additions, deletions, substitutions or any combination thereof) relative to a native IL-2 (e.g., human IL-2). In another specific embodiment, an IL-2 derivative is a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native IL-2 (e.g., human IL-2). Hybridization conditions are known to one of skill in the art (see, e.g., U.S. Patent Application No. 2005/0048549 at, e.g., paragraphs 72 and 73). In another specific embodiment, an IL-2 derivative is a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native IL-2 (e.g., human IL-2) of at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids. In another specific embodiment, an IL-2 derivative is a fragment of a native IL-2 (e.g., human IL-2). IL-2 derivatives also include polypeptides that comprise the amino acid sequence of a naturally occurring mature form of IL-2 and a heterologous signal peptide amino acid sequence. In addition, IL-2 derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, IL-2 derivatives include polypeptides comprising one or more non-classical amino acids. In specific embodiments, the IL-2 derivative retains one, two, or more, or all of the functions of the native IL-2 (e.g., human IL-2) from which it was derived. Examples of functions of IL-2 include regulation of signals to T cells, B cells, and NK cells, promotion of the development of T regulatory cells, and the maintenance of self-tolerance. Tests for determining whether or not an IL-2 derivative retains one or more functions of the native IL-2 (e.g., human IL-2) from which it was derived are known to one of skill in the art and examples are provided herein.


In specific embodiments, the transgene encoding IL-2 or a derivative thereof in a packaged genome of a recombinant APMV described herein is codon optimized.


IL-12


In a specific embodiment, a transgene encoding IL-12 is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.1 and 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes human IL-12. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. For example, a transgene encoding human IL-12 comprising the amino acid sequence set forth in SEQ ID NO:34 may be incorporated into the genome of any APMV type or strain described herein. In a specific embodiment, such a transgene comprises the negative sense RNA transcribed from the nucleotide sequence set forth in SEQ ID NO:16. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same IL-12 protein. In a specific embodiment, a transgene comprising the nucleotide sequence encoding IL-12 (e.g., human IL-12) is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization. In a specific embodiment, a transgene comprises the negative sense RNA transcribed from the codon optimized sequence set forth in SEQ ID NO:17. In some embodiments, the transgene encoding a human IL-12 protein comprises the amino acid sequence encoded by the nucleic acid sequence comprising the nucleotide sequence set forth in SEQ ID NO:16 or 17. The transgene encoding IL-12 (e.g., human IL-12) may be incorporated between any two APMV transcription units (e.g., between the APMV P and M transcription units, or between the HN and L transcription units).


“Interleukin-12” and “IL-12” refer to any IL-12 known to those of skill in the art. In certain embodiments, the IL-12 may be human, dog, cat, horse, pig, or cow IL-12. In a specific embodiment, the IL-12 is human IL-12. A typical IL-12 consists of a heterodimer encoded by two separate genes, IL-12A (the p35 subunit) and IL-12B (the p40 subunit), known to those of skill in the art. GenBank™ accession number NM_000882.3 (GI number 325974478) or SEQ ID NO:49 provides an exemplary human IL-12A nucleic acid sequence. GenBank™ accession number NM_002187.2 (GI number 24497437) or SEQ ID NO:47 provides an exemplary human IL-12B nucleic acid sequence. GenBank™ accession number NP_000873.2 (GI number 24430219) or SEQ ID NO:48 provides an exemplary human IL-12A (the p35 subunit) amino acid sequence. GenBank™ accession number NP_002178.2 (GI number 24497438) or SEQ ID NO:46 provides an exemplary human IL-12B (the p40 subunit) amino acid sequence. In certain embodiments, an IL-12 consists of a single polypeptide chain, comprising the p35 subunit and the p40 subunit, optionally separated by a linker sequence (such as, e.g., SEQ ID NO:35 (which is encoded by the nucleotide sequence set forth in SEQ ID NO:45)). In certain embodiments, an IL-12 consists of more than one polypeptide chain in quaternary association, e.g., p35 and p40. As used herein, the terms “interleukin-12” and “IL-12” encompass interleukin-12 polypeptides that are modified by post-translational processing such as signal peptide cleavage, disulfide bond formation, glycosylation (e.g., N-linked glycosylation), protease cleavage and lipid modification (e.g., S-palmitoylation). In some embodiments, one or both of the subunits of IL-12 or IL-12 consisting of a single polypeptide chain includes a signal sequence. In other embodiments, one or both of the subunits of IL-12 or IL-12 consisting of a single polypeptide chain does not include a signal sequence. The signal sequence can be the naturally occurring signal peptide sequence or a variant thereof. In some embodiments, the signal peptide is an IL-12 signal peptide. In some embodiments, the signal peptide is heterologous to an IL-12 signal peptide.


In specific embodiments, a polypeptide comprising the IL-12 p35 subunit and IL-12 p40 subunit directly fused to each other is functional (e.g., capable of specifically binding to the IL-12 receptor and inducing IL-12-mediated signal transduction and/or IL-12-mediated immune function). In a specific embodiment, the IL-12 p35 subunit and IL-12 p40 subunit or derivative(s) thereof are indirectly fused to each other using one or more linkers. Linkers suitable for preparing the IL-12 p35 subunit/p40 subunit fusion protein may comprise one or more amino acids (e.g., a peptide). In specific embodiments, a polypeptide comprising the IL-12 p35 subunit and IL-12 p40 subunit indirectly fused to each other using an amino acid linker (e.g., a peptide linker) is functional (e.g., capable of specifically binding to the IL-12 receptor and inducing IL-12-mediated signal transduction and/or IL-12-mediated immune function). In a specific embodiment, the linker is long enough to preserve the ability of the IL-12 p35 subunit and IL-12 p40 subunit to form a functional IL-12 heterodimer complex, which is capable of binding to the IL-12 receptor and inducing IL-12-mediated signal transduction. In some embodiments, the linker is an amino acid sequence (e.g., a peptide) that is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more amino acids long. In some embodiments, the linker is an amino acid sequence (e.g., a peptide) that is between 5 and 20 or 5 and 15 amino acids in length. In certain embodiments, an IL-12 encoded by a transgene in a packaged genome of a recombinant APMV described herein consists of more than one polypeptide chain in quaternary association, e.g., a polypeptide chain comprising the IL-12 p35 subunit or a derivative thereof in quaternary association with a polypeptide chain comprising the IL-12 p40 subunit or a derivative thereof. In certain embodiments, the linker is the amino acid sequence set forth in SEQ ID NO:35. In certain embodiments, the elastin-like polypeptide sequence comprises the amino acid sequence VPGXG (SEQ ID NO:22), wherein X is any amino acid except proline. In certain embodiments, the elastin-like polypeptide sequence comprises the amino acid sequence VPGXGVPGXG (SEQ ID NO:23), wherein X is any amino acid except proline. In certain embodiments, the linker may be a linker described in U.S. Pat. No. 5,891,680, which is incorporated by reference herein in its entirety.


In a specific embodiment, a transgene encoding an IL-12 derivative is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes a human IL-12 derivative. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. In a specific embodiment, an IL-12 derivative has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 98%, or 99% amino acid sequence identity to an IL-12 known to those of skill in the art. Methods/techniques known in the art may be used to determine sequence identity (see, e.g., “Best Fit” or “Gap” program of the Sequence Analysis Software Package, version 10; Genetics Computer Group, Inc.). In a specific embodiment, an IL-12 derivative comprises deleted forms of a known IL-12, wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues are deleted from the known IL-12. Also provided herein are IL-12 derivatives comprising deleted forms of a known IL-12, wherein about 1-3, 3-5, 5-7, 7-10, 10-15, or 15-20 amino acid residues are deleted from the known IL-12. Further provided herein are IL-12 derivatives comprising altered forms of a known IL-12, wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues of the known IL-12 are substituted (e.g., conservatively substituted) with other amino acids. In some embodiments, the IL-12 derivative comprises up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservatively substituted amino acids (see, e.g., Huang et al., 2016, Preclinical validation:LV/IL-12 transduction of patient leukemia cells for immunotherapy of AML, Molecular Therapy—Methods & Clinical Development, 3, 16074; doi:10.1038/mtm.2016.74, which is incorporated by reference herein in its entirety). In some embodiments, the conservatively substituted amino acids are not projected to be in the cytokine/receptor interface (see, e.g., Huang et al., 2016, Preclinical validation:LV/IL-12 transduction of patient leukemia cells for immunotherapy of AML, Molecular Therapy—Methods & Clinical Development, 3, 16074; doi:10.1038/mtm.2016.74; Jones & Vignali, 2011, Molecular Interactions within the IL-6/IL-12 cytokine/receptor superfamily, Immunol Res., 51(1):5-14, doi:10.1007/s12026-011-8209-y; each of which is incorporated by reference herein in its entirety). In some embodiments, the IL-12 derivative comprises an IL-12 p35 subunit having the amino acid substitution L165S (i.e., leucine at position 165 of the IL-12 p35 subunit in the IL-12 derivative is substituted with a serine). In some embodiments, the IL-12 derivative comprises an IL-12 p40 subunit having the amino acid substitution of C2G (i.e., cysteine at position 2 of the immature IL-12 p40 subunit (i.e., the IL-12 p40 subunit containing the signal peptide) in the IL-12 derivative is substituted with a glycine).


In a specific embodiment, an IL-12 derivative comprises an IL-12 p35 subunit that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a native IL-12 p35 subunit (e.g., a human IL-12 p35 subunit). In another specific embodiment, an IL-12 derivative is a polypeptide encoded by a nucleic acid sequence, wherein a portion of nucleic acid sequences encodes an IL-12 p35 subunit, wherein said the nucleic acid sequence of said portion is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a nucleic acid sequence encoding a native IL-12 p35 subunit (e.g., a human IL-12 p35 subunit). In a specific embodiment, an IL-12 derivative comprises an IL-12 p40 subunit that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a native IL-12 p40 subunit (e.g., a human IL-12 p40 subunit). In another specific embodiment, an IL-12 derivative is a polypeptide encoded by a nucleic acid sequence, wherein a portion of nucleic acid sequence encodes an IL-12 p40 subunit, wherein said the nucleic acid sequence of said portion is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a nucleic acid sequence encoding a native IL-12 p40 subunit (e.g., a human IL-12 p40 subunit). In another specific embodiment, an IL-12 derivative comprises an IL-12 p35 subunit, an IL-12 p40 subunit, or both containing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., additions, deletions, substitutions or any combination thereof) relative to a native IL-12 p35 subunit, a native IL-12 p40 subunit, or both. In another specific embodiment, an IL-12 derivative is a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native IL-12 p35 subunit, a native IL-12 p40 subunit, or both. Hybridization conditions are known to one of skill in the art (see, e.g., U.S. Patent Application No. 2005/0048549 at, e.g., paragraphs 72 and 73). In another specific embodiment, an IL-12 derivative is a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native IL-12 p35 subunit, a fragment of a native IL-12 p40 subunit, or fragments of both of a native IL-12 p35 subunit and a native IL-12 p40 subunit, wherein the fragment(s) is at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids. In another specific embodiment, an IL-12 derivative comprises a fragment of a native IL-12 p35 subunit, a native IL-12 p40 subunit, or both. In another specific embodiment, an IL-12 derivative comprises a fragment of native IL-12 p35 subunit, a fragment of native IL-12 p40 subunit, or both. In another specific embodiment, an IL-12 derivative comprises a subunit (e.g., p35 or p40) encoded by a nucleotide sequence that hybridizes over its full length to the nucleotide encoding the native subunit (e.g., native p40 subunit or native p35 subunit). In a specific embodiment, an IL-12 derivative comprises a native IL-12 p40 subunit and a derivative of an IL-12 p35 subunit. In a specific embodiment, the IL-12 derivative comprises a native IL-12 p35 subunit and a derivative of an IL-12 p40 subunit. IL-12 derivatives also include polypeptides that comprise the amino acid sequence of a naturally occurring mature form of IL-12 and a heterologous signal peptide amino acid sequence. In addition, IL-12 derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, IL-12 derivatives include polypeptides comprising one or more non-classical amino acids. In specific embodiments, the IL-12 derivative retains one, two, or more, or all of the functions of the native IL-12 from which it was derived. Examples of functions of IL-12 include the promotion of the development of T helper 1 cells and the activation of pro-inflammatory immune response pathways. Tests for determining whether or not an IL-12 derivative retains one or more functions of the native IL-12 (e.g., human IL-12) from which it was derived are known to one of skill in the art and examples are provided herein.


In specific embodiments, the transgene encoding IL-12 or a derivative thereof in a packaged genome of a recombinant APMV described herein is codon optimized. In a specific embodiment, the nucleotide sequence(s) encoding one or both subunits of a native IL-12 may be codon optimized. A nonlimiting example of a codon-optimized sequence encoding IL-12 includes SEQ ID NO:17.


IL-15Ra-IL-15


In a specific embodiment, a transgene encoding IL-15Ra-IL-15 is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.1 and 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes human IL-15Ra-IL-15. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. For example, a transgene encoding a human IL-15Ra-IL-15 comprising the amino sequence set forth in SEQ ID NO:37 may be incorporated into the genome of any APMV type or strain described herein. In a specific embodiment, such a transgene comprises the negative sense RNA transcribed from the nucleotide sequence set forth in SEQ ID NO:18. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same IL-15Ra-IL-15 protein. In a specific embodiment, a transgene comprising the nucleotide sequence encoding IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization. In some embodiments, the transgene encoding a human IL-15Ra-IL-15 protein comprises the amino acid sequence encoded by the nucleic acid sequence comprising the sequence set forth in SEQ ID NO:18. The transgene encoding IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) may be incorporated between any two APMV transcription units (e.g., between the APMV P and M transcription units, or between the HN and L transcription units).


As used herein, the term “IL-15Ra-IL-15” refers to a complex comprising IL-15 or a derivative thereof and IL-15Ra or a derivative thereof covalently or noncovalently bound to each other. In a specific embodiment, IL-15Ra or a derivative thereof has a relatively high affinity for IL-15 or a derivative thereof, e.g., Ka of 10 to 50 pM as measured by a technique known in the art, e.g., KinEx A assay, plasma surface resonance (e.g., BIAcore assay). In a preferred embodiment, the IL-15Ra-IL-15 induces IL-15-mediated signal transduction, as measured by assays well-known in the art, e.g., electromobility shift assays, ELISAs and other immunoassays. In some embodiments, the IL-15Ra-IL-15 complex retains the ability to specifically bind to the βγ chain. In a preferred embodiment, the IL-15Ra-IL-15 complex retains the ability to specifically bind to the βγ chain and induce/mediate IL-15 signal transduction.


In specific embodiments, the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) may be formed by directly fusing IL-15Ra or a derivative thereof (e.g., human IL-15Ra or a derivative thereof) to IL-15 or a derivative thereof (e.g., human IL-15 or a derivative thereof), using either non-covalent bonds or covalent bonds (e.g., by combining amino acid sequences via peptide bonds). In specific embodiments, the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) may be formed by indirectly fusing IL-15Ra or a derivative thereof (e.g., human IL-15Ra or a derivative thereof) to IL-15 or a derivative thereof (e.g., human IL-15 or a derivative thereof) using one or more linkers. Linkers suitable for preparing the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) comprise peptides, alkyl groups, chemically substituted alkyl groups, polymers, or any other covalently-bonded or non-covalently bonded chemical substance capable of binding together two or more components. Polymer linkers comprise any polymers known in the art, including polyethylene glycol (“PEG”). In some embodiments, the linker is a peptide that is 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more amino acids long. In a specific embodiment, the linker is long enough to preserve the ability of IL-15 or a derivative thereof (e.g., human IL-15 or a derivative thereof) to bind to the IL-15Ra or a derivative thereof (e.g., human IL-15Ra or a derivative thereof). In other embodiments, the linker is long enough to preserve the ability of the IL-15Ra-IL-15 complex to bind to the fly receptor complex and to act as an agonist to mediate IL-15 signal transduction. In certain embodiments, the linker has the amino acid sequence set forth in SEQ ID NO:36 (the nucleotide sequence encoding such a linker sequence is set forth in SEQ ID NO:42).


In certain embodiments, the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) comprises the signal sequence of IL-15 (e.g., human IL-15). In other embodiments, the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) comprises the signal sequence of IL-15Ra (e.g., human IL-15Ra). In yet other embodiments, the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) comprises a signal sequence heterologous to IL-15 (e.g., human IL-15) and IL-15Ra (e.g., human IL-15Ra). In a specific embodiment, the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) comprises the signal sequence set forth in SEQ ID NO:41 (the nucleotide sequence encoding such a signal sequence is set forth in SEQ ID NO:43).


In a specific embodiment, an IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) comprises a signal sequence, a tag (e.g., a flag tag), a soluble form of IL-15Ra (e.g., the IL-15Ra sushi domain), a linker, and IL-15. In another specific embodiment, a human IL-15Ra-IL-15 comprises an amino acid sequence comprising: (1) a signal sequence comprising (consisting of) the amino acid sequence set forth in SEQ ID NO:41; (2) a flag-tag comprising (consisting of) the amino acid sequence set forth in SEQ ID NO:38; (3) a soluble form of human IL-15Ra comprising (consisting of) the amino acid sequence set forth in SEQ ID NO:39; (4) a linker comprising (consisting of) the amino acid sequence set forth in SEQ ID NO:36; and (5) human IL-15 comprising (consisting of) the amino acid sequence set forth in SEQ ID NO:40. Due to the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same human IL-15Ra-IL-15 protein. In another specific embodiment, a human IL-15Ra-IL-15 comprises: (1) a signal sequence encoded by a nucleotide sequence comprising (consisting of) the nucleotide sequence set forth in SEQ ID NO:43; (2) a flag-tag encoded by a nucleotide sequence comprising (consisting of) the nucleotide sequence set forth in SEQ ID NO:44; (3) a soluble form of human IL-15Ra encoded by a nucleotide sequence comprising (consisting of) the nucleotide sequence set forth in SEQ ID NO:50; (4) a linker encoded by a nucleotide sequence comprising (consisting of) the nucleotide sequence set forth in SEQ ID NO:42; and (5) human IL-15 encoded by a nucleotide sequence comprising (consisting of) the nucleotide sequence set forth in SEQ ID NO:51.


As used herein, the terms “interleukin-15” and “IL-15” refers to any IL-15 known to those of skill in the art. In certain embodiments, the IL-15 may be human, dog, cat, horse, pig, or cow IL-15. Examples of GeneBank Accession Nos. for the amino acid sequence of various species of IL-15 include NP_000576 (human, immature form), CAA62616 (human, immature form), NP_001009207 (Felis catus, immature form), AAB94536 (rattus, immature form), AAB41697 (rattus, immature form), NP_032383 (Mus musculus, immature form), AAR19080 (canine), AAB60398 (macaca mulatta, immature form), AAI00964 (human, immature form), AAH23698 (mus musculus, immature form), and AAH18149 (human). Examples of GeneBank Accession Nos. for the nucleotide sequence of various species of IL-15 include NM_000585 (human), NM_008357 (Mus musculus), and RNU69272 (rattus norvegicus). As used herein, the terms “interleukin-15” and “IL-15” encompass interleukin-15 polypeptides that are modified by post-translational processing such as signal peptide cleavage, disulfide bond formation, glycosylation (e.g., N-linked glycosylation), protease cleavage and lipid modification (e.g., S-palmitoylation). In some embodiments, IL-15 consists of a single polypeptide chain that includes a signal sequence. In other embodiments, IL-15 consists of a single polypeptide chain that does not include a signal sequence.


In a specific embodiment, the human IL-15 component of the human IL-15Ra-IL-15 sequence comprises the amino acid sequence set forth in SEQ ID NO:40. In some embodiments, the human IL-15 component of the human IL-15Ra-IL-15 comprises the nucleotide sequence set forth in SEQ ID NO:51. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same IL-15 protein. In a specific embodiment, the nucleotide sequence encoding human IL-15 component of the human IL-15Ra-IL15 transgene is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization.


In a specific embodiment, the IL-15 (e.g., human IL-15) component of the IL-15Ra-IL-15 (e.g., human IL-15Ra-IL-15) sequence is an IL-15 derivative. In a specific embodiment, an IL-15 derivative has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 98%, or 99% amino acid sequence identity to an IL-15 known to those of skill in the art. Methods/techniques known in the art may be used to determine sequence identity (see, e.g., “Best Fit” or “Gap” program of the Sequence Analysis Software Package, version 10; Genetics Computer Group, Inc.). In a specific embodiment, an IL-15 derivative comprises deleted forms of a known IL-15 (e.g., human IL-15), wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues are deleted from the known IL-15. Also provided herein are IL-15 derivatives comprising deleted forms of a known IL-15 (e.g., human IL-15), wherein about 1-3, 3-5, 5-7, 7-10, 10-15, or 15-20 amino acid residues are deleted from the known IL-15. Further provided herein are IL-15 derivatives comprising altered forms of a known IL-15 (e.g., human IL-15), wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues of the known IL-15 are substituted (e.g., conservatively substituted) with other amino acids. In some embodiments, an IL-15 derivative comprises up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservatively substituted amino acids. Examples of conservative amino acid substitutions include, e.g., replacement of an amino acid of one class with another amino acid of the same class. In a particular embodiment, a conservative substitution does not alter the structure or function, or both, of a polypeptide. Classes of amino acids may include hydrophobic (Met, Ala, Val, Leu, Ile), neutral hydrophylic (Cys, Ser, Thr), acidic (Asp, Glu), basic (Asn, Gln, His, Lys, Arg), conformation disruptors (Gly, Pro) and aromatic (Trp, Tyr, Phe).


In a specific embodiment, an IL-15 derivative is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a native IL-15 (e.g., human IL-15). In another specific embodiment, an IL-15 derivative is a polypeptide encoded by a nucleic acid sequence that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a nucleic acid sequence encoding a native IL-15 (e.g., human IL-15). In another specific embodiment, an IL-15 derivative contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., additions, deletions, substitutions, or any combination thereof) relative to a native IL-15 (e.g., human IL-15). In another specific embodiment, an IL-15 derivative is a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native IL-15 (e.g., human IL-15). Hybridization conditions are known to one of skill in the art (see, e.g., U.S. Patent Application No. 2005/0048549 at, e.g., paragraphs 72 and 73). In another specific embodiment, an IL-15 derivative is a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native IL-15 (e.g., human IL-15) of at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids. In another specific embodiment, an IL-15 derivative is a fragment of a native IL-15 (e.g., human IL-15). IL-15 derivatives also include polypeptides that comprise the amino acid sequence of a naturally occurring mature form of IL-15 and a heterologous signal peptide amino acid sequence. In addition, IL-15 derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, IL-15 derivatives include polypeptides comprising one or more non-classical amino acids. In specific embodiments, the IL-15 derivative retains one, two, or more, or all of the functions of the native IL-15 (e.g., human IL-15) from which it was derived. Examples of functions of IL-15 include the development and differentiation of NK cells and promotion of the survival and expansion of memory CD8+ T cells. Tests for determining whether or not an IL-15 derivative retains one or more functions of the native IL-15 (e.g., human IL-15) from which it was derived are known to one of skill in the art and examples are provided herein.


As used herein, the terms “IL-15Ra” and “interleukin-15 receptor alpha” refers to any IL-15Ra known to those of skill in the art. In certain embodiments, the IL-15 may be human, dog, cat, horse, pig, or cow IL-15Ra. Examples of GeneBank Accession Nos. for the amino acid sequence of various native mammalian IL-15Ra include NP_002180 (human), ABK41438 (Macaca mulatta), NP_032384 (Mus musculus), Q60819 (Mus musculus), CAI41082 (human). Examples of GeneBank Accession Nos. for the nucleotide sequence of various species of native mammalian IL-15Ra include NM_002189 (human), EF033114 (Macaca mulatta), and NM_008358 (Mus musculus). In a specific embodiment, the IL-15Ra is soluble.


As used herein, the terms “interleukin-15 receptor alpha” and “IL-15Ra” encompass IL-15Ra polypeptides that are modified by post-translational processing such as signal peptide cleavage, disulfide bond formation, glycosylation (e.g., N-linked glycosylation), protease cleavage and lipid modification (e.g., S-palmitoylation). In some embodiments, IL-15Ra consists of a single polypeptide chain that includes a signal sequence. In other embodiments, IL-15Ra consists of a single polypeptide chain that does not include a signal sequence. The signal sequence can be the naturally occurring signal peptide sequence or a variant thereof. In some embodiments, the signal peptide is an IL-15Ra signal peptide.


In a specific embodiment, the IL-15Ra component of the IL-15Ra-IL-15 sequence comprises a human IL-15Ra derivative. In a specific embodiment, an IL-15Ra derivative has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 98%, or 99% amino acid sequence identity to an IL-15Ra known (e.g., a human IL-15Ra) to those of skill in the art. Methods/techniques known in the art may be used to determine sequence identity (see, e.g., “Best Fit” or “Gap” program of the Sequence Analysis Software Package, version 10; Genetics Computer Group, Inc.). In a specific embodiment, an IL-15Ra derivative comprises deleted forms of a known IL-15Ra, wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues are deleted from the known IL-15Ra (e.g., a human IL-15Ra). Also provided herein are IL-15Ra derivatives comprising deleted forms of a known IL-15Ra (e.g., a human IL-15Ra), wherein about 1-3, 3-5, 5-7, 7-10, 10-15, or 15-20 amino acid residues are deleted from the known IL-15Ra. Further provided herein are IL-15Ra derivatives comprising altered forms of a known IL-15Ra, wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues of the known IL-15Ra are substituted (e.g., conservatively substituted) with other amino acids. In some embodiments, an IL-15Ra derivative comprises up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservatively substituted amino acids. Examples of conservative amino acid substitutions include, e.g., replacement of an amino acid of one class with another amino acid of the same class. In a particular embodiment, a conservative substitution does not alter the structure or function, or both, of a polypeptide. Classes of amino acids may include hydrophobic (Met, Ala, Val, Leu, Ile), neutral hydrophylic (Cys, Ser, Thr), acidic (Asp, Glu), basic (Asn, Gln, His, Lys, Arg), conformation disruptors (Gly, Pro) and aromatic (Trp, Tyr, Phe).


In a specific embodiment, an IL-15Ra derivative is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a native IL-15Ra. In another specific embodiment, an IL-15Ra derivative is a polypeptide encoded by a nucleic acid sequence that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a nucleic acid sequence encoding a native IL-15Ra. In another specific embodiment, an IL-15Ra derivative contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., additions, deletions and/or substitutions) relative to a native IL-15Ra. In another specific embodiment, an IL-15Ra derivative is a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native IL-15Ra. Hybridization conditions are known to one of skill in the art (see, e.g., U.S. Patent Application No. 2005/0048549 at, e.g., paragraphs 72 and 73). In another specific embodiment, an IL-15Ra derivative is a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native IL-15Ra of at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids.


In a preferred embodiment, a derivative of IL-15Ra is a soluble form of IL-15Ra that lacks the transmembrane domain of IL-15Ra, and optionally, lacks the intracellular domain of native IL-15Ra. In a particular embodiment, a derivative of IL-15Ra consists of the extracellular domain of IL-15Ra and lacks the transmembrane and intracellular domains of IL-15Ra. In another embodiment, a derivative of IL-15Ra is a soluble form of IL-15Ra that comprises (consists of) the extracellular domain of IL-15Ra or a fragment thereof In certain embodiments, a derivative of IL-15Ra is a soluble form of IL-15Ra that comprises (consists of) a fragment of the extracellular domain comprising the sushi domain or exon 2 of native IL-15Ra. In certain embodiments, a derivative of IL-15Ra is a soluble form of IL-15Ra that comprises (consists of) the sushi domain or exon 2 of native IL-15Ra. In some embodiments, a derivative of IL-15Ra is a soluble form of IL-15Ra that comprises (consists of) a fragment of the extracellular domain comprising the sushi domain or exon 2 of IL-15Ra and at least one amino acid that is encoded by exon 3. In certain embodiments, a derivative of IL-15Ra is a soluble form of IL-15Ra that comprises (consists of) a fragment of the extracellular domain comprising the sushi domain or exon 2 of IL-15Ra and an IL-15Ra hinge region or a fragment thereof.


In another specific embodiment, an IL-15Ra derivative is a fragment of a native IL-15Ra. IL-15Ra derivatives also include polypeptides that comprise the amino acid sequence of a naturally occurring mature form of IL-15Ra and a heterologous signal peptide amino acid sequence. In addition, IL-15Ra derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, IL-15Ra derivatives include polypeptides comprising one or more non-classical amino acids. In specific embodiments, the IL-15Ra derivative retains one, two, or more, or all of the functions of the native IL-15Ra from which it was derived. Examples of functions of IL-15Ra include enhancing cell proliferation and the expression of an apoptosis inhibitor. Tests for determining whether or not an IL-15Ra derivative retains one or more functions of the native IL-15Ra from which it was derived are known to one of skill in the art and examples are provided herein.


In a specific embodiment, the human IL-15Ra component of the human IL-15Ra-IL-15 sequence comprises (consists of) the amino acid sequence set forth in SEQ ID NO:39. In some embodiments, the human IL-15Ra component of the human IL-15Ra-IL-15 comprises (consists of) the nucleotide sequence set forth in SEQ ID NO:50. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same human IL-15Ra protein. In a specific embodiment, the nucleotide sequence encoding the human IL-15Ra is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization.


Tumor Antigens


In a specific embodiment, a transgene encoding a tumor antigen (e.g., HPV-16 E6 or E7 protein) is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.1 and Section 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, a transgene encoding an HPV-16 E6 protein may be incorporated into the genome of an APMV described herein. An exemplary amino acid sequence for HPV-16 E6 protein includes GenBank Accession No. AKN79013.1. An exemplary nucleic acid sequence encoding the HPV-16 E6 protein includes GenBank Accession No. KP677555.1. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. For example, a transgene encoding an HPV16 E-6 protein comprising the amino acid sequence set forth in GenBank Accession No. AKN79013.1 may be incorporated into the genome of any APMV type or strain described herein. In a specific embodiment, such a transgene comprises the negative sense RNA transcribed from the nucleotide sequence set forth in SEQ ID NO:19. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same HPV-E6 protein. In a specific embodiment, a transgene comprising the nucleotide sequence encoding HPV-16 E6 protein is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization. In some embodiments, the transgene encoding HPV-16 E6 protein comprises the amino acid sequence encoded by the nucleic acid sequence comprising the nucleotide sequence set forth in SEQ ID NO:19. The transgene encoding HPV-16 E6 protein may be incorporated between any two APMV transcription units (e.g., between the APMV P and M transcription units, or between the HN and L transcription units).


In a specific embodiment, a transgene encoding an HPV-16 E7 protein may be incorporated into the genome of an APMV described herein. An exemplary amino acid sequence for HPV-16 E7 protein includes GenBank Accession No. AIQ82815.1. An exemplary nucleic acid sequence encoding the HPV-16 E7 protein includes GenBank Accession No. KM058635.1. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. For example, a transgene encoding an HPV16 E-7 protein comprising the amino acid sequence set forth in GenBank Accession No. AIQ82815.1 may be incorporated into the genome of any APMV type or strain described herein. In a specific embodiment, such a transgene comprises the negative sense RNA transcribed from the nucleotide sequence set forth in SEQ ID NO:20. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same HPV-16 E7 protein. In a specific embodiment, a transgene comprising the nucleotide sequence encoding HPV-16 E7 protein is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization. In some embodiments, the transgene encoding HPV-16 E7 protein comprises the amino acid sequence encoded by the nucleic acid sequence comprising the sequence set forth in SEQ ID NO:20. The transgene encoding HPV-16 E7 protein may be incorporated between any two APMV transcription units (e.g., between the APMV P and M transcription units, or between the HN and L transcription units).


GM-CSF


In a specific embodiment, a transgene encoding granulocyte-macrophage colony-stimulating factor (GM-CSF; e.g., human GM-CSF) is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.1 and Section 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes human GM-CSF. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. For example, a transgene encoding a human GM-CSF comprising the amino acid sequence set forth in GenBank Accession No. X03021.1 may be incorporated into the genome of any APMV type or strain described herein. In a specific embodiment, such a transgene comprises the negative sense RNA transcribed from the nucleotide sequence set forth in SEQ ID NO:21. However, given the degeneracy of the nucleic acid code, there are a number of different nucleic acid sequences that may encode the same GM-CSF protein. In a specific embodiment, a transgene comprising the nucleotide sequence encoding GM-CSF (e.g., human GM-CSF) is codon optimized. See, e.g., Section 5.1.2.3, infra, for a discussion regarding codon optimization. In some embodiments, the transgene encoding a human GM-CSF protein comprises the amino acid sequence encoded by the nucleic acid sequence comprising the sequence set forth in SEQ ID NO:21. The transgene encoding GM-CSF (e.g. human GM-CSF) may be incorporated between any two APMV transcription units (e.g., between the APMV P and M transcription units, or between the HN and L transcription units).


As used herein, the terms “granulocyte-macrophage colony-stimulating factor” and “GM-CSF” refers to any GM-CSF known to those of skill in the art. In certain embodiments, the GM-CSF may be human, dog, cat, horse, pig, or cow GM-CSF. Examples of GeneBank Accession Nos. for the amino acid sequence of various species of GM-CSF include NP_000749.2 (human, precursor), AAA52578.1 (human), AAC06041.1 (Felis catus), NP_446304.1 (rattus norvegicus, precursor), NP_034099.2 (mus musculus, precursor), CAA26820.1 (mus musculus), AAB19466.1 (canine), AAG16626.1 (macaca mulatta, immature form), and AAH18149 (human). Examples of GeneBank Accession Nos. for the nucleotide sequence of various species of GM-CSF include NM_000758.3 (human), NM_009969.4 (Mus musculus), and NM_053852.1 (rattus norvegicus). In a specific embodiment, the GM-CSF is human GM-CSF. As used herein, the terms granulocyte-macrophage colony-stimulating factor” and “GM-CSF” encompass GM-CSF polypeptides that are modified by post-translational processing such as signal peptide cleavage, disulfide bond formation, glycosylation (e.g., N-linked glycosylation), protease cleavage and lipid modification (e.g., S-palmitoylation). In some embodiments, GM-CSF consists of a single polypeptide chain that includes a signal sequence. In other embodiments, GM-CSF consists of a single polypeptide chain that does not include a signal sequence. The signal sequence can be the naturally occurring signal peptide sequence or a variant thereof In some embodiments, the signal peptide is a GM-CSF signal peptide. In some embodiments, the signal peptide is heterologous to a GM-CSF signal peptide.


In a specific embodiment, a transgene encoding a GM-CSF derivative is incorporated into the genome of an APMV described herein. See, e.g., Section 5.1.2.1, supra, for types and strains of APMV that may be used. In a specific embodiment, the transgene encodes a human GM-CSF derivative. One of skill in the art would be able to use such sequence information to produce a transgene for incorporation into the genome of an APMV described herein. In a specific embodiment, a GM-CSF derivative has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 98%, or 99% amino acid sequence identity to a GM-CSF known to those of skill in the art. Methods/techniques known in the art may be used to determine sequence identity (see, e.g., “Best Fit” or “Gap” program of the Sequence Analysis Software Package, version 10; Genetics Computer Group, Inc.). In a specific embodiment, a GM-CSF derivative comprises deleted forms of a known GM-CSF, wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues are deleted from the known GM-CSF (e.g., human GM-CSF). Also provided herein are GM-CSF derivatives comprising deleted forms of a known GM-CSF, wherein about 1-3, 3-5, 5-7, 7-10, 10-15, or 15-20 amino acid residues are deleted from the known GM-CSF (e.g., human GM-CSF). Further provided herein are GM-CSF derivatives comprising altered forms of a known GM-CSF (e.g., human GM-CSF), wherein up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues of the known GM-CSF are substituted (e.g., conservatively substituted) with other amino acids. In some embodiments, a GM-CSF derivative comprises up to about 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservatively substituted amino acids. Examples of conservative amino acid substitutions include, e.g., replacement of an amino acid of one class with another amino acid of the same class. In a particular embodiment, a conservative substitution does not alter the structure or function, or both, of a polypeptide. Classes of amino acids may include hydrophobic (Met, Ala, Val, Leu, Ile), neutral hydrophylic (Cys, Ser, Thr), acidic (Asp, Glu), basic (Asn, Gln, His, Lys, Arg), conformation disruptors (Gly, Pro) and aromatic (Trp, Tyr, Phe).


In a specific embodiment, a GM-CSF derivative is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a native GM-CSF (e.g., human GM-CSF). In another specific embodiment, a GM-CSF derivative is a polypeptide encoded by a nucleic acid sequence that is at least 80%, 85%, 90%, 95%, 98%, or 99% or is 80% to 85%, 80% to 90%, 80% to 95%, 90% to 95%, 85% to 99%, or 95% to 99% identical (e.g., sequence identity) to a nucleic acid sequence encoding a native GM-CSF (e.g., human GM-CSF). In another specific embodiment, a GM-CSF derivative contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, or 2 to 5, 2 to 10, 5 to 10, 5 to 15, 5 to 20, 10 to 15, or 15 to 20 amino acid mutations (i.e., additions, deletions and/or substitutions) relative to a native GM-CSF (e.g., human GM-CSF). In another specific embodiment, a GM-CSF derivative is a polypeptide encoded by nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a native GM-CSF (e.g., human GM-CSF). Hybridization conditions are known to one of skill in the art (see, e.g., U.S. Patent Application No. 2005/0048549 at, e.g., paragraphs 72 and 73). In another specific embodiment, a GM-CSF derivative is a polypeptide encoded by a nucleic acid sequence that can hybridize under high, moderate or typical stringency hybridization conditions to a nucleic acid sequence encoding a fragment of a native GM-CSF (e.g., human GM-CSF) of at least 10 contiguous amino acids, at least 12 contiguous amino acids, at least 15 contiguous amino acids, at least 20 contiguous amino acids, at least 30 contiguous amino acids, at least 40 contiguous amino acids, at least 50 contiguous amino acids, at least 75 contiguous amino acids, at least 100 contiguous amino acids, at least 125 contiguous amino acids, at least 150 contiguous amino acids, or 10 to 20, 20 to 50, 25 to 75, 25 to 100, 25 to 150, 50 to 75, 50 to 100, 75 to 100, 50 to 150, 75 to 150, 100 to 150, or 100 to 200 contiguous amino acids. In another specific embodiment, a GM-CSF derivative is a fragment of a native GM-CSF (e.g., human GM-CSF). GM-CSF derivatives also include polypeptides that comprise the amino acid sequence of a naturally occurring mature form of GM-CSF and a heterologous signal peptide amino acid sequence. In addition, GM-CSF derivatives include polypeptides that have been chemically modified by, e.g., glycosylation, acetylation, pegylation, phosphorylation, amidation, derivitization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein moiety, etc. Further, GM-CSF derivatives include polypeptides comprising one or more non-classical amino acids. In specific embodiments, the GM-CSF derivative retains one, two, or more, or all of the functions of the native GM-CSF from which it was derived. Examples of functions of GM-CSF include the stimulation granulocytes and macrophages from bone marrow precursor cells to proliferate and the recruitment of circulating neutrophils, monocytes and lymphocytes. Tests for determining whether or not a GM-CSF derivative retains one or more functions of the native GM-CSF from which it was derived are known to one of skill in the art and examples are provided herein.


In specific embodiments, the transgene encoding GM-CSF or a derivative thereof in a packaged genome of a recombinant APMV described herein is codon optimized. In a specific embodiment, the nucleotide sequence(s) encoding one or both subunits of a native GM-CSF may be codon optimized.


5.1.2.3 Codon Optimization

Any codon optimization technique known to one of skill in the art may be used to codon optimize a nucleic acid sequence encoding a protein of interest (e.g., IL-2, IL-15Ra-IL-15, GM-CSF, HPV-16 E6, or HPV-16 E7). Methods of codon optimization are known in the art, e.g, the OptimumGene™ (GenScript®) protocol and Genewiz® protocol, which are incorporated by reference herein in its entirety. See also U.S. Pat. No. 8,326,547 for methods for codon optimization, which is incorporated herein by reference in its entirety.


As an exemplary method for codon optimization, each codon in the open frame of the nucleic acid sequence encoding a protein of interest or a domain thereof (e.g., IL-2, IL-15Ra-IL-15, GM-CSF, HPV-16 E6, or HPV-16 E7) is replaced by the codon most frequently used in mammalian proteins. This may be done using a web-based program (www.encorbio.com/protocols/Codon.htm) that uses the Codon Usage Database, maintained by the Department of Plant Gene Research in Kazusa, Japan. This nucleic acid sequence optimized for mammalian expression may be inspected for: (1) the presence of stretches of 5xA or more that may act as transcription terminators; (2) the presence of restriction sites that may interfere with subcloning; and (3) compliance with the rule of six. Following inspection, (1) stretches of 5xA or more that may act as transcription terminators may be replaced by synonymous mutations; (2) restriction sites that may interfere with subcloning may be replaced by synonymous mutations; (3) APMV regulatory signals (gene end, intergenic and gene start sequences), and Kozak sequences for optimal protein expression may be added; and (4) nucleotides may be added in the non-coding region to ensure compliance with the rule of six. Synonymous mutations are typically nucleotide changes that do not change the amino acid encoded. For example, in the case of a stretch of 6 As (AAAAAA), which sequence encodes Lys-Lys, a synonymous sequence would be AAGAAG, which sequence also encodes Lys-Lys.


5.2 Construction of APMVs

The APMVs described herein (see, e.g., Sections 5.1, 6 and 7) can be generated using the reverse genetics technique. The reverse genetics technique involves the preparation of synthetic recombinant viral RNAs that contain the non-coding regions of the negative-strand, viral RNA which are essential for the recognition by viral polymerases and for packaging signals necessary to generate a mature virion. The recombinant RNAs are synthesized from a recombinant DNA template and reconstituted in vitro with purified viral polymerase complex to form recombinant ribonucleoproteins (RNPs) which can be used to transfect cells. A more efficient transfection is achieved if the viral polymerase proteins are present during transcription of the synthetic RNAs either in vitro or in vivo. The synthetic recombinant RNPs can be rescued into infectious virus particles. The foregoing techniques are described in U.S. Pat. No. 5,166,057 issued Nov. 24, 1992; in U.S. Pat. No. 5,854,037 issued Dec. 29, 1998; in U.S. Pat. No. 6,146,642 issued Nov. 14, 2000; in European Patent Publication EP 0702085A1, published Feb. 20, 1996; in U.S. patent application Ser. No. 09/152,845; in International Patent Publications PCT WO97/12032 published Apr. 3, 1997; WO96/34625 published Nov. 7, 1996; in European Patent Publication EP A780475; WO 99/02657 published Jan. 21, 1999; WO 98/53078 published Nov. 26, 1998; WO 98/02530 published Jan. 22, 1998; WO 99/15672 published Apr. 1, 1999; WO 98/13501 published Apr. 2, 1998; WO 97/06270 published Feb. 20, 1997; and EPO 780 475A1 published Jun. 25, 1997, each of which is incorporated by reference herein in its entirety.


The helper-free plasmid technology can also be utilized to engineer an APMV described herein. In particular, helper-free plasmid technology can be utilized to engineer a recombinant APMV described herein. Briefly, a complete cDNA of an APMV (e.g., an APMV-4 strain) is constructed, inserted into a plasmid vector and engineered to contain a unique restriction site between two transcription units (e.g., the APMV P and M transcription units; or the APMV HN and L transcription units). A nucleotide sequence encoding a heterologous amino acid sequence (e.g., a transgene or other sequence) may be inserted into the viral genome at the unique restriction site. Alternatively, a nucleotide sequence encoding a heterologous amino acid sequence (e.g., a transgene or other sequence) may be engineered into an APMV transcription unit so long as the insertion does not affect the ability of the virus to infect and replicate. The single segment is positioned between a T7 promoter and the hepatitis delta virus ribozyme to produce an exact negative or positive transcript from the T7 polymerase. The plasmid vector and expression vectors comprising the necessary viral proteins are transfected into cells leading to production of recombinant viral particles (see, e.g., International Publication No. WO 01/04333; U.S. Pat. Nos. 7,442,379, 6,146,642, 6,649,372, 6,544,785 and 7,384,774; Swayne et al. (2003). Avian Dis. 47:1047-1050; and Swayne et al. (2001). J. Virol. 11868-11873, each of which is incorporated by reference in its entirety). See also, e.g., Nolden et al., Scientific Reports 6: 23887 (2016) for reverse genetic techniques to generate negative-strand RNA viruses, which is incorporated herein by reference.


Bicistronic techniques to produce multiple proteins from a single mRNA are known to one of skill in the art. Bicistronic techniques allow the engineering of coding sequences of multiple proteins into a single mRNA through the use of IRES sequences. IRES sequences direct the internal recruitment of ribosomes to the RNA molecule and allow downstream translation in a cap independent manner. Briefly, a coding region of one protein is inserted downstream of the ORF of a second protein. The insertion is flanked by an IRES and any untranslated signal sequences necessary for proper expression and/or function. The insertion must not disrupt the open reading frame, polyadenylation or transcriptional promoters of the second protein (see, e.g., Garcia-Sastre et al., 1994, J. Virol. 68:6254-6261 and Garcia-Sastre et al., 1994 Dev. Biol. Stand. 82:237-246, each of which are incorporated by reference herein in their entirety).


Methods for cloning a recombinant APMV to encode a transgene and express a heterologous protein encoded by the transgene are known to one skilled in the art, such as, e.g., insertion of the transgene into a restriction site that has been engineered into the APMV genome, inclusion an appropriate signals in the transgene for recognition by the APMV RNA-dependent-RNA polymerase (e.g., sequences upstream of the open reading frame of the transgene that allow for the APMV polymerase to recognize the end of the previous gene and the beginning of the transgene, which may be, e.g., spaced by a single nucleotide intergenic sequence), inclusion of a valid Kozak sequence (e.g., to improve eukaryotic ribosomal translation); incorporation of a transgene that satisfies the “rule of six” for APMV cloning; and inclusion of silent mutations to remove extraneous gene end and/or gene start sequences within the transgene. Regarding the Rule of Six, one skilled in the art will understand that efficient replication of APMV (and more generally, most members of the paramyxoviridae family) is dependent on the genome length being a multiple of six, known as the “rule of six” (see, e.g., Calain, P. & Roux, L. The rule of six, a basic feature of efficient replication of Sendai virus defective interfering RNA. J. Virol. 67, 4822-4830 (1993)). Thus, when constructing a recombinant APMV described herein, care should be taken to satisfy the “Rule of Six” for APMV cloning. Methods known to one skilled in the art to satisfy the Rule of Six for APMV cloning may be used, such as, e.g., addition of nucleotides downstream of the transgene. See, e.g., Ayllon et al., Rescue of Recombinant Newcastle Disease Virus from cDNA. J. Vis. Exp. (80), e50830, doi:10.3791/50830 (2013) for a discussion of methods for cloning and rescuing of APMV (e.g., a recombinant APMV), which is incorporated by reference herein in its entirety.


5.3 Propagation of APMVs

An APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) can be propagated in any substrate that allows the virus to grow to titers that permit the uses of the viruses described herein. In one embodiment, the substrate allows the APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7). In a specific embodiment, the substrate allows the APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) to grow to titers comparable to those determined for the corresponding wild-type viruses.


An APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) may be grown in cells (e.g., avian cells, chicken cells, etc.) that are susceptible to infection by the viruses, embryonated eggs (e.g., chicken eggs or quail eggs) or animals (e.g., birds). Such methods are well-known to those skilled in the art. In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) may be propagated in cancer cells, e.g., carcinoma cells (e.g., breast cancer cells and prostate cancer cells), sarcoma cells, leukemia cells, lymphoma cells, and germ cell tumor cells (e.g., testicular cancer cells and ovarian cancer cells). In another specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) may be propagated in a cell line, e.g., cancer cell lines such as HeLa cells, MCF7 cells, B16-F10 cells, CT26 cells, TC-1 cells, THP-1 cells, U87 cells, DU145 cells, Lncap cells, and T47D cells. In certain embodiments, the cells or cell lines (e.g., cancer cells or cancer cell lines) are obtained and/or derived from a human(s). In another embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is propagated in chicken cells or embryonated eggs. Representative chicken cells include, but are not limited to, chicken embryo fibroblasts and chicken embryo kidney cells. In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is propagated in IFN-deficient cells (e.g., IFN-deficient cell lines). In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is propagated in Vero cells. In another specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is propagated in cancer cells in accordance with the methods described in Section 6, infra. In another specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is propagated in chicken eggs or quail eggs. In certain embodiments, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is first propagated in embryonated eggs and then propagated in cells (e.g., a cell line).


An APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) may be propagated in embryonated eggs, e.g., from 6 to 14 days old, 6 to 12 days old, 6 to 10 days old, 6 to 9 days old, 6 to 8 days old, 8 days old, 9 days old, 10 days old, 8 to 10 days old, 12 days old, or 10 to 12 days old. Young or immature embryonated eggs can be used to propagate an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7). Immature embryonated eggs encompass eggs which are less than ten day old eggs, e.g., eggs 6 to 9 days old or 6 to 8 days old that are IFN-deficient. Immature embryonated eggs also encompass eggs which artificially mimic immature eggs up to, but less than ten day old, as a result of alterations to the growth conditions, e.g., changes in incubation temperatures; treating with drugs; or any other alteration which results in an egg with a retarded development, such that the IFN system is not fully developed as compared with ten to twelve day old eggs. In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) are propagated in 8 or 9 day old embryonated chicken eggs. In another specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) are propagated in 10 day old embryonated chicken eggs. An APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) can be propagated in different locations of the embryonated egg, e.g., the allantoic cavity. For a detailed discussion on the growth and propagation viruses, see, e.g., U.S. Pat. No. 6,852,522 and U.S. Pat. No. 7,494,808, both of which are hereby incorporated by reference in their entireties.


In a specific embodiment, provided herein is a cell (e.g., a cell line) or embryonated egg (e.g., a chicken embryonated egg) comprising an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7). Examples of cells as well as embryonated eggs which may comprise an APMV described herein may be found above. In a specific embodiment, provided herein is a method for propagating an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7), the method comprising culturing a substrate (e.g., a cell line or embryonated egg) infected with the APMV. In another specific embodiment, provided herein is a method for propagating an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7), the method comprising: (a) culturing a substrate (e.g., a cell line or embryonated egg) infected with the APMV; and (b) isolating or purifying the APMV from the substrate. In certain embodiments, these methods involve infecting the substrate with the APMV prior to culturing the substrate. See, e.g., Section 6, infra, for methods that may be used to propagate an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein).


For virus isolation, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) can be removed from embryonated eggs or cell culture and separated from cellular components, typically by well known clarification procedures, e.g., such as centrifugation, depth filtration, and microfiltration, and may be further purified as desired using procedures well known to those skilled in the art, e.g., tangential flow filtration (TFF), density gradient centrifugation, differential extraction, or chromatography.


In a specific embodiment, provided herein is a method for producing a pharmaceutical composition (e.g., an immunogenic composition) comprising an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1 and 6), the method comprising (a) propagating an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) in a cell (e.g., a cell line) or embyronated egg; and (b) isolating the APMV from the cell or embyronated egg. The method may further comprise adding the APMV to a container along with a pharmaceutically acceptable carrier.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is propagated, isolated, and/or purified according to a method described in Section 6. In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV; see, also, e.g., Sections 5.1, 6 and 7) is either propagated, isolated, or purified, or any two or all of the foregoing, using a method described in Section 6.


5.4 Compositions and Routes of Administration

Encompassed herein is the use of an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein) in compositions. In a specific embodiment, the compositions are pharmaceutical compositions. The compositions may be used in methods of treating cancer.


In one embodiment, a pharmaceutical composition comprises an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein), in an admixture with a pharmaceutically acceptable carrier. In a specific embodiment, the APMV is an APMV-4 described herein. In other embodiments, the APMV is an APMV-6, APMV-7, APMV-8 or APMV-9 described herein. In a specific embodiment, the APMV is a recombinant APMV described herein. In a particular embodiment, the APMV is a recombinant APMV-4 comprising a packaged genome, wherein the packaged genome comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO: 14. In some embodiments, the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.5.2, infra. In a specific embodiment, a pharmaceutical composition comprises an effective amount of an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein), and optionally one or more additional prophylactic or therapeutic agents, in a pharmaceutically acceptable carrier. In some embodiments, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein) is the only active ingredient included in the pharmaceutical composition.


In another embodiment, a pharmaceutical composition (e.g., an oncolysate vaccine) comprises a protein concentrate or a preparation of plasma membrane fragments from APMV infected cancer cells, in an admixture with a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.5.2, infra.. In another embodiment, a pharmaceutical composition (e.g., a whole cell vaccine) comprises cancer cells infected with APMV, in an admixture with a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises one or more additional prophylactic or therapeutic agents, such as described in Section 5.5.2, infra.


The pharmaceutical compositions provided herein can be in any form that allows for the composition to be administered to a subject. In a specific embodiment, the pharmaceutical compositions are suitable for veterinary administration, human administration or both. As used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeias for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the pharmaceutical composition is administered. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin. The formulation should suit the mode of administration.


In a specific embodiment, the pharmaceutical compositions are formulated to be suitable for the intended route of administration to a subject. The pharmaceutical composition may be formulated for systemic or local administration to a subject. For example, the pharmaceutical composition may be formulated to be suitable for parenteral, intravenous, intraarterial, intrapleural, inhalation, intraperitoneal, oral, intradermal, colorectal, intraperitoneal, intracranial, and intratumoral administration. In a specific embodiment, the pharmaceutical composition may be formulated for intravenous, intraarterial, oral, intraperitoneal, intranasal, intratracheal, intrapleural, intracranial, subcutaneous, intramuscular, topical, pulmonary, or intratumoral administration.


In a specific embodiment, a pharmaceutical composition comprising an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein) is formulated to be suitable for intratumoral administration to the subject (e.g., human subject). In a specific embodiment, a pharmaceutical composition comprising an APMV-4 described herein is formulated for intratumoral administration to a subject (e.g., a human subject). In other specific embodiments, a pharmaceutical composition comprising an APMV-6, APMV-7, APMV-8 or APMV-9 described herein is formulated for intratumoral administration to a subject (e.g., a human subject). In another specific embodiment, a pharmaceutical composition comprising a recombinant APMV described herein is formulated for intratumoral administration to the subject (e.g., human subject).


In a specific embodiment, a pharmaceutical composition comprising an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein) is formulated to be suitable for intravenous administration to the subject (e.g., human subject). In a specific embodiment, a pharmaceutical composition comprising an APMV-4 described herein is formulated for intravenous administration to a subject (e.g., a human subject). In other specific embodiments, a pharmaceutical composition comprising an APMV-6, APMV-7, APMV-8 or APMV-9 described herein is formulated for intravenous administration to a subject (e.g., a human subject). In another specific embodiment, a pharmaceutical composition comprising a recombinant APMV described herein is formulated for intravenous administration to the subject (e.g., human subject).


To the extent an APMV described herein (e.g., a naturally occurring APMV or recombinant APMV described herein) is administered in combination with another therapy, the other therapy (e.g., prophylactic or therapeutic agent) may be administered in a separate pharmaceutical composition. In other words, two separate pharmaceutical compositions may be administered to a subject to treat cancer—one pharmaceutical composition comprising an APMV described herein (e.g., a naturally occurring APMV or recombinant APMV described herein) in an admixture with a pharmaceutically acceptable carrier, and a second pharmaceutical composition comprising another therapy (such as, e.g., described in Section 5.5.2, infra) in an admixture with a pharmaceutically acceptable carrier. The two pharmaceutical composition may be formulated for the same route of administration to the subject (e.g., human subject) or different routes of administration to the subject (e.g., human subject). For example, the pharmaceutical composition comprising an APMV described herein may be formulated for local administration to a tumor of a subject (e.g. a human subject), while the pharmaceutical composition comprising another therapy (such as, e.g., described in Section 5.5.2, infra) is formulated for systemic administration to the subject (e.g., human subject). In one specific example, the pharmaceutical composition comprising an APMV described herein may be formulated for intratumoral administration to the subject (e.g., human subject), while the pharmaceutical composition comprising another therapy (such as, e.g., described in Section 5.5.2, infra) is formulated for intravenous administration, subcutaneous administration or another route of administration to the subject (e.g., human subject). In another example, the pharmaceutical composition comprising an APMV described herein and the pharmaceutical composition comprising another therapy (such as, e.g., described in Section 5.5.2, infra) may both be formulated for intravenous administration to the subject (e.g., human subject). In certain embodiments, a pharmaceutical composition comprising a therapy, such as, e.g., described in Section 5.5.2, infra, which is used in combination with an APMV described herein or a composition thereof, is formulated for administration by an approved route, such as described in the Physicans' Desk Reference 71st ed (2017).


5.5 Uses of APMV

In one aspect, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, an oncolysate described herein or a composition thereof, or whole cell vaccine may be used in the treatment of cancer. In one embodiment, provided herein are methods for treating cancer, comprising administering to a subject in need thereof an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof. In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an effective amount of an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof. In another embodiment, an oncolysate or whole cell vaccine described herein may be used to treat cancer as described herein. See Section 5.5.4 for the types of cancer that may be treated in accordance with the methods described herein, Section 5.5.3 for the types of patients that may be treated in accordance with the methods described herein, and Section 5.5.1 for exemplary dosages and regimens for treating cancer in accordance with the methods described herein.


In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is the only active ingredient administered to treat cancer. In specific embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) is the only active ingredient in a composition administered to treat cancer.


An APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof may be administered locally or systemically to a subject. For example, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof may be administered parenterally (e.g., intraperitoneally, intravenously, intra-arterially, intradermally, intramuscularly, or subcutaneously), intratumorally, intra-nodally, intrapleurally, intranasally, intracavitary, intracranially, orally, rectally, by inhalation, or topically to a subject. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is administered intratumorally. Image-guidance may be used to administer an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof to the subject. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is administered intravenously.


In certain embodiments, the methods described herein include the treatment of cancer for which no treatment is available. In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is administered to a subject to treat cancer as an alternative to other conventional therapies.


In one embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof and one or more additional therapies, such as described in Section 5.5.2, infra. In a specific embodiment, provided herein is a method for treating cancer, comprising administering to a subject in need thereof an effective amount of an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof and an effective amount of one or more additional therapies, such as described in Section 5.5.2, infra. In a particular embodiment, one or more therapies are administered to a subject in combination with an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof to treat cancer. In a specific embodiment, the additional therapies are currently being used, have been used or are known to be useful in treating cancer. In another embodiment, a recombinant APMV described herein (e.g., a recombinant APMV described in Section 5.1, supra, or Section 7) or a composition thereof is administered to a subject in combination with a supportive therapy, a pain relief therapy, or other therapy that does not have a therapeutic effect on cancer. In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) and one or more additional therapies are administered in the same composition. In other embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) and one or more additional therapies are administered in different compositions. An APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof in combination with one or more additional therapies, such as described herein in Section 5.5.2, infra, may be used as any line of therapy (e.g., a first, second, third, fourth or fifth line therapy) for treating cancer in accordance with a method described herein.


In certain embodiments, two, three or multiple APMVs (including one, two or more recombinant APMVs described herein) are administered to a subject to treat cancer.


In a specific embodiment, a method of treating cancer described herein may result in a beneficial effect for a subject, such as the reduction, decrease, attenuation, diminishment, stabilization, remission, suppression, inhibition or arrest of the development or progression of cancer, or a symptom thereof. In certain embodiments, a method of treating cancer described herein results in at least one, two or more of the following effects: (i) the reduction or amelioration of the severity of cancer and/or a symptom associated therewith; (ii) the reduction in the duration of a symptom associated with cancer; (iii) the prevention in the recurrence of a symptom associated with cancer; (iv) the regression of cancer and/or a symptom associated therewith; (v) the reduction in hospitalization of a subject; (vi) the reduction in hospitalization length; (vii) the increase in the survival of a subject; (viii) the inhibition of the progression of cancer and/or a symptom associated therewith; (ix) the enhancement or improvement of the therapeutic effect of another therapy; (x) a reduction or elimination in the cancer cell population; (xi) a reduction in the growth of a tumor or neoplasm; (xii) a decrease in tumor size; (xiii) a reduction in the formation of a tumor; (xiv) eradication, removal, or control of primary, regional and/or metastatic cancer; (xv) a decrease in the number or size of metastases; (xvi) a reduction in mortality; (xvii) an increase in cancer-free survival rate of patients; (xviii) an increase in relapse-free survival; (xix) an increase in the number of patients in remission; (xx) a decrease in hospitalization rate; (xxi) the size of the tumor is maintained and does not increase in size or increases the size of the tumor by less than 5% or 10% after administration of a therapy as measured by conventional methods available to one of skill in the art, such as MM, X-ray, CT Scan and PET scan; (xxii) the prevention of the development or onset of cancer and/or a symptom associated therewith; (xxiii) an increase in the length of remission in patients; (xxiv) the reduction in the number of symptoms associated with cancer; (xxv) an increase in symptom-free survival of cancer patients; (xxvi) limitation of or reduction in metastasis; (xxvii) overall survival; (xxviii) progression-free survival (as assessed, e.g., by RECIST v1.1.); (xxix) overall response rate; and/or (xxx) an increase in response duration. In some embodiments, the treatment/therapy that a subject receives does not cure cancer, but prevents the progression or worsening of the disease. In certain embodiments, a method of treating cancer described herein does not prevent the onset/development of cancer, but may prevent the onset of cancer symptoms. Any method known to the skilled artisan may be utilized to evaluate the treatment/therapy that a subject receives. In a specific embodiment, the efficacy of a treatment/therapy is evaluated according to the Response Evaluation Criteria In Solid Tumors (“RECIST”) published rules. In a specific embodiment, the efficacy of a treatment/therapy is evaluated according to the RECIST rules published in February 2000 (also referred to as “RECIST 1”) (see, e.g., Therasse et al., 2000, Journal of National Cancer Institute, 92(3):205-216, which is incorporated by reference herein in its entirety). In a specific embodiment, the efficacy of a treatment/therapy is evaluated according to the RECIST rules published in January 2009 (also referred to as “RECIST 1.1”) (see, e.g., Eisenhauer et al., 2009, European Journal of Cancer, 45:228-247, which is incorporated by reference herein in its entirety). In a specific embodiment, the efficacy of a treatment/therapy is evaluated according to the RECIST rules utilized by the skilled artisan at the time of the evaluation. In a specific embodiment, the efficacy is evaluated according to the immune related RECIST (“irRECIST”) published rules (see, e.g., Bohnsack et al., 2014, ESMO Abstract 4958, which is incorporated by reference herein in its entirety). In a specific embodiment, the efficacy treatment/therapy is evaluated according to the irRECIST rules utilized by the skilled artisan at the time of the evaluation. In a specific embodiment, the efficacy is evaluated through a reduction in tumor-associated serum markers.


5.5.1 Dosage and Frequency

The amount of an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof which will be effective in the treatment of cancer will depend on the nature of the cancer, the route of administration, the general health of the subject, etc. and should be decided according to the judgment of a medical practitioner. Standard clinical techniques, such as in vitro assays, may optionally be employed to help identify dosage ranges. However, suitable dosage ranges of an APMV described herein (e.g., a naturally occurring or recombinant described herein) for administration are generally about 102, 5×102, 103, 5×103, 104, 5×104, 105, 5×105, 106, 5×106, 107, 5×107, 108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011, 5×1011 or 1012 pfu, and most preferably about 104 to about 1012, 106 to 1012, 108 to 1012, 109 to 1012 or 109 to 1011 pfu, and can be administered to a subject once, twice, three, four or more times with intervals as often as needed. Dosage ranges of oncolysate vaccines for administration may include 0.001 mg, 0.005 mg, 0.01 mg, 0.05 mg. 0.1 mg. 0.5 mg, 1.0 mg, 2.0 mg. 3.0 mg, 4.0 mg, 5.0 mg, 10.0 mg, 0.001 mg to 10.0 mg, 0.01 mg to 1.0 mg, 0.1 mg to 1 mg, and 0.1 mg to 5.0 mg, and can be administered to a subject once, twice, three or more times with intervals as often as needed. Dosage ranges of whole cell vaccines for administration may include 102, 5×102, 103, 5×103, 104, 5×104, 105, 5×105, 106, 5×106, 107, 5×107, 108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011, 5×1011 or 1012 cells, and can be administered to a subject once, twice, three or more times with intervals as often as needed. In certain embodiments, a dosage(s) of an APMV described herein similar to a dosage(s) currently being used in clinical trials for NDV is administered to a subject.


In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant described herein) or a composition thereof is administered to a subject as a single dose followed by a second dose 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, 1 to 2 weeks later. In accordance with these embodiments, booster inoculations may be administered to the subject at 3 to 6 month or 6 to 12 month intervals following the second inoculation.


In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant described herein) or composition thereof is administered to a subject in combination with one or more additional therapies, such as a therapy described in Section 5.5.2, infra. The dosage of the other one or more additional therapies will depend upon various factors including, e.g., the therapy, the nature of the cancer, the route of administration, the general health of the subject, etc. and should be decided according to the judgment of a medical practitioner. In specific embodiments, the dose of the other therapy is the dose and/or frequency of administration of the therapy recommended for the therapy for use as a single agent is used in accordance with the methods disclosed herein. In other embodiments, the dose of the other therapy is a lower dose and/or involves less frequent administration of the therapy than recommended for the therapy for use as a single agent is used in accordance with the methods disclosed herein. Recommended doses for approved therapies can be found in the Physicians' Desk Reference (e.g., the 71st ed. of the Physicians' Desk Reference (2017)).


In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or composition thereof is administered to a subject concurrently with the administration of one or more additional therapies. In other embodiments, an APMV described (e.g., a naturally occurring or recombinant APMV described herein) or composition thereof is administered to a subject every 3 to 7 days, 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 2 to 4 weeks, 1 to 3 weeks, or 1 to 2 weeks and one or more additional therapies (such as described in Section 5.5.2, infra) is administered every 3 to 7 days, 1 to 6 weeks, 1 to 5 weeks, 1 to 4 weeks, 1 to 3 weeks, or 1 to 2 weeks.


5.5.2 Additional Therapies

Additional therapies that can be used in a combination with an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof for the treatment of cancer include, but are not limited to, small molecules, synthetic drugs, peptides (including cyclic peptides), polypeptides, proteins, nucleic acids (e.g., DNA and RNA nucleotides including, but not limited to, antisense nucleotide sequences, triple helices, RNAi, and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. In a specific embodiment, the additional therapy is a chemotherapeutic agent. In a specific embodiment, an additional therapy described herein may be used in combination with an oncolysate or whole cell vaccine described herein.


In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with radiation therapy comprising the use of x-rays, gamma rays and other sources of radiation to destroy cancer cells. In specific embodiments, the radiation therapy is administered as external beam radiation or teletherapy, wherein the radiation is directed from a remote source. In other embodiments, the radiation therapy is administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells and/or a tumor mass.


Specific examples of anti-cancer agents that may be used in combination with an APMV described herein or a composition thereof include: hormonal agents (e.g., aromatase inhibitor, selective estrogen receptor modulator (SERM), and estrogen receptor antagonist), chemotherapeutic agents (e.g., microtubule disassembly blocker, antimetabolite, topoisomerase inhibitor, and DNA crosslinker or damaging agent), anti-angiogenic agents (e.g., VEGF antagonist, receptor antagonist, integrin antagonist, vascular targeting agent (VTA)/vascular disrupting agent (VDA)), radiation therapy, and conventional surgery.


In particular embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an immunomodulatory agent. In a specific embodiment, an APMV described herein (e.g., a naturally occurring APMV or a recombinant APMV described herein) or composition thereof is used in combination with an agonist of a co-stimulatory receptor found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages), or a composition thereof. Specific examples of co-stimulatory receptors include glucocorticoid-induced tumor necrosis factor receptor (GITR), Inducible T-cell costimulator (ICOS or CD278), OX40 (CD134), CD27, CD28, 4-1BB (CD137), CD40, lymphotoxin alpha (LT alpha), LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes), CD226, cytotoxic and regulatory T cell molecule (CRTAM), death receptor 3 (DR3), lymphotoxin-beta receptor (LTBR), transmembrane activator and CAML interactor (TACI), B cell-activating factor receptor (BAFFR), and B cell maturation protein (BCMA). In a specific embodiment, the agonist of the co-stimulatory molecule binds to a receptor on a cell (e.g., GITR, ICOS, OX40, CD70, 4-1BB, CD40, LIGHT, etc.) and triggers or enhances one or more signal transduction pathways. In a particular embodiment, the agonist of the co-stimulatory receptor is an antibody or ligand that binds to the co-stimulatory receptor and induces or enhances one or more signal transduction pathways. In certain embodiments, the agonist facilitates the interaction between a co-stimulatory receptor and its ligand(s). In certain embodiments, the agonist of a co-stimulatory receptor is an antibody (e.g., monoclonal antibody) that binds to glucocorticoid-induced tumor necrosis factor receptor (GITR), Inducible T-cell costimulator (ICOS or CD278), OX40 (CD134), CD27, CD28, 4-1BB (CD137), CD40, lymphotoxin alpha (LT alpha), LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes), CD226, cytotoxic and regulatory T cell molecule (CRTAM), death receptor 3 (DR3), lymphotoxin-beta receptor (LTBR), transmembrane activator and CAML interactor (TACI), B cell-activating factor receptor (BAFFR), or B cell maturation protein (BCMA). In a specific embodiment, the agonist of a co-stimulatory receptor is an antibody (e.g., monoclonal antibody) that binds to 4-1BB or OX40.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an antagonist of an inhibitory receptor found on immune cells, such as, e.g., T-lymphocytes (e.g., CD4+ or CD8+ T-lymphocytes), NK cells and/or antigen-presenting cells (e.g., dendritic cells or macrophages), or a composition thereof. Specific examples of inhibitory receptors include cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 or CD52), programmed cell death protein 1 (PD-1 or CD279), B and T-lymphocyte attenuator (BTLA), killer cell immunoglobulin-like receptor (KIR), lymphocyte activation gene 3 (LAG3), T-cell membrane protein 3 (TIM3), CD160, adenosine A2a receptor (A2aR), T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), and CD160. In a specific embodiment, the antagonist inhibits the action of the inhibitory receptor without provoking a biological response itself. In a specific embodiment, the antagonist is an antibody or ligand that binds to an inhibitor receptor on an immune cell and blocks or dampens binding of the receptor to one or more of its ligands. In a particular embodiment, the antagonist of an inhibitory receptor is an antibody or a soluble receptor that specifically binds to the ligand for the inhibitory receptor and blocks the ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s). Specific examples of ligands for inhibitory receptors include PD-L1, PD-L2, B7-H3, B7-H4, HVEM, Gal9 and adenosine. Specific examples of inhibitory receptors include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR.


In specific embodiments, the antagonist of an inhibitory receptor is a soluble receptor that specifically binds to a ligand for the inhibitory receptor and blocks the ligand from binding to the inhibitory receptor and transducing an inhibitory signal(s). In certain embodiments, the soluble receptor is a fragment of an inhibitory receptor (e.g., the extracellular domain of an inhibitory receptor). In some embodiments, the soluble receptor is a fusion protein comprising at least a portion of the inhibitory receptor (e.g., the extracellular domain of the native inhibitory receptor), and a heterologous amino acid sequence. In specific embodiments, the fusion protein comprises at least a portion of the inhibitory receptor, and the Fc portion of an immunoglobulin or a fragment thereof In a specific embodiment, the antagonist of an inhibitory receptor is a LAG3-Ig fusion protein (e.g., IMP321).


In another embodiment, the antagonist of an inhibitory receptor is an antibody that specifically binds to a ligand(s) of the inhibitory receptor and blocks the ligand(s) from binding to the inhibitory receptor and transducing an inhibitory signal(s). Specific examples of ligands for inhibitory receptors include PD-L1, PD-L2, B7-H3, B7-H4, HVEM, Gal9 and adenosine. Specific examples of inhibitory receptors include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR. In a specific embodiment, the antagonist is an antibody that binds to PD-L1 or PD-L2.


In another embodiment, the antagonist of an inhibitory receptor is an antibody that binds to the inhibitory receptor and blocks the binding of the inhibitory receptor to one, two or more of its ligands. In a specific embodiment, the binding of the antibody to the inhibitory receptor does not transduce an inhibitory signal(s) or blocks an inhibitory signal(s). Specific examples of inhibitory receptors include CTLA-4, PD-1, BTLA, KIR, LAG3, TIM3, and A2aR. A specific example of an antibody to inhibitory receptor is anti-CTLA-4 antibody (Leach D R, et al. Science 1996; 271: 1734-1736). In a specific embodiment, an antagonist of an inhibitory receptor is an antagonist of CTLA-4, such as, e.g., Ipilimumab or Tremelimumab.


In certain embodiments, the antagonist of an inhibitory receptor is an antagonist of PD-1, such as, e.g., Nivolumab (MDX-1106 or BMS-936558), pembrolizumab (MK3475), pidlizumab (CT-011), AMP-224 (a PD-L2 fusion protein), Atezoliuzumab (MPDL3280A; anti-PD-L1 monoclonal antibody), Avelumab (an anti-PD-L1 monoclonal antibody) or MDX-1105 (an anti-PD-L1 monoclonal antibody). In certain embodiments, an antagonist of an inhibitory receptor is an antagonist of LAG3, such as, e.g., IMP321.


In a specific embodiment, an antagonist of an inhibitory receptor is an anti-PD-1 antibody that blocks the interaction between PD-1 and its ligands (PD-L1 and PD-L2). Non-limiting examples of antibodies that bind to PD-1 include pembrolizumab (“KEYTRUDA®”; see, e.g., Hamid et al., N Engl J Med. 2013;369:134-44 and Full Prescribing Information for KEYTRUDA, Reference ID: 3862712), nivolumab (“OPDIVO®”; see, e.g., Topalian et al., N Engl J Med. 2012; 366:2443-54 and Full Prescribing Information for OPDIVO (nivolumab), Reference ID: 3677021), and MEDI0680 (also referred to as “AMP-514”; see, e.g., Hamid et al., Ann Oncol. 2016; 27(suppl_6):1050PD). In a specific embodiment, the antagonist of an inhibitory receptor is an anti-PD1 antibody (e.g., pembrolizumab).


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a checkpoint inhibitor. In a specific embodiment, the checkpoint inhibitor may be an antibody that binds to an inhibitory receptor found on a T cell, such as PD-1, CTLA-4, LAG-3, or TIM-3. In another specific embodiment, the checkpoint inhibitor may be an antibody that binds to an inhibitory receptor found on a T cell, such as PD-1, CTLA-4, LAG-3, or TIM-3 and blocks binding of the inhibitory receptor to its ligand(s).


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an anti-PD1 antibody that blocks binding of PD1 to its ligand(s) (e.g., either PD-L1, PD-L2, or both), such as described herein or known to one of skill in the art, or a composition thereof In a specific embodiment, the antibody is a monoclonal antibody.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an anti-PD-L1 antibody (e.g., an anti-PD-L1 antibody described herein or known to one of skill in art), or a composition thereof. In a specific embodiment, the antibody is a monoclonal antibody.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an anti-PD-L2 antibody (e.g., an anti-PD-L2 antibody described herein or known to one of skill in art), or a composition thereof. In a specific embodiment, the antibody is a monoclonal antibody.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a RIG-1 agonist (e.g., poly-dA-dT (otherwise known as poly(deoxyadenylic-deoxythymidylic) acid sodium salt)), or a composition thereof. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an MDA-5 agonist or a composition thereof. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a NOD 1/NOD2 agonist (e.g., MurNAc-L-Ala-γ-D-Glu-mDAP) or a composition thereof.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a chemotherapeutic agent or a composition thereof. In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an anti-tumor agent(s), alkylating agent(s), antimetabolite(s), plant-derived anti-tumor agent(s), hormonal therapy agent(s), topoisomerase inhibitor(s), camptothecin derivative(s), kinase inhibitor(s), targeted drug(s), antibody(ies), interferon(s) or biological response modifier, or a combination of one or more of the foregoing. Alkylating agents include, e.g., nitrogen mustard N-oxide, cyclophophamide, ifosfamide, thiotepa, ranimustine, nimustine, temozolomide, altretamine, apaziquone, brostallicin, bendamustine, carmustine, estramustine, fotemustine, glufosfamide, ifosfamide, mafosfamide, bendamustin and mitolactol; and platinum-coordinated alkylating compounds, such as, e.g., cisplatin, carboplatin, eptaplatin, lobaplatin, nedaplatin, oxaliplatin or satrplatin. Antimetabolites include, e.g., methotrexate, 6-mercaptopurine riboside, mercaptopurine, 5-fluorouracil, leucovorin, tegafur, doxifluridine, carmofur, cytarabine, cytarabine ocfosfate, enocitabine, gemcitabine, fludarabin, 5-azacitidine, capecitabine, cladribine, clofarabine, decitabine, eflornithine, ethynylcytidine, cytosine arabinoside, hydroxyurea, melphalan, nelarabine, nolatrexed, ocfosfite, disodium premetrexed, pentostatin, pelitrexol, raltitrexed, triapine, trimetrexate, vidarabine, vincristine, and vinorelbine. Hormonal therapy agents include, e.g., exemestane, Lupron, anastrozole, doxercalciferol, fadrozole, formestane, 11 Beta-Hydroxysteroid Dehydrogenase 1 inhibitors, 17-Alpha Hydroxylase/17,20 Lyase Inhibitors such as abiraterone acetate, 5-Alpha Reductase Inhibitors such as Bearfina (finasteride) and Epristeride, anti-estrogens such as tamoxifen citrate and fulvestrant, Trelstar, toremifene, raloxifene, lasofoxifene, letrozole, or anti-androgens such as bicalutamide, flutamide, mifepristone, nilutamide, Casodex, or anti-progesterones and combinations thereof.


Plant-derived anti-tumor substances include, for example, those selected from mitotic inhibitors, for example epothilone such as sagopilone, Ixabepilone or epothilone B, vinblastine, vinflunine, docetaxel and paclitaxel. Cytotoxic topoisomerase inhibiting agents include, e.g., aclarubicin, amonafide, belotecan, camptothecin, 10-hydroxycamptothecin, 9-aminocamptothecin, diflomotecan, irinotecan (Camptosar), edotecahn, epimbicin (Ellence), etoposide, exatecan, gimatecan, lurtotecan, mitoxantrone, pirambicin, pixantrone, rubitecan, sobuzoxane, tafluposide, and topotecan, and combinations thereof.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with interferon(s) or a composition thereof. Interferons include, e.g., interferon alpha, interferon alpha-2a, interferon alpha-2b, interferon beta, interferon gamma-1a, and interferon gamma-1b. In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with L19-IL2 or other L19 derivatives, filgrastim, lentinan, sizofilan, TheraCys, ubenimex, aldesleukin, alemtuzumab, BAM-002, dacarbazine, daclizumab, denileukin, gemtuzumab ozogamicin, ibritumomab, imiquimod, lenograstim, lentinan, melanoma vaccine (Corixa), molgramostim, sargramostim, tasonermin, tecleukin, thymalasin, tositumomab, Vimlizin, epratuzumab, mitumomab, oregovomab, pemtumomab, or Provenge.


In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a biological response modifier(s), which is an agent that modifies defense mechanisms of living organisms or biological responses, such as survival, growth, or differentiation of tissue cells to direct them to have anti-tumor activity. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant described herein) or a composition thereof is used in combination with a biological response modifier, such as krestin, lentinan, sizofiran, picibanil, ProMune or ubenimex.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a pro-apoptotic agent(s), such as YM155, AMG 655, APO2L/TRAIL, or CHR-2797. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an anti-angiogenic compounds, such as, e.g., acitretin, Aflibercept, angiostatin, aplidine, asentar, Axitinib, Recentin, Bevacizumab, brivanib alaninat, cilengtide, combretastatin, DAST, endostatin, fenretinide, halofuginone, pazopanib, Ranibizumab, rebimastat, removab, Revlimid, Sorafenib, Vatalanib, squalamine, Sunitinib, Telatinib, thalidomide, ukrain, or Vitaxin.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a platinum-coordinated compound, such as, e.g., cisplatin, carboplatin, nedaplatin, satraplatin or oxaliplatin. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a camptothecin derivative(s), such as, e.g., camptothecin, 10-hydroxycamptothecin, 9-aminocamptothecin, irinotecan, edotecarin, or topotecan.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with Trastuzumab, Cetuximab Bevacizumab, Rituximab, ticilimumab, Ipilimumab, lumiliximab, catumaxomab, atacicept; oregovomab, or alemtuzumab. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a VEGF inhibitor(s), such as, e.g., Sorafenib, DAST, Bevacizumab, Sunitinib, Recentin, Axitinib, Aflibercept, Telatinib, brivanib alaninate, Vatalanib, pazopanib or Ranibizumab.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an EGFR (HER1) inhibitor(s), such as, e.g., Cetuximab, Panitumumab, Vectibix, Gefitinib, Erlotinib, or Zactima. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a HER2 inhibitor(s), such as, e.g., Lapatinib, Tratuzumab, or Pertuzumab.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an mTOR inhibitor(s), such as, e.g., Temsirolimus, sirolimus/Rapamycin, or everolimus. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a cMet inhibitor(s). In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a PI3K- and AKT inhibitor(s). In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a CDK inhibitor(s), such as roscovitine or flavopiridol.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a spindle assembly checkpoint inhibitor(s), targeted anti-mitotic drug or both. Examples of targeted anti-mitotic drugs are the PLK inhibitors and the Aurora inhibitors such as Hesperadin, checkpoint kinase inhibitors, and the KSP inhibitors.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an HDAC inhibitor(s), such as, e.g., panobinostat, vorinostat, MS275, belinostat or LBH589. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an HSP90 inhibitor(s), HSP70 inhibitor(s) or both.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a proteasome inhibitor(s), such as, e.g. bortezomib or carfilzomib. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a serine/threonine kinase inhibitor(s), such as, e.g., an MEK inhibitor(s) or Raf inhibitor(s) such as Sorafenib. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a farnesyl transferase inhibitor(s), e.g. tipifarnib.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a tyrosine kinase inhibitor(s), such as, e.g., Dasatinib, Nilotibib, DAST, Bosutinib, Sorafenib, Bevacizumab, Sunitinib, AZD2171 , Axitinib, Aflibercept, Telatinib, imatinib mesylate, brivanib alaninate, pazopanib, Ranibizumab, Vatalanib, Cetuximab, Panitumumab, Vectibix, Gefitinib, Erlotinib, Lapatinib, Tratuzumab, Pertuzumab or c-Kit inhibitor(s). In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a Vitamin D receptor agonist(s) or Bcl-2 protein inhibitor(s), such as, e.g, obatoclax, oblimersen sodium and gossypol.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a cluster of differentiation 20 receptor antagonist(s), such as, e.g., rituximab. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a ribonucleotide reductase inhibitor, such as, e.g., Gemcitabine. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a Topoisomerase I and II Inhibitors, such as, e.g., Camptosar (Irinotecan) or doxorubicin.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a Tumor Necrosis Apoptosis Inducing Ligand Receptor 1 Agonist(s), such as, e.g., mapatumumab. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a 5-Hydroxytryptamine Receptor Antagonist(s), such as, e.g., rEV598, Xaliprode, Palonosetron hydrochloride, granisetron, Zindol, palonosetron hydrochloride or AB-1001.


In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an integrin inhibitor(s), such as, e.g., Alpha-5 Beta-1 integrin inhibitors such as E7820, JSM 6425, volociximab or Endostatin. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an androgen receptor antagonist(s), such as, e.g., nandrolone decanoate, fluoxymesterone, fluoxymesterone, Android, Prost-aid, Andromustine, Bicalutamide, Flutamide, Apo-Cyproterone, Apo-Flutamide, chlormadinone acetate, bicalutamide, Androcur, Tabi, cyproterone acetate, Cyproterone Tablets, or nilutamide. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with an aromatase inhibitor(s), such as, e.g., anastrozole, letrozole, testolactone, exemestane, Aminoglutethimide or formestane. In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with a Matrix metalloproteinase inhibitor(s). In another specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof is used in combination with alitretinoin, ampligen, atrasentan bexarotene, bortezomib, bosentan, calcitriol, exisulind, finasteride, fotemustine, ibandronic acid, miltefosine, mitoxantrone, 1-asparaginase, procarbazine, dacarbazine, hydroxycarbamide, hydroxycarbamide, pegaspargase, pentostatin, tazarotne, velcade, gallium nitrate, Canfosfamide darinaparsin or tretinoin.


Currently available cancer therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the Physicians' Desk Reference (71st ed., 2017).


5.5.3 Patient Population

In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject suffering from cancer. In other embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject predisposed or susceptible to cancer. In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject diagnosed with cancer. Specific examples of the types of cancer are described herein (see, e.g., Section 5.5.4 and Section 6). In an embodiment, the subject has metastatic cancer. In another embodiment, the subject has stage 1, stage 2, stage 3, or stage 4 cancer. In another embodiment, the subject is in remission. In yet another embodiment, the subject has a recurrence of cancer.


In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a human that is 0 to 6 months old, 6 to 12 months old, 6 to 18 months old, 18 to 36 months old, 1 to 5 years old, 5 to 10 years old, 10 to 15 years old, 15 to 20 years old, 20 to 25 years old, 25 to 30 years old, 30 to 35 years old, 35 to 40 years old, 40 to 45 years old, 45 to 50 years old, 50 to 55 years old, 55 to 60 years old, 60 to 65 years old, 65 to 70 years old, 70 to 75 years old, 75 to 80 years old, 80 to 85 years old, 85 to 90 years old, 90 to 95 years old or 95 to 100 years old. In some embodiments, a an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a human infant. In other embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a human toddler. In other embodiments, an APMV described herein (e.g a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a human child. In other embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a human adult. In yet other embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to an elderly human.


In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject in an immunocompromised state or immunosuppressed state or at risk for becoming immunocompromised or immunosuppressed. In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject receiving or recovering from immunosuppressive therapy. In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject that has or is at risk of getting cancer. In certain embodiments, the subject is, will or has undergone surgery, chemotherapy and/or radiation therapy. In certain embodiments, the patient has undergone surgery to remove the tumor or neoplasm. In specific embodiments, the patient is administered an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein following surgery to remove a tumor or neoplasm. In other embodiments, the patient is administered an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein prior to undergoing surgery to remove a tumor or neoplasm. In certain embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a subject that has, will have or had a tissue transplant, organ transplant or transfusion.


In some embodiments, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a patient who has proven refractory to therapies other than the APMV or composition thereof, or a combination therapy but are no longer on these therapies. In a specific embodiment, an APMV described herein (e.g., a naturally occurring or recombinant APMV described herein) or a composition thereof, or a combination therapy described herein is administered to a patient who has proven refractory to chemotherapy. The determination of whether cancer is refractory can be made by any method known in the art. In a certain embodiment, refractory patient is a patient refractory to a standard therapy. In some embodiments, a patient with cancer is initially responsive to therapy, but subsequently becomes refractory.


5.5.4 Types of Cancers

Specific examples of cancers that can be treated in accordance with the methods described herein include, but are not limited to: melanomas, leukemias, lymphomas, multiple myelomas, sarcomas, and carcinomas. In one embodiment, cancer treated in accordance with the methods described herein is a leukemia, such as acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias, such as, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroid leukemias, and myelodysplastic syndrome. In another embodiment, cancer treated in accordance with the methods described herein is a chronic leukemia, such as chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, and hairy cell leukemia. In another embodiment, cancer treated in accordance with the methods described herein is a lymphoma, such as Hodgkin disease and non-Hodgkin disease. In another embodiment, cancer treated in accordance with the methods described herein is a multiple myeloma such as smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, solitary plasmacytoma and extramedullary plasmacytoma. In another embodiment, cancer treated in accordance with the methods described herein is Waldenstrom's macroglobulinemia monoclonal gammopathy of undetermined significance, benign monoclonal gammopathy, Wilm's tumor, or heavy chain disease.


In one embodiment, cancer treated in accordance with the methods described herein is bone cancer, brain cancer, breast cancer, adrenal cancer, thyroid cancer, pancreatic cancer, pituitary cancer, eye cancer, vaginal, vulvar cancer, cervical cancer, uterine cancer, ovarian cancer, esophageal cancer, stomach cancer, colon cancer, rectal cancer, liver cancer, gallbladder cancer, lung cancer, testicular cancer, prostate cancer, penal cancer, oral cancer, basal cancer, salivary gland cancer, pharynx cancer, skin cancer, kidney cancer, or bladder cancer. In another embodiment, cancer treated in accordance with the methods described herein is brain, breast, lung, colorectal, liver, kidney or skin cancer.


In another embodiment, cancer treated in accordance with the methods described herein is a bone and connective tissue sarcoma, such as bone sarcoma, osteosarcoma, chondrosarcoma, Ewing's sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, neurilemmoma, rhabdomyosarcoma, or synovial sarcoma. In another embodiment, cancer treated in accordance with the methods described herein is a brain tumor, such as glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, glioblastoma multiforme, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, or primary brain lymphoma. In another embodiment, cancer treated in the accordance with the methods described herein is breast cancer, such as triple negative breast cancer, ER+/HER2-breast cancer, ductal carcinoma, adenocarcinoma, lobular (cancer cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, Paget's disease, or inflammatory breast cancer. In another embodiment, cancer treated in the accordance with the methods described herein is adrenal cancer, such as pheochromocytom or adrenocortical carcinoma. In another embodiment, cancer treated in the accordance with the methods described herein is thyroid cancer, such as papillary or follicular thyroid cancer, medullary thyroid cancer or anaplastic thyroid cancer. In another embodiment, cancer treated in the accordance with the methods described herein is pancreatic cancer, such as insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, or carcinoid or islet cell tumor. In another embodiment, cancer treated in the accordance with the methods described herein is pituitary cancer, such as Cushing's disease, prolactin-secreting tumor, acromegaly, or diabetes insipidus. In another embodiment, cancer treated in the accordance with the methods described herein is eye cancer, such as ocular melanoma such as iris melanoma, choroidal melanoma, cilliary body melanoma, or retinoblastoma. In another embodiment, cancer treated in the accordance with the methods described herein is vaginal cancer, such as squamous cell carcinoma, adenocarcinoma, or melanoma. In another embodiment, cancer treated in the accordance with the methods described herein is vulvar cancer, such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma, sarcoma, or Paget's disease. In another embodiment, cancer treated in the accordance with the methods described herein is cervical cancer, such as squamous cell carcinoma or adenocarcinoma. In another embodiment, cancer treated in the accordance with the methods described herein is uterine cancer, such as endometrial carcinoma or uterine sarcoma.


In another embodiment, cancer treated in accordance with the methods described herein is ovarian cancer, such as ovarian epithelial carcinoma, borderline tumor, germ cell tumor, or stromal tumor. In another embodiment, cancer treated in accordance with the methods described herein is esophageal cancer, such as squamous cancer, adenocarcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, placancercytoma, verrucous carcinoma, or oat cell (cancer cell) carcinoma. In another embodiment, cancer treated in accordance with the methods described herein is stomach cancer, such as adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, or carcinosarcoma. In another embodiment, cancer treated in accordance with the methods described herein is liver cancer, such as hepatocellular carcinoma or hepatoblastoma. In another embodiment, cancer treated in accordance with the methods described herein is gallbladder cancer, such as adenocarcinoma. In another embodiment, cancer treated in accordance with the methods described herein is cholangiocarcinoma, such as papillary, nodular, or diffuse. In another embodiment, cancer treated in accordance with the methods described herein is lung cancer, such as non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma or cancer-cell lung cancer. In another embodiment, cancer treated in accordance with the methods described herein is testicular cancer, such germinal tumor, seminoma, anaplastic, classic (typical), spermatocytic, nonseminoma, embryonal carcinoma, teratoma carcinoma, or choriocarcinoma (yolk-sac tumor). In another embodiment, cancer treated in accordance with the methods described herein is prostate cancer, such as prostatic intraepithelial neoplasia, adenocarcinoma, leiomyosarcoma, or rhabdomyosarcoma. In another embodiment, cancer treated in accordance with the methods described herein is penal cancers. In another embodiment, cancer treated in accordance with the methods described herein is oral cancer, such as squamous cell carcinoma. In another embodiment, cancer treated in accordance with the methods described herein is salivary gland cancer, such as adenocarcinoma, mucoepidermoid carcinoma, or adenoidcystic carcinoma. In another embodiment, cancer treated in accordance with the methods described herein is pharynx cancer, such as squamous cell cancer or verrucous. In another embodiment, cancer treated in accordance with the methods described herein is skin cancer, such as basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, or acral lentiginous melanoma. In another embodiment, cancer treated in accordance with the methods described herein is kidney cancer, such as renal cell carcinoma, adenocarcinoma, hypernephroma, fibrosarcoma, or transitional cell cancer (renal pelvis and/or uterine). In another embodiment, cancer treated in accordance with the methods described herein is bladder cancer, such as transitional cell carcinoma, squamous cell cancer, adenocarcinoma, or carcinosarcoma.


In a specific embodiment, the cancer treated in accordance with the methods described herein is a melanoma. In another specific embodiment, the cancer treated in accordance with the methods described herein is a lung carcinoma. In another specific embodiment, the cancer treated in accordance with the methods described herein is a colorectal carcinoma. In a specific embodiment, the cancer treated in accordance with the methods described herein is melanoma, non-small cell lung cancer, head and neck squamous cell cancer, classical Hodgkin lymphoma, primary mediastinal large B-cell lymphoma, urothelial carcinoma, microsatellite instability-high cancer, gastric cancer, or cervical cancer.


In a specific embodiment, an APMV described herein or compositions thereof, or a combination therapy described herein are useful in the treatment of a variety of cancers and abnormal proliferative diseases, including (but not limited to) the following: carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin; including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T cell lymphoma, Burkitt's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyoscarcoma; other tumors, including melanoma, seminoma, teratocarcinoma, neuroblastoma and glioma; tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma, and schwannomas; tumors of mesenchymal origin, including fibrosarcoma, rhabdomyoscarama, and osteosarcoma; and other tumors, including melanoma, xeroderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer and teratocarcinoma.


In some embodiments, cancers associated with aberrations in apoptosis are treated in accordance with the methods described herein. Such cancers may include, but are not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and myelodysplastic syndromes. In specific embodiments, malignancy or dysproliferative changes (such as metaplasias and dysplasias), or hyperproliferative disorders of the skin, lung, liver, bone, brain, stomach, colon, breast, prostate, bladder, kidney, pancreas, ovary, uterus or any combination of the foregoing are treated in accordance with the methods described herein. In other specific embodiments, a sarcoma or melanoma is treated in accordance with the methods described herein.


In a specific embodiment, the cancer being treated in accordance with the methods described herein is leukemia, lymphoma or myeloma (e.g., multiple myeloma). Specific examples of leukemias and other blood-borne cancers that can be treated in accordance with the methods described herein include, but are not limited to, acute lymphoblastic leukemia “ALL”, acute lymphoblastic B-cell leukemia, acute lymphoblastic T-cell leukemia, acute myeloblastic leukemia “AML”, acute promyelocytic leukemia “APL”, acute monoblastic leukemia, acute erythroleukemic leukemia, acute megakaryoblastic leukemia, acute myelomonocytic leukemia, acute nonlymphocyctic leukemia, acute undifferentiated leukemia, chronic myelocytic leukemia “CML”, chronic lymphocytic leukemia “CLL”, and hairy cell leukemia.


Specific examples of lymphomas that can be treated in accordance with the methods described herein include, but are not limited to, Hodgkin disease, non-Hodgkin lymphoma such as diffuse large B-cell lymphoma, multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and polycythemia vera.


In another embodiment, the cancer being treated in accordance with the methods described herein is a solid tumor. Examples of solid tumors that can be treated in accordance with the methods described herein include, but are not limited to fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon cancer, colorectal cancer, kidney cancer, pancreatic cancer, bone cancer, breast cancer, ovarian cancer, prostate cancer, esophageal cancer, stomach cancer, oral cancer, nasal cancer, throat cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, uterine cancer, testicular cancer, cancer cell lung carcinoma, bladder carcinoma, lung cancer, epithelial carcinoma, glioma, glioblastoma multiforme, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, skin cancer, melanoma, neuroblastoma, and retinoblastoma. In another embodiment, the cancer being treated in accordance with the methods described herein is a metastatic. In another embodiment, the cancer being treated in accordance with the methods described herein is malignant.


In a specific embodiment, the cancer being treated in accordance with the methods described herein is a cancer that has a poor prognosis and/or has a poor response to conventional therapies, such as chemotherapy and radiation. In another specific embodiment, the cancer being treated in accordance with the methods described herein is malignant melanoma, malignant glioma, renal cell carcinoma, pancreatic adenocarcinoma, malignant pleural mesothelioma, lung adenocarcinoma, lung small cell carcinoma, lung squamous cell carcinoma, anaplastic thyroid cancer, or head and neck squamous cell carcinoma. In another specific embodiment, the cancer being treated in accordance with the methods described herein is a type of cancer described in Section 6, infra.


In a specific embodiment, the cancer being treated in accordance with the methods described herein is a cancer that is metastatic. In a specific embodiment, the cancer comprises a dermal, subcutaneous, or nodal metastasis. In a specific embodiment, the cancer comprises peritoneal or pleural metastasis. In a specific embodiment, the cancer comprises visceral organ metastasis, such as liver, kidney, spleen, or lung metastasis.


In a specific embodiment, the cancer being treated in accordance with the methods described herein is a cancer that is unresectable. Any method known to the skilled artisan may be utilized to determine if a cancer is unresectable.


5.6 Biological Assays

In a specific embodiment, one, two or more of the assays described in Section 6 may be used to characterize an APMV described herein.


5.6.1 In Vitro Assays

Viral assays include those that indirectly measure viral replication (as determined, e.g., by plaque formation) or the production of viral proteins (as determined, e.g., by western blot analysis) or viral RNAs (as determined, e.g., by RT-PCR or northern blot analysis) in cultured cells in vitro using methods which are well known in the art.


Growth of an APMV described herein can be assessed by any method known in the art or described herein (e.g., in cell culture (e.g., cultures of chicken embryonic kidney cells or cultures of chicken embryonic fibroblasts (CEF)) (see, e.g., Section 6). Viral titer may be determined by inoculating serial dilutions of a recombinant APMV described herein into cell cultures (e.g., CEF, MDCK, EFK-2 cells, Vero cells, primary human umbilical vein endothelial cells (HUVEC), H292 human epithelial cell line or HeLa cells), chick embryos, or live animals (e.g., avians). After incubation of the virus for a specified time, the virus is isolated using standard methods. Physical quantitation of the virus titer can be performed using PCR applied to viral supernatants (Quinn & Trevor, 1997; Morgan et al., 1990), hemagglutination assays, tissue culture infectious doses (TCID50) or egg infectious doses (EID50). An exemplary method of assessing viral titer is described in Section 6, below.


Incorporation of nucleotide sequences encoding a heterologous peptide or protein (e.g., a transgene into the genome of an APMV described herein can be assessed by any method known in the art or described herein (e.g., in cell culture, an animal model or viral culture in embryonated eggs)). For example, viral particles from cell culture of the allantoic fluid of embryonated eggs can be purified by centrifugation through a sucrose cushion and subsequently analyzed for protein expression by Western blotting using methods well known in the art.


Immunofluorescence-based approaches may also be used to detect virus and assess viral growth. Such approaches are well known to those of skill in the art, e.g., fluorescence microscopy and flow cytometry (see, eg., Section 6, infra). Methods for flow cytometry, including fluorescence activated cell sorting (FACS), are available (see, e.g., Owens, et al. (1994) Flow Cytometry Principles for Clinical Laboratory Practice, John Wiley and Sons, Hoboken, N.J.; Givan (2001) Flow Cytometry, 2nd ed.; Wiley-Liss, Hoboken, N.J.; Shapiro (2003) Practical Flow Cytometry, John Wiley and Sons, Hoboken, N.J.). Fluorescent reagents suitable for modifying nucleic acids, including nucleic acid primers and probes, polypeptides, and antibodies, for use, e.g., as diagnostic reagents, are available (Molecular Probesy (2003) Catalogue, Molecular Probes, Inc., Eugene, Oreg.; Sigma-Aldrich (2003) Catalogue, St. Louis, Mo.). See, e.g., the assays described in Section 6, infra.


Standard methods of histology of the immune system are described (see, e.g., Muller-Harmelink (ed.) (1986) Human Thymus: Histopathology and Pathology, Springer Verlag, New York, N.Y.; Hiatt, et al. (2000) Color Atlas of Histology, Lippincott, Williams, and Wilkins, Phila, Pa.; Louis, et al. (2002) Basic Histology: Text and Atlas, McGraw-Hill, New York, N.Y.). See also Section 6, infra, for histology and immunohistochemistry assays that may be used.


5.6.2 Interferon Assays

IFN induction and release by an APMV described herein may be determined using techniques known to one of skill in the art. For example, the amount of IFN induced in cells following infection with a recombinant APMV described herein may be determined using an immunoassay (e.g., an ELISA or Western blot assay) to measure IFN expression or to measure the expression of a protein whose expression is induced by IFN. Alternatively, the amount of IFN induced may be measured at the RNA level by assays, such as Northern blots and quantitative RT-PCR, known to one of skill in the art. In specific embodiments, the amount of IFN released may be measured using an ELISPOT assay. Further, the induction and release of cytokines and/or interferon-stimulated genes may be determined by, e.g., an immunoassay or ELISPOT assay at the protein level and/or quantitative RT-PCR or northern blots at the RNA level.


5.6.3 Activation Marker Assays and Immune Cell Infiltration Assay

The expression of a T cell marker, B cell marker, activation marker, co-stimulatory molecule, ligand, or inhibitory molecule by immune cells induced by an APMV may be assessed. Techniques for assessing the expression of T cell marker, B cell marker, activation marker, co-stimulatory molecule, ligand, or inhibitory molecule by immune cells are known to one of skill in the art. For example, the expression of T cell marker, B cell marker, an activation marker, co-stimulatory molecule, ligand, or inhibitory molecule by an immune cell can be assessed by flow cytometry.


5.6.4 Toxicity Studies

In some embodiments, an APMV described herein or composition thereof, or a combination therapy described herein are tested for cytotoxicity in mammalian, preferably human, cell lines. In certain embodiments, cytotoxicity is assessed in one or more of the following non-limiting examples of cell lines: U937, a human monocyte cell line; primary peripheral blood mononuclear cells (PBMC); Huh7, a human hepatoblastoma cell line; HL60 cells, HT1080, HEK 293T and 293H, MLPC cells, human embryonic kidney cell lines; human melanoma cell lines, such as SkMel2, SkMel-119 and SkMel-197; THP-1, monocytic cells; a HeLa cell line; and neuroblastoma cells lines, such as MC-IXC, SK-N-MC, SK-N-MC, SK-N-DZ, SH-SY5Y, and BE(2)-C. In some embodiments, the ToxLite assay is used to assess cytotoxicity.


Many assays well-known in the art can be used to assess viability of cells or cell lines following infection with an APMV described herein or composition thereof, and, thus, determine the cytotoxicity of the APMV or composition thereof. For example, cell proliferation can be assayed by measuring Bromodeoxyuridine (BrdU) incorporation, (3H) thymidine incorporation, by direct cell count, or by detecting changes in transcription, translation or activity of known genes such as proto-oncogenes (e.g., fos, myc) or cell cycle markers (Rb, cdc2, cyclin A, D1, D2, D3, E, etc). The levels of such protein and mRNA and activity can be determined by any method well known in the art. For example, protein can be quantitated by known immunodiagnostic methods such as ELISA, Western blotting or immunoprecipitation using antibodies, including commercially available antibodies. mRNA can be quantitated using methods that are well known and routine in the art, for example, using northern analysis, RNase protection, or polymerase chain reaction in connection with reverse transcription. Cell viability can be assessed by using trypan-blue staining or other cell death or viability markers known in the art. In a specific embodiment, the level of cellular ATP is measured to determined cell viability. In preferred embodiments, an APMV described herein or composition thereof does not kill healthy (i.e., non-cancerous) cells.


In specific embodiments, cell viability may be measured in three-day and seven-day periods using an assay standard in the art, such as the CellTiter-Glo Assay Kit (Promega) which measures levels of intracellular ATP. A reduction in cellular ATP is indicative of a cytotoxic effect. In another specific embodiment, cell viability can be measured in the neutral red uptake assay. In other embodiments, visual observation for morphological changes may include enlargement, granularity, cells with ragged edges, a filmy appearance, rounding, detachment from the surface of the well, or other changes.


The APMVs described herein or compositions thereof, or combination therapies can be tested for in vivo toxicity in animal models. For example, animal models, known in the art to test the effects of compounds on cancer can also be used to determine the in vivo toxicity of an APMV described herein or a composition thereof, or combination therapies. For example, animals are administered a range of pfu of an APMV described herein, and subsequently, the animals are monitored over time for various parameters, such as one, two or more of the following: lethality, weight loss or failure to gain weight, and levels of serum markers that may be indicative of tissue damage (e.g., creatine phosphokinase level as an indicator of general tissue damage, level of glutamic oxalic acid transaminase or pyruvic acid transaminase as indicators for possible liver damage). These in vivo assays may also be adapted to test the toxicity of various administration mode and regimen in addition to dosages.


The toxicity, efficacy or both of an APMV described herein or a composition thereof, or a combination therapy described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. In a specific embodiment, the cytotoxicity of an APMV is determined by methods set forth in Section 6, infra.


The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage of the therapies for use in subjects.


5.6.5 Biological Activity Assays

An APMV described herein or a composition thereof, or a combination therapy described herein can be tested for biological activity using animal models for treating cancer. (see, e.g., Section 6). Such animal model systems include, but are not limited to, rats, mice, hamsters, cotton rats, chicken, cows, monkeys (e.g., African green monkey), pigs, dogs, rabbits, etc. In a specific embodiment, an animal model such as described in Section 6, infra, is used to test the utility of an APMV or composition thereof to treat cancer.


5.6.6 Expression of Transgene

The expression of a protein in cells infected with a recombinant APMV described herein, wherein the recombinant APMV comprises a packaged genome comprising a transgene encoding a heterologous protein, may be conducted using any assay known in the art, such as, e.g., western blot, immunofluorescence, flow cytometry, and ELISA, or any assay described herein (see, e.g., Section 6).


In a specific aspect, an ELISA is utilized to detect expression of a heterologous protein encoded by a transgene in cells infected with a recombinant APMV comprising a packaged genome comprising the transgene.


The expression of a transgene may also be measured at the RNA level by assays, such as Northern blots and quantitative RT-PCR, known to one of skill in the art.


In addition to expression of a transgene, the function of the protein encoded by the transgene may be assessed by techniques known to one of skill in the art. For example, one or more functions of a protein described herein or known to one of skill in the art may be assessed using techniques known to one of skill in the art.


5.7 Kits

In one aspect, provided herein is a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of a composition (e.g., a pharmaceutical compositions) described herein. In a specific embodiment, provided herein is a pharmaceutical pack or kit comprising a container, wherein the container comprises an APMV (e.g., AMP-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8 or APMV-9) described herein, or a pharmaceutical composition comprising an APMV (e.g., AMP-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8 or APMV-9) described herein. In a particular embodiment, provided herein is a pharmaceutical pack or kit comprising a container, wherein the container comprises an APMV-4 described herein, or a pharmaceutical composition comprising an APMV-4 described herein. In certain embodiments, the pharmaceutical pack or kit comprises a second container, wherein the second container comprises an additional prophylactic or therapeutic agent, such as, e.g., described in Section 5.5.2. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In a specific embodiment, the pharmaceutical pack or kit includes instructions for use of the APMV or composition thereof for the treatment of cancer.









TABLE 2







SEQUENCES


APMV SEQUENCES











SEQ ID


Description
Sequence
NO.





Avian
ACCAAACAAGGAATAGGTAAGCAAC
SEQ ID


paramyxovir
GTAAATCTTAGATAAAACCATAGAA
NO: 1


us 2 strain
TCCGTGGGGGCGACATCGCCTGAAG



APMV-
CCGATCTCGAGATCGATAACTCCGG



2/Chicken/ 
TTAATTGGTCTCAGCGTGAGGAGCT



California/
TATCTGTCTGTGGCAATGTCTTCTG



Yucaipa/56,
TGTTTTCAGAATACCAGGCTCTTCA



complete
GGACCAACTGGTCAAGCCTGCCACT



genome
CGAAGGGCTGATGTGGCATCGACTG



Genbank:
GATTGTTGAGAGCGGAGATACCAGT



EU338414.1
TTGTGTAACCTTGTCTCAGGACCCA




ACTGATAGATGGAACCTCGCATGTC




TCAATCTGCGATGGCTGATAAGTGA




GTCCTCTACTACTCCCATGAGACAA




GGGGCGATCCTGTCACTGCTGAGCT




TGCACTCTGACAACATGCGAGCTCA




CGCAACCCTTGCAGCGAGATCCGCT




GATGCTGCCATCACTGTGCTTGAGG




TTGACGCCATAGACATGGCGGATGG




CACAATCACTTTTAATGCCAGAAGT




GGAGTATCCGAGAGGCGCAGCACAC




AGCTCATGGCAATCGCAAAAGATCT




GCCCCGCTCTTGTTCCAATGACTCA




CCATTCAAAGATGACACTATCGAGG




ATCGCGACCCCCTTGACCTGTCCGA




GACTATCGATAGACTGCAGGGGATT




GCTGCCCAAATCTGGATAGCGGCCA




TCAAGAGCATGACTGCCCCGGATAC




TGCTGCGGAGTCAGAAGGCAAGAGG




CTTGCAAAGTACCAACAACAAGGCC




GCTTGGTGCGACAGGTGTTAGTGCA




TGATGCGGTGCGTGCGGAATTCCTA




CGTGTCATCAGAGGCAGCCTGGTCT




TACGGCAATTCATGGTATCAGAATG




TAAGAGGGCAGCATCCATGGGTAGC




GAGACATCTAGGTACTATGCCATGG




TGGGTGACATCAGCCTCTACATCAA




GAATGCAGGACTTACCGCCTTCTTC




TTGACACTCAGATTTGGTATTGGGA




CACACTACCCCACTCTTGCCATGAG




TGTGTTCTCTGGAGAACTGAAGAAG




ATGTCGTCCTTGATCAGGCTGTATA




AGTCAAAAGGGGAAAATGCTGCATA




CATGGCATTCCTGGAGGATGCGGAC




ATGGGAAACTTTGCGCCTGCTAACT




TTAGTACTCTCTACTCCTATGCAAT




GGGGGTAGGTACAGTGCTGGAAGCA




TCAGTTGCGAAATACCAGTTCGCTC




GAGAGTTCACCAGTGAGACATACTT




CAGGCTTGGGGTTGAGACCGCACAG




AACCAACAGTGCGCTCTAGATGAAA




AGACCGCCAAGGAGATGGGGCTTAC




TGATGAAGCCAGAAAGCAGGTGCAA




GCATTGGCTAGCAACATCGAGCAGG




GGCAACATTCAATGCCCATGCAACA




ACAGCCCACATTCATGAGTCAGCCC




TACCAGGATGACGATCGTGACCAGC




CAAGCACCAGCAGACCAGAGCCAAG




ACCATCGCAATTGACAAGCCAATCA




GCAGCACAGGACAATGATGCGGCCT




CATTAGATTGGTGACCGCAATCAGC




TCAGCCAAGCCATTGTTGGACGCAG




GACATTCAAATCATACATTGCCCTA




AGAGTATTAAAGTGATTTAAGAAAA




AAGGACCCTGGGGGCGAAGTTGTCC




CAATCCAGGCAGGCGCTGAAACCGA




ATCCCTCCAACCTCCGAGCCCCAGG




CGACCATGGAGTTCACCGATGATGC




CGAAATTGCTGAGCTGTTGGACCTC




GGGACCTCAGTGATCCAAGAGCTGC




AGCGAGCCGAAGTCAAGGGCCCGCA




AACAACCGGAAAGCCCAAAGTTCCC




CCGGGGAACACTAAGAGCCTGGCTA




CTCTCTGGGAGCATGAGACTAGCAC




CCAAGGGAGTGCATTGGGCACACCC




GAGAACAACACCCAGGCACCCGATG




ACAACAACGCAGGTGCAGATACGCC




AGCGACTACCGACGTCCATCGCACT




CTGGATACCATAGACACCGACACAC




CACCGGAAGGGAGCAAGCCCAGCTC




CACTAACTCCCAACCCGGTGATGAC




CTTGACAAGGCTCTTTCGAAGCTAG




AGGCGCGCGCCAAGCTCGGACCAGA




TAGGGCCAGACAGGTTAAAAAGGGG




AAGGAGATCGGGTCGAGCACAGGGA




CGAGGGAGGCAGCCAGTCACCACAT




GGAAGGGAGCCGACAGTCGGAGCCA




GGAGCGGGCAGCCGAGCACAGCCAC




AAGGCCATGGCGACCGGGACACAGG




AGGGAGTACTCATTCATCTCTCGAG




ATGGGAGACTGGAAGTCACAAGCTG




GTGCAACCCAGTCTGCTCTCCCATT




AGAAGCGAGCCCAGGAGAGAAAAGT




GCACATGTGGAACTTGCCCAGAATC




CTGCATTTTATGCAGGCAACCCAAC




TGATGCAATTATGGGGTTGACAAAG




AAAGTCAATGATCTAGAGACAAAAT




TGGCTGAGGTATTGCGTCTGTTAGG




AATACTCCCCGGAATAAAGAATGAG




ATTAGTCAGCTGAAAGCAACCGTGG




CTCTGATGTCAAATCAGATTGCCTC




CATTCAGATTCTTGATCCTGGGAAT




GCCGGAGTCAAATCCCTTAATGAGA




TGAAAGCCCTGTCAAAAGCAGCCAG




CATAGTTGTGGCAGGTCCAGGAGTC




CTTCCTCCTGAGGTCACAGAAGGAG




GACTGATCGCGAAAGATGAGCTAGC




AAGGCCCATCCCCATCCAACCGCAA




CGAGACTCCAAACCCAAAGACGACC




CGCACACATCACCAAATGATGTCCT




TGCTGTACGCGCTATGATCGACACC




CTTGTGGATGATGAGAAGAAGAGAA




AGAGATTAAACCAGGCCCTTGACAA




GGCAAAGACCAAGGATGACGTCTTA




AGGGTCAAGCGGCAGATATACAATG




CCTAGGAGTCCATTTGTCTAAAGAA




CCTCCAATCATATCACCAGTTTCGT




GCCACATGCTTCCCTGCCGAGAATC




TAGCCGACACAAAAACTAAATCATA




GTTTAACAAAAAAGAAGTTTGGGGG




CGAAGTCTCACATCATAGAGCACCC




TTGCATTCTAAAATGGCTCAAACAA




CCGTCAGGCTGTATATCGATGAAGC




TAGTCCCGACATTGAACTGTTGTCT




TACCCACTGATAATGAAAGACACAG




GACATGGGACCAAAGAGTTGCAGCA




GCAAATCAGAGTTGCAGAGATCGGT




GCATTGCAGGGAGGGAAGAATGAAT




CAGTTTTCATCAATGCATATGGCTT




TGTTCAGCAATGCAAAGTTAAACCG




GGGGCAACCCAATTCTTCCAGGTAG




ATGCAGCTACAAAGCCAGAAGTGGT




CACTGCAGGGATGATTATAATCGGT




GCAGTCAAGGGGGTGGCAGGCATCA




CTAAGCTGGCAGAAGAGGTGTTCGA




GCTGGACATCTCCATCAAGAAGTCC




GCATCATTCCATGAGAAGGTTGCGG




TGTCCTTTAATACTGTGCCACTATC




ACTCATGAATTCGACCGCATGCAGA




AATCTGGGTTATGTCACAAACGCTG




AGGAGGCGATCAAATGCCCGAGCAA




AATACAAGCGGGTGTGACGTACAAA




TTTAAGATAATGTTTGTCTCCTTGA




CACGACTGCATAACGGGAAATTGTA




CCGTGTCCCCAAGGCAGTGTATGCT




GTAGAGGCATCAGCTCTATATAAAG




TGCAACTGGAAGTCGGGTTCAAGCT




TGACGTGGCCAAGGATCACCCACAC




GTTAAGATGTTGAAGAAAGTGGAAC




GGAATGGTGAGACTCTGTATCTTGG




TTATGCATGGTTCCACCTGTGCAAC




TTCAAGAAGACAAATGCCAAGGGTG




AGTCCCGGACAATCTCCAACCTAGA




AGGGAAAGTCAGAGCTATGGGGATC




AAGGTTTCCTTGTACGACTTATGGG




GGCCTACTTTGGTGGTGCAAATCAC




AGGTAAGACCAGCAAGTATGCACAA




GGTTTCTTTTCAACCACAGGTACCT




GCTGCCTCCCAGTGTCGAAGGCTGC




CCCTGAGCTGGCCAAACTTATGTGG




TCCTGCAATGCAACAATCGTTGAAG




CTGCAGTGATTATCCAAGGGAGTGA




TAGGAGGGCAGTCGTGACCTCAGAG




GACTTGGAAGTATACGGGGCAGTTG




CAAAAGAGAAGCAGGCTGCAAAAGG




ATTTCACCCGTTCCGCAAGTGACAC




GTGGGGCCGCACACCTCATTACCCC




AGAAGCCCGGGCAACTGCAAATTCA




CGCTTATATAATCCAATTACCATGA




TCTAGAACTGCAATCGATACTAATC




GCTCATTGATCGTATTAAGAAAAAA




CTTAACTACATAACTTCAACATTGG




GGGCGACAGCTCCAGACTAAGTGGG




TGGCTAAGCTCTGACTGATAAGGAA




TCATGAATCAAGCACTCGTGATTTT




GTTGGTATCTTTCCAGCTCGGCGTT




GCCTTAGATAACTCAGTGTTGGCTC




CAATAGGAGTAGCTAGCGCACAGGA




GTGGCAACTGGCGGCATATACAACG




ACCCTCACAGGGACCATCGCAGTGA




GATTTATCCCGGTCCTGCCTGGGAA




CCTATCAACATGTGCACAGGAGACG




CTGCAGGAATATAATAGAACTGTGA




CTAATATCTTAGGCCCGTTGAGAGA




GAACTTGGATGCTCTCCTATCTGAC




TTCGATAAACCTGCATCGAGGTTCG




TGGGCGCCATCATTGGGTCGGTGGC




CTTGGGGGTAGCAACAGCTGCACAA




ATCACAGCCGCCGTGGCTCTCAATC




AAGCACAAGAGAATGCCCGGAATAT




ATGGCGTCTCAAGGAATCGATAAAG




AAAACCAATGCGGCTGTGTTGGAAT




TGAAGGATGGACTTGCAACGACTGC




TATAGCTTTGGACAAAGTGCAAAAG




TTTATCAATGATGATATTATACCAC




AGATTAAGGACATTGACTGCCAGGT




AGTTGCAAATAAATTAGGCGTCTAC




CTCTCCTTATACTTAACAGAGCTTA




CAACTGTATTTGGTTCTCAGATCAC




TAATCCTGCATTATCAACGCTCTCT




TACCAGGCGCTGTACAGCTTATGTG




GAGGGGATATGGGAAAGCTAACTGA




GCTGATCGGTGTCAATGCAAAGGAT




GTGGGATCCCTCTACGAGGCTAACC




TCATAACCGGCCAAATCGTTGGATA




TGACCCTGAACTACAGATAATCCTC




ATACAAGTATCTTACCCAAGTGTGT




CTGAAGTGACAGGAGTCCGGGCTAC




TGAGTTAGTCACTGTCAGTGTCACT




ACACCAAAAGGAGAAGGGCAGGCAA




TTGTTCCGAGATATGTGGCACAGAG




TAGAGTGCTGACAGAGGAGTTGGAT




GTCTCGACTTGTAGGTTTAGCAAAA




CAACTCTTTATTGTAGGTCGATTCT




CACACGGCCCCTACCAACTTTGATC




GCCAGCTGCCTGTCAGGGAAGTACG




ACGATTGTCAGTACACAACAGAGAT




AGGAGCGCTATCTTCGAGATTCATC




ACAGTCAATGGTGGAGTCCTTGCAA




ACTGCAGAGCAATTGTGTGTAAGTG




TGTCTCACCCCCGCATATAATACCA




CAAAACGACATTGGCTCCGTAACAG




TTATTGACTCAAGTATATGCAAGGA




AGTTGTCTTAGAGAGTGTGCAGCTT




AGGTTAGAAGGAAAGCTGTCATCCC




AATACTTCTCCAACGTGACAATTGA




CCTTTCCCAAATCACAACGTCAGGG




TCGCTGGATATAAGCAGTGAAATTG




GTAGCATTAACAACACAGTTAATCG




GGTCGACGAGTTAATCAAGGAATCC




AACGAGTGGCTGAACGCTGTGAACC




CCCGCCTTGTGAACAATACGAGCAT




CATAGTCCTCTGTGTCCTTGCCGCC




CTGATTATTGTCTGGCTAATAGCGC




TGACAGTATGCTTCTGTTACTCCGC




AAGATACTCAGCTAAGTCAAAACAG




ATGAGGGGCGCTATGACAGGGATCG




ATAATCCATATGTAATACAGAGTGC




AACTAAGATGTAGAGAGGTTGAATA




AGCCTAAACATGATATGATTTAAGA




AAAAATTGGAAGGTGGGGGCGACAG




CCCATTCAATGAAGGGTGTACACTC




CAACTTGATCTTGTGACTTGATCAT




CATACTCGAGGCACCATGGATTTCC




CATCTAGGGAGAACCTGGCAGCAGG




TGACATATCGGGGCGGAAGACTTGG




AGATTACTGTTCCGGATCCTCACAT




TGAGCATAGGTGTGGTCTGTCTTGC




CATCAATATTGCCACAATTGCAAAA




TTGGATCACCTGGATAACATGGCTT




CGAACACATGGACAACAACTGAGGC




TGACCGTGTGATATCTAGCATCACG




ACTCCGCTCAAAGTCCCTGTCAACC




AGATTAATGACATGTTTCGGATTGT




AGCGCTTGACCTACCTCTGCAGATG




ACATCATTACAGAAAGAAATAACAT




CCCAAGTCGGGTTCTTGGCTGAAAG




TATCAACAATGTTTTATCCAAGAAT




GGATCTGCAGGCCTGGTTCTTGTTA




ATGACCCTGAATATGCAGGGGGGAT




CGCTGTCAGCTTGTACCAAGGAGAT




GCATCTGCAGGCCTAAATTTCCAGC




CCATTTCTTTAATAGAACATCCAAG




TTTTGTCCCTGGTCCTACTACTGCT




AAGGGCTGTATAAGGATCCCGACCT




TCCATATGGGCCCTTCACATTGGTG




TTACTCACATAACATCATTGCATCA




GGTTGCCAGGATGCGAGCCACTCCA




GTATGTATATCTCTCTGGGGGTGCT




GAAAGCATCGCAGACCGGGTCGCCT




ATCTTCTTGACAACGGCCAGCCATC




TCGTGGATGACAACATCAACCGGAA




GTCATGCAGCATCGTAGCCTCAAAA




TACGGTTGTGATATCCTATGCAGTA




TTGTGATTGAAACAGAGAATGAGGA




TTATAGGTCTGATCCGGCTACTAGC




ATGATTATAGGTAGGCTGTTCTTCA




ACGGGTCATACACAGAGAGCAAGAT




TAACACAGGGTCCATCTTCAGTCTA




TTCTCTGCTAACTACCCTGCGGTGG




GGTCGGGTATTGTAGTCGGGGATGA




AGCCGCATTCCCAATATATGGTGGG




GTCAAGCAGAACACATGGTTGTTCA




ACCAGCTCAAGGATTTTGGTTACTT




CACCCATAATGATGTGTACAAGTGC




AATCGGACTGATATACAGCAAACTA




TCCTGGATGCATACAGGCCACCTAA




AATCTCAGGAAGGTTATGGGTACAA




GGCATCCTATTGTGCCCAGTTTCAC




TGAGACCTGATCCTGGCTGTCGCTT




AAAGGTGTTCAATACCAGCAATGTG




ATGATGGGGGCAGAAGCGAGGTTGA




TCCAAGTAGGCTCAACCGTGTATCT




ATACCAACGCTCATCCTCATGGTGG




GTGGTAGGACTGACTTACAAATTAG




ATGTGTCAGAAATAACTTCACAGAC




AGGTAACACACTCAACCATGTAGAC




CCCATTGCCCATACAAAGTTCCCAA




GACCATCTTTCAGGCGAGATGCGTG




TGCGAGGCCAAACATATGCCCTGCT




GTCTGTGTCTCCGGAGTTTATCAGG




ACATTTGGCCGATCAGTACAGCCAC




CAATAACAGCAACATTGTGTGGGTT




GGACAGTACTTAGAAGCATTCTATT




CCAGGAAAGACCCAAGAATAGGGAT




AGCAACCCAGTATGAGTGGAAAGTC




ACCAACCAGCTGTTCAATTCGAATA




CTGAGGGAGGGTACTCAACCACAAC




ATGCTTCCGGAACACCAAACGGGAC




AAGGCATATTGTGTAGTGATATCAG




AGTACGCTGATGGGGTGTTCGGATC




ATACAGGATCGTTCCTCAGCTTATA




GAGATTAGAACAACCACCGGTAAAT




CTGAGTGATGCATCAATCCTAAATT




GGAATGACCAATCAAAAGCTACGTA




GTGTCTAACAGCATTGCGAAGCCTG




GTTTAAGAAAAAACTTGGGGGCGAA




TGCCCATCAACCATGGATCAAACTC




AAGCTGACACTATAATACAACCTGA




AGTCCATCTGAATTCACCACTTGTT




CGCGCAAAATTGGTTCTTCTATGGA




AATTGACTGGGTTACCTTTGCCGTC




TGATTTGAGATCATTTGTACTAACT




ACACATGCAGCTGATGACCAAATCG




CAAAAAATGAGACTAGGATCAAGGC




CAAAATTAATTCCCTAATCGATAAC




TTAATCAAACACTGCAAGGCAAGGC




AAGTGGCACTTTCAGGGTTGACACC




TGTCGTACATCCAACAACTCTACAG




TGGTTGCTATCCATCACATGTGAAC




GAGCAGACCACCTTGCAAAAGTACG




CGAGAAATCAGTTAAGCAAGCAATG




TCAGAGAAGCAACACGGGTTTAGAC




ATCTCTTTTCGGCAGTAAGTCATCA




GTTAGTTGGAAACGCCACACTGTTC




TGTGCACAAGACTCTAGCACCGTGA




ATGTCGACTCTCCTTGCTCATCAGG




TTGTGAGAGGCTGATAATAGACTCT




ATTGGAGCCTTACAAACACGATGGA




CAAGATGTAGGTGGGCTTGGCTTCA




CATTAAACAGGTAATGAGATACCAG




GTGCTTCAGAGTCGCCTACACGCTC




ATGCCAATTCTGTTAGCACATGGTC




TGAGGCGTGGGGGTTCATTGGGATC




ACACCAGATATAGTCCTTATTGTAG




ACTATAAGAGCAAAATGTTTACTAT




CCTGACCTTCGAAATGATGCTGATG




TATTCAGATGTCATAGAGGGTCGTG




ATAATGTGGTAGCTGTAGGAAGTAT




GTCACCAAACCTACAGCCTGTGGTG




GAGAGGATTGAGGTGCTGTTTGATG




TAGTGGACACCTTGGCGAGGAGGAT




TCATGATCCTATTTATGATCTGGTT




GCTGCCTTAGAAAGCATGGCATACG




CTGCCGTCCAATTGCACGATGCTAG




TGAGACACACGCAGGGGAATTCTTT




TCGTTCAATTTGACAGAAATAGAGT




CCACTCTTGCCCCCTTGCTGGATCC




TGGCCAAGTCCTATCGGTGATGAGG




ACTATCAGTTATTGTTACAGTGGGC




TATCGCCTGACCAAGCTGCAGAGTT




GCTCTGTGTGATGCGCTTATTTGGA




CACCCTCTGCTCTCCGCACAACAAG




CAGCCAAAAAAGTCCGGGAGTCTAT




GTGTGCCCCTAAACTGTTAGAGCAT




GATGCAATACTGCAAACTCTATCTT




TCTTCAAGGGAATCATAATCAATGG




CTACAGGAAAAGTCATTCTGGAGTA




TGGCCTGCAATTGACCCAGATTCTA




TAGTGGACGATGACCTTAGACAGCT




GTATTACGAGTCGGCAGAAATTTCA




CATGCTTTCATGCTTAAGAAATATC




GGTACCTTAGTATGATTGAGTTCCG




CAAGAGCATAGAGTTTGACTTAAAT




GATGACCTGAGCACATTCCTTAAAG




ACAAAGCAATCTGCAGGCCAAAAGA




TCAATGGGCACGCATCTTCCGGAAA




TCATTGTTCCCTTGCAAAACGAACC




TTGGCACTAGTATAGATGTTAAAAG




TAATCGACTGTTGATAGATTTTTTG




GAGTCACATGACTTCAATCCTGAGG




AAGAAATGAAGTATGTGACTACGCT




AGCATACCTGGCAGATAATCAATTC




TCAGCATCATATTCACTGAAGGAGA




AAGAGATCAAGACTACTGGCCGGAT




CTTCGCCAAAATGACCAGGAAAATG




AGGAGCTGTCAAGTAATATTGGAAT




CACTATTGTCCAGTCACGTCTGCAA




ATTCTTTAAGGAGAACGGTGTGTCA




ATGGAACAACTGTCTTTGACAAAGA




GCTTGCTTGCAATGTCACAGTTAGC




ACCCAGGATATCTTCAGTTCGCCAG




GCGACAGCACGTAGACAGGACCCAG




GACTCAGCCACTCTAATGGTTGTAA




TCACATTGTAGGAGACTTAGGCCCA




CACCAGCAGGACAGACCGGCCCGGA




AGAGTGTAGTCGCAACCTTCCTTAC




AACAGATCTTCAAAAATATTGCTTG




AATTGGCGATATGGGAGTATCAAGC




TTTTCGCCCAAGCCTTAAACCAGCT




ATTCGGAATCGAGCATGGGTTTGAA




TGGATACACCTGAGACTGATGAATA




GCACCCTGTTTGTCGGGGACCCATT




CTCGCCTCCTGAAAGCAAAGTGCTG




AGTGATCTTGATGATGCGCCCAATT




CAGACATATTTATCGTGTCCGCCAG




AGGGGGGATTGAAGGGTTATGCCAG




AAGCTGTGGACCATGATTTCAATAA




GCATAATCCATTGCGTGGCTGAGAA




GATAGGAGCAAGGGTTGCGGCGATG




GTTCAGGGAGATAATCAGGTAATTG




CAATCACGAGAGAGCTGTATAAGGG




AGAGACTTACACGCAGATTCAGCCG




GAGTTAGATCGATTAGGCAATGCAT




TTTTTGCTGAATTCAAAAGACACAA




CTATGCAATGGGACATAATCTGAAG




CCCAAAGAGACAATCCAAAGTCAAT




CATTCTTTGTGTATTCGAAACGGAT




TTTCTGGGAAGGGAGAATTCTTAGT




CAAGCACTGAAGAATGCTACCAAAC




TATGCTTCATTGCAGATCACCTCGG




GGATAATACTGTCTCATCATGCAGC




AATCTAGCCTCTACGATAACCCGCT




TGGTTGAGAATGGGTATGAAAAGGA




CACAGCATTCATTCTGAATATCATC




TCAGCAATGACTCAGTTGCTGATTG




ATGAGCAATATTCCCTACAAGGAGA




CTACTCAGCTGTGAGAAAACTGATT




GGGTCATCAAATTACCGTAATCTCT




TAGTGGCGTCGCTCATGCCTGGTCA




GGTTGGCGGCTATAATTTCTTGAAT




ATCAGTCGCCTATTCACACGCAATA




TTGGTGATCCAGTAACATGCGCCAT




AGCAGATCTGAAGTGGTTCATTAGG




AGCGGGTTAATCCCAGAGTTCATCC




TGAAGAATATATTACTACGAGATCC




CGGAGACGATATGTGGAGTACTCTA




TGTGCTGACCCTTACGCATTAAATA




TCCCCTACACTCAGCTACCCACAAC




ATACCTGAAGAAGCATACTCAGAGG




GCATTACTATCCGATTCTAATAATC




CGCTTCTTGCAGGGGTGCAATTGGA




CAATCAATACATTGAAGAGGAGGAG




TTTGCACGATTCCTTTTGGATCGGG




AATCCGTGATGCCTCGAGTGGCACA




CACAATCATGGAGTCAAGTATACTA




GGGAAGAGAAAGAACATCCAGGGTT




TAATCGACACTACCCCTACAATCAT




TAAGACTGCACTCATGAGGCAGCCC




ATATCTCGTAGAAAGTGTGATAAAA




TAGTTAATTACTCGATTAACTACCT




GACTGAGTGCCACGATTCATTATTG




TCCTGTAGGACATTCGAGCCAAGGA




AGGAAATAATATGGGAGTCAGCTAT




GATCTCAGTAGAAACTTGCAGTGTC




ACAATTGCGGAGTTCCTGCGCGCCA




CCAGCTGGTCCAACATCCTGAACGG




TAGGACTATTTCGGGTGTAACATCT




CCAGACACTATAGAGCTGCTCAAGG




GGTCATTAATTGGAGAGAATGCCCA




TTGTATTCTTTGTGAGCAGGGAGAC




GAGACATTCACGTGGATGCACTTAG




CCGGGCCCATCTATATACCAGACCC




GGGGGTGACCGCATCCAAGATGAGA




GTGCCGTATCTTGGGTCAAAGACAG




AGGAAAGGCGTACGGCATCCATGGC




CACCATTAAGGGCATGTCTCACCAC




CTAAAGGCCGCTTTGCGAGGAGCCT




CTGTGATGGTGTGGGCCTTTGGTGA




TACTGAAGAAAGTTGGGAACATGCC




TGCCTTGTGGCCAATACAAGGTGCA




AGATTAATCTTCCGCAGCTACGCCT




GCTGACCCCGACACCAAGCAGCTCT




AACATCCAACATCGACTAAATGATG




GTATCAGCGTGCAAAAATTTACACC




TGCTAGCTTATCCCGAGTGGCGTCA




TTTGTTCACATTTGCAACGATTTCC




AAAAGCTAGAGAGAGATGGATCTTC




CGTAGACTCTAACTTGATATATCAG




CAAATCATGCTGACTGGTCTAAGTA




TTATGGAGACACTTCATCCTATGCA




CGTCTCATGGGTATACAACAATCAG




ACAATTCACTTACATACCGGAACAT




CGTGTTGTCCTAGGGAAATAGAGAC




AAGCATTGTTAATCCCGCTAGGGGA




GAATTCCCAACAATAACTCTCACAA




CTAACAATCAGTTTCTGTTTGATTG




TAATCCCATACATGATGAGGCACTT




ACAAAACTGTCAGTAAGTGAGTTCA




AGTTCCAGGAGCTTAATATAGACTC




AATGCAGGGTTACAGTGCTGTGAAC




CTGCTGAGCAGATGTGTGGCTAAGC




TGATAGGGGAATGCATTCTGGAAGA




CGGTATCGGATCGTCAATCAAGAAT




GAAGCAATGATATCATTTGATAACT




CTATCAACTGGATTTCTGAAGCACT




CAATAGTGACCTGCGTTTGGTATTC




CTCCAGCTGGGGCAAGAACTACTTT




GTGACCTGGCGTACCAAATGTACTA




TCTGAGGGTCATCGGCTATCATTCC




ATCGTGGCATATCTGCAGAATACTC




TAGAAAGAATTCCTGTTATCCAACT




CGCAAACATGGCACTCACCATATCC




CACCCAGAAGTATGGAGGAGAGTGA




CAGTGAGCGGATTCAACCAAGGTTA




CCGGAGTCCCTATCTGGCCACTGTC




GACTTTATCGCCGCATGTCGTGATA




TCATTGTGCAAGGTGCCCAGCATTA




TATGGCTGATTTGTTGTCAGGAGTA




GAGTGCCAATATACATTCTTTAATG




TTCAAGACGGCGATCTGACACCGAA




GATGGAACAATTTTTAGCCCGGCGC




ATGTGCTTGTTTGTATTGTTAACTG




GGACGATCCGACCACTCCCAATCAT




ACGATCCCTTAATGCGATTGAGAAA




TGTGCAATTCTCACTCAGTTCTTGT




ATTACCTACCGTCAGTCGACATGGC




AGTAGCAGACAAGGCTCGTGTGTTA




TATCAACTGTCAATAAATCCGAAAA




TAGATGCTTTAGTCTCCAACCTTTA




TTTCACCACAAGGAGGTTGCTTTCA




AATATCAGGGGAGATTCTTCTTCAC




GAGCGCAAATTGCATTCCTCTACGA




GGAGGAAGTAATCGTTGATGTGCCT




GCATCTAATCAATTTGATCAGTACC




ATCGTGACCCCATCCTAAGAGGAGG




TCTATTTTTCTCTCTCTCCTTAAAA




ATGGAAAGGATGTCTCTGAACCGAT




TTGCAGTACAGACCCTGCCAACCCA




GGGGTCTAACTCGCAGGGTTCACGA




CAGACCTTGTGGCGTGCCTCACCGT




TAGCACACTGCCTTAAATCAGTAGG




GCAGGTAAGTACCAGCTGGTACAAG




TATGCTGTAGTGGGGGCGTCTGTAG




AGAAAGTCCAACCAACAAGATCAAC




AAGCCTCTACATCGGGGAGGGCAGT




GGGAGTGTCATGACATTATTAGAGT




ATCTGGACCCTGCTACAATTATCTT




CTACAACTCGCTATTCAGCAATAGC




ATGAACCCTCCACAAAGGAATTTCG




GACTGATGCCCACACAGTTTCAGGA




CTCAGTCGTGTATAAAAACATATCA




GCAGGAGTTGACTGCAAGTACGGGT




TTAAGCAAGTCTTTCAACCATTATG




GCGTGATGTAGATCAAGAAACAAAT




GTGGTAGAGACGGCGTTCCTAAACT




ATGTGATGGAAGTAGTGCCAGTCCA




CTCTTCGAAGCGTGTCGTATGTGAA




GTTGAGTTTGACAGGGGGATGCCTG




ACGAGATAGTAATAACAGGGTACAT




ACACGTGCTGATGGTGACCGCATAC




AGTCTGCATCGAGGAGGGCGTCTAA




TAATCAAGGTCTATCGTCACTCCGA




GGCTGTATTCCAATTCGTACTCTCT




GCGATAGTCATGATGTTTGGGGGGC




TTGATATACACCGGAACTCGTACAT




GTCAACTAACAAAGAGGAGTACATC




ATCATAGCTGCGGCGCCGGAGGCAT




TAAACTATTCCTCTGTACCAGCAAT




ATTGCAGAGGGTGAAGTCTGTTATT




GACCAGCAGCTTACATTAATCTCTC




CTATAGATCTAGAAAGATTGCGCCA




TGAGACTGAGTCTCTCCGTGAGAAG




GAGAATAATCTAGTAATATCTCTGA




CGAGAGGGAAGTATCAACTCCGGCC




GACACAGACTGATATGCTTCTATCA




TACCTAGGTGGGAGATTCATCACCC




TATTCGGACAGTCTGCTAGGGATTT




GATGGCCACTGATGTTGCTGACCTT




GATGCTAGGAAGATTGCATTAGTTG




ATCTACTGATGGTGGAATCCAACAT




TATTTTAAGTGAGAGCACAGACTTG




GACCTTGCACTGTTGCTGAGCCCGT




TTAACTTAGACAAAGGGCGGAAGAT




AGTTACCCTAGCAAAGGCTACTACC




CGCCAATTGCTGCCCGTGTATATCG




CATCAGAGATAATGTGCAATCGGCA




GGCATTCACACACCTGACATCAATT




ATACAGCGTGGTGTCATAAGAATAG




AAAACATGCTTGCTACAACGGAATT




TGTCCGACAGTCAGTTCGCCCCCAG




TTCATAAAGGAGGTGATAACTATAG




CCCAAGTCAACCACCTTTTTTCAGA




TCTATCCAAACTCGTGCTTTCTCGA




TCTGAAGTCAAGCAAGCACTTAAAT




TTGTCGGTTGCTGTATGAAGTTCAG




AAATGCAAGCAATTAAACAGGATTG




TTATTGTCAAATCACCGGTTACTAT




AGTCAAATTAATATGTAAAGTTCCC




TCTTTCAAGAGTGATTAAGAAAAAA




CGCGTCAAAGGTGGCGGTTTCACTG




ATTTGCTCTTGGAAGTTGGGCATCC




TCCAGCCAATATATCGGTGCCGAAA




TCGAAAGTCTGACAGCTGATTTGGA




ATATAAGCACTGCATAATCACTGAG




TTACGTTGCTTTGCTATTCCATGTC




TGGT






Avian
ACTAAACAGAAAGTTAATAAGTGTT
SEQ ID


paramyxovir
TGTAACGTCCGATTAAGTAGCCAGA
NO: 2


us 3 strain
TTAATAGGAGCGGAAGTCCTAAATT



turkey/
CCGCGTCCGACTGCGAATTTCAATA



Wisconsin/68,
ACTATGGCAGGTATCTTCAATACAT



complete
ATGAGTTGTTCGTCAAGGACCAAAC



genome
ATGCATGCACAAGCGGGCAGCAAGT



Genbank:
CTCATATCAGGGGGGCAGCTCAAAA



EU782025.1
GCAACATCCCAGTATTCATTACCAC




CAGGGATGACCCGGCCGTGAGGTGG




AATCTTGTTTGCTTTAATCTAAGGT




TAATTGTCAGTGAGTCCTCAACATC




AGTTATTCGCCAAGGAGCAATGATC




TCACTTTTGTCAGTCACAGCAAGTA




ACATGAGGGCTTTAGCAGCAATCGC




TGGTCAGACAGATGAGTCAATGATT




AATATAATTGAAGTTGTTGATTTCA




ATGGGTTAGAGCCACAATGTGATCC




AAGGAGTGGCCTTGATGCTCAGAAG




CAAGACATGTTTAAAGACATTGCAA




GTGATATGCCGAAGGTTCTCGGAAG




TGGCACACCTTTCCAGAATGTAAGT




GCAGAGACCAACAATCCAGAGGATA




CACACATGTTCTTACGCTCAGCAAT




CAGCGTCCTGACTCAAATCTGGATT




TTGGTAGCAAAAGCCATGACTAATA




TCGAAGGTAGTCATGAGGCCAGTGA




TAGAAGGCTTGCGAAATACACCCAG




CAGAACAGAATTGACCGGCGCTTTA




TGCTGGCCCAAGCCACTCGGACTGC




ATGCCAGCAAATAATAAAGGACTCA




CTAACAATTAGAAGGTTTCTGGTCA




CGGAACTTCGGAAGTCGCGAGGGGC




TCTTCATAGTGGGTCATCATATTAT




GCAATGGTAGGAGATATGCAAGCAT




ACATCTTTAATGCTGGACTTACTCC




TTTCCTCACAACACTCAGGTATGGT




ATTGGTACCAAATACCACGCTCTCG




CAATCAGTTCTCTGACGGGAGACCT




TAATAAGATTAAGGGATTGCTAACA




CTGTACAAGGAAAAGGGGAGTGACG




CAGGGTATATGGCATTATTAGAGGA




TGCAGATTGCATGCAATTTGCACCA




GGGAACTATGCGTTGCTGTACTCGT




ATGCAATGGGAGTTGCCAGTGTCCA




TGATGAAGGCATGAGAAACTACCAG




TATGCAAGGCGGTTTCTGCACAAAG




GCATGTACCAGTTTGGAAGAGACAT




TGCAACACAACACCAGCATGCATTG




GATGAGTCTCTTGCTCAGGAAATGA




GAATCACCGAGGCGGACCGGGCCAA




TCTCAAAGTAATGATGGCAAATATC




GGTGAGGCTTCCCATTACAGTGATA




TTCCCAGTGCGGGCCCCAGTGGCAT




ACCAGCATTTAACGATCCACCAGAA




GAGTTATTTGGAGAGCCCTCATACA




GGAAGTTGCCCGAAGAGCCTCAAGT




TGTAGAACTACAAGACCGGGATGAC




GATGAGCAAGATGAATATGATATGT




AATCCTTCAGGAGAACACCCCCACC




ACCCAACAGCCCCCGAAAATTAAAA




ACACTCCCTCCCCGACAACCCGCAC




ACCCCACGGCCATCACCCCCCCATC




AGCACCCAATCCCAAGCGCAGACAG




GCCACCGCCTCCACCCAGAACCCCA




GGACCCAAATCCCCACTATATCTTT




AAGAAAAAAAGACCTGATGTGTACG




AGGAGAAAAATAATTGATGACAAGC




GGAGAAAATAGGAGCGGAAGTATCC




CTCCTAACAAGATAGACACAATTAT




CATGGATCTTGAATTCAGCAGTGAG




GAGGCAGTTGCAGCTTTGCTCGACG




TGAGTTCATCCACTATCACAGAGTT




CCTAAGCAAACAAAGCATCCCCGAT




CCGGGATTCCTAAATTCACCTTCCC




AGTCAAGCAGTCCCTCCCCTGAACC




AAGCACCTCTACTACCGGTGACTTC




CTCTCACAGCTATCAGGTGATATCC




CTGATACCACCACATCAGGTGTAGA




ACCATCAGCACCTCTAGATACAGGT




GACACCTCGTTGGTACAACATATTG




AGGAGGGACTGCCCTCAGACTTCTA




CATACCCAAAGTCAACAACTATCAT




TCGAACCTTTTTAAAGGGGGCTCCT




CCCTGCTCGCAACGGCGGAATCCCC




TGGTCTGACAGTGACCCACAAAGAT




ACGACTACACCGGAGTCCACACCGG




TTATGGCGAAGAAGAAGAAGAAGCA




GAAGCACTGCAAAGTGCCCGCATCT




TCGGCGTACCAACACATAGACAATC




TGGGCACCGGAGAGAGTACTCCATT




GCATGGGATGCAAGATCAGGAACCT




TCCAAACCGAAACATGGTGTAACCC




CGCATGTTCCCCAGTCACAGCCCTC




CCAAAGCAGTATAGATGTGCTTGCC




GACAATGTCCCAAATTCTGTGACCT




CTGTTTCAATCCCGCTGACTATGGT




GGAATCATTGATCTCGCAAGTGTCA




AAGTTATCGGACCAAGTCTCTCAGA




TCCAGAAATTGGTGAGCACACTTCC




CCAAATTAAGACCGACATAGCATCA




ATCAGGAACATGCAGGCGGCCCTAG




AAGGTCAAATTAGTATGATAAGGAT




ACTCGACCCCGGCAACAACACAGAG




TCATCCCTAAATACCCTCCGCAACT




CTGGAAATCGGGCTCCAGTAGTGAT




TTGCGGACCGGGCGACCCTCACCGC




AGTCTGATCAAAAGCGAGAACCCGA




CTATCTGCCTGGATGAACTAGCTCG




GCCAACTCAAGCCAACAGTCCTCCA




AAATCTCAAGATAACCAAAGGGATC




TATCCGCTCAACGACACGCAATCAC




AGCTCTGCTAGAAACCCGCGTTGCA




CCCGGACCTAAGAGAGATCGCCTGA




TGGAAATGGTAGTAGCAGCGAAATC




AGCAAGTGATCTCATCAAAGTCAAG




AGAATGGCAATTCTTGGTCAATAAA




CCGACTCAGCACCACATTGTCTGTG




ACTCTACACTTGTGCGGCAAACCAA




CATTGACCTCCAAACACTTTTCTGC




AGTACGCAAGGCTTAACACAATCAG




CAGCATGCATATCGAGCGGCCCACC




CTCACAACCCATCTAGCTCTCTTAT




TTTATCTATTGCTTTATAAAAAACC




AAAATGATTATAACTAAACAATCTC




AACAATTTGCAATGATAACAACACC




ATACGATCACTAGGGGCGGAAGCCC




AAAATAACCCAAGGACCAATCTCCG




AGTCCAGGCCAGACACAGGCAACCC




ATCAGCACAGAGCCAAGCAACCAAA




ATGGCAGCACACCCCAACCATGCCA




ACCCATCCTCGTCAATCAGCCTCAT




GCATGATGATCCATCCATCCAGACG




CAACTTCTTGCCTTTCCGCTGATCA




GTGAAAAGACCGAGACGGGCACTAC




CAAACTTCAACCTCAAGTCAGAATG




CAGTCATTTCTCTCAACTGACAGCC




AAAAGTACCACCTGGTATTCATAAA




TACGTATGGTTTCATAGCCGAGGAC




TTCAACTGTAGTCCTACCAATGGAT




TCGTTCCTGCGTTGTTTCAACCGAA




ATCTAAGGTATTGTCTTCAGCAATG




GTTACCCTTGGTGCAGTTCCTGCAG




ATACAGTCCTGCAGGACTTACAAAA




AGACCTTATAGCCATGCGATTTAAG




GTCAGGAAGAGTGCATCTGCTAAAG




AACTCATACTATTCTCTACTGATAA




TATTCCAGCAACACTTACAGGATCA




TCTGTTTGGAAAAACAGGGGTGTTA




TTGCAGACACCGCCACATCCGTGAA




GGCCCCCGGCAGAATCTCCTGTGAT




GCAGTCTGCAGTTATTGCATTACTT




TCATATCATTCTGTTTCTTCCACTC




ATCTGCCTTATTCAAGGTGCCCAAG




CCACTGCTTAATTTTGAGACAGCCG




TTGCCTATTCTCTAGTCCTGCAGGT




TGAATTGGAATTCCCGAACATAAAG




GACACCCTACATGAGAAATATTTAA




AGAACAAGGACTCTAAATGGTACTG




TACCATTGACATACACATAGGGAAC




CTCCTGAAAAGGACTGCAAAACAGA




GAAGGCGTACACCATCTGAAATCAC




TCAAAAGGTGCGCAGAATGGGCTTT




CGGATTGGACTCTACGATCTTTGGG




GCCCTACAATAGTGGTCGAATTAAC




TGGCTCATCGAGCAAATCGCTCCAG




GGATTCTTCTCCAGTGAGAGACTGG




CTTGCCATCCTATTTCACAATACAA




CCCACATGTCGGTCAACTGATTTGG




GCACATGATGTTTCAATAACAGGCT




GTCATATGATAATATCTGAACTTGA




GAAAAAGAAAGCTTTGGCCATGGCT




GACCTCACTGTAAGTGATGCAGTTG




CTATCAATACTACAATAAAGGAGTT




GGTTCCTTTCCGCTTGTTCAGGAAA




TAAATCACTCACTGCCGCCAGCTTA




CCACTAGTAACAAATTACAACCATC




ACCTATAACCTAACAAACCAAATGC




ATGCACCTAACCTTCTGGGTTGAAT




GAGAAGCTTGGATTATATTCATGAT




TAGCTAACACGAATTTATTGCTTAA




ATTGCTTATACCGGTAATAACTCAA




ATATTCCACTAACCAAATTTAATTA




AAAATATTAATAATCATTAGCAACA




TCCGATCGGAATCTTCAGGGGCGGA




AGGACCACCGCCACAACACCCCACC




ACACCAGACCTCCCCGCGCCCCCAC




AAGACCGGCCACACCAAACAAAAAG




CCCCCCCAACCCCCCACACCCTCCC




CGACAGCCCGACAAAAAACCCCCCC




AAAAAACAGATCGCCCACACACAGA




TCAGAATGGCCTCCCCAATGGTCCC




ACTACTCATCATAACGGTAGTACCC




GCACTCATTTCAAGTCAATCAGCTA




ATATTGATAAGCTCATTCAAGCAGG




GATTATCATGGGCTCAGGGAAGGAA




CTCCACATTTATCAAGAATCTGGCT




CTCTTGATTTGTATCTTAGACTATT




GCCAGTTATCCCTTCAAATCTTTCT




CATTGCCAGAGTGAAGTAATAACAC




AATATAACTCGACTGTAACGAGACT




ATTATCACCAATTGCAAAAAATCTA




AACCATTTGCTACAACCGAGACCGT




CTGGCAGGTTATTTGGCGCTGTAAT




TGGATCGATTGCCTTAGGGGTAGCT




ACATCCGCACAGATTTCAGCTGCTA




TAGCATTGGTCCGTGCTCAACAGAA




TGCAAACGATATCCTCGCTCTTAAA




GCTGCAATACAATCTAGTAATGAGG




CAATAAAACAACTTACTTATGGCCA




AGAAAAGCAACTACTAGCAATATCA




AAAATACAAAAAGCCGTAAATGAAC




AAGTAATCCCTGCATTGACTGCACT




TGACTGTGCAGTTCTTGGAAATAAA




CTAGCTGCACAACTGAACCTCTACC




TCATTGAAATGACGACTATTTTTGG




TGACCAAATAAATAACCCAGTCCTA




ACTCCAATACCACTCAGTTATCTCC




TGCGGTTGACAGGCTCTGAGTTAAA




TGATGTATTATTACAACAGACTCGA




TCCTCTTTGAGCCTAATCCACCTTG




TCTCTAAAGGCTTATTAAGTGGTCA




GATTATAGGATATGACCCTTCAGTA




CAAGGCATCATTATCAGAATAGGAC




TGATCAGGACTCAAAGAATAGATCG




GTCACTAGTTTTCCWACCTTACGTA




TTACCAATTACTATTAGTTCTAACA




TAGCCACACCAATTATACCCGACTG




TGTGGTCAAGAAGGGAGTAATAATT




GAGGGAATGCTTAAGAGTAATTGTA




TAGAATTGGAACGAGATATAATTTG




CAAGACTATCAACACATACCAAATA




ACTAAGGAAACTAGAGCATGCTTAC




AAGGTAATATAACAATGTGTAAGTA




CCAGCAGTCCAGGACACAGTTGAGC




ACCCCCTTTATTACATATAATGGAG




TTGTAATTGCAAATTGTGATTTGGT




ATCATGCCGATGCATAAGACCCCCT




ATGATTATCACACAAGTAAAAGGTT




ACCCTCTGACAATTATAAATAGGAA




TTTATGTACCGAGTTGTCGGTGGAT




AATTTAATTTTAAATATTGAAACAA




ACCATAACTTTTCATTAAACCCTAC




TATTATAGATTCACAATCCCGGCTT




ATAGCTACTAGTCCATTAGAAATAG




ATGCCCTTATTCAAGATGCGCAACA




TCACGCGGCTGCGGCCCTTCTTAAA




GTAGAAGAAAGCAATGCTCACTTAT




TAAGAGTTACAGGGCTGGGCTCATC




AAGTTGGCACATCATACTTATATTA




ACATTGCTTGTATGCACCATAGCAT




GGCTCATTGGTTTATCTATTTATGT




CTGCCGCATTAAAAATGATGACTCG




ACCGACAAAGAACCTACAACCCAAT




CATCGAACCGCGGCATTGGGGTTGG




ATCTATACAATATATGACATAATGA




GCCGCCTGTATATCAAGCCCAAGTA




TCGACCCCTCCCACCATCCTCGACC




GCCGCCACTAGCAGCACAGGAAGTA




ATCAGTTACAGTGGCATCAGCAGTC




CCATGTTGAGACACACCAGTACACC




CTAGTTTCTAGTAAAACCCCCAGTT




CTATTTTCTGCATTCCATTAATTTA




TAAAAAAATGCCATGATACTCGTGC




GAGTGTAACATAGTAACTAGGGGCG




GAAGCCTACCGCCAAATCAGCACAC




ACCCCCCCAACATGGAGCCGACAGG




ATCAAAAGTTGACATTGTCCCTTCC




CAAGGTACCAAGAGAACATGTCGAA




CCTTTTATCGCCTCTTAATTCTTAT




TTTGAATCTTATTATAATTATATTA




ACAATTATCAGTATTTATGTCTCTA




TCTCAACAGATCAACACAAATTGTG




CAATAATGAGGCTGACTCACTTTTA




CACTCAATAGTAGAACCCATAACAG




TCCCCCTAGGAACAGACTCGGATGT




TGAGGATGAATTACGTGAGATTCGA




CGTGATACAGGCATAAATATTCCTA




TCCAAATTGACAACACAGAGAACAT




CATATTAACTACATTAGCAAGTATC




AACTCTAACATTGCACGCCTTCATA




ACGCCACCGATGAAAGCCCAACATG




CCTGTCACCAGTTAATGATCCCAGG




TTTATAGCAGGGATTAATAAGATAA




CCAAAGGGTCGATGATATATAGGAA




TTTCAGCAATTTGATAGAACATGTT




AACTTTATACCATCTCCAACGACAT




TATCAGGCTGTACAAGAATTCCATC




TTTTTCACTATCTAAAACACATTGG




TGTTACTCGCATAATGTAATATCTA




CTGGTTGTCAAGACCATGCTGCGAG




TTCACAGTATATTTCCATAGGAATA




GTAGATACAGGATTGAATAATGAGC




CCTATTTGCGTACAATGTCTTCACG




CTTGCTAAATGATGGCCTAAATAGA




AAGAGCTGCTCTGTCACAGCCGGCG




CTGGTGTCTGTTGGCTATTGTGTAG




TGTTGTAACAGAAAGTGAATCAGCT




GACTACAGATCAAGAGCCCCCACTG




CAATGATTCTCGGAAGGTTCAATTT




TTATGGTGATTACACTGAATCCCCT




GTTCCTGCATCTTTGTTCAGCGGTC




GTTTCACTGCTAATTACCCTGGAGT




TGGCTCAGGAACCCAATTAAATGGG




ACCCTTTATTTTCCAATATATGGGG




GTGTTGTTAACGACTCTGATATTGA




GTTATCGAACCGAGGGAAGTCATTC




AGACCTAGGAACCCTACAAACCCAT




GTCCAGATCCTGAGGTGACCCAAAG




TCAGAGGGCTCAGGCAAGTTACTAT




CCGACAAGGTTTGGCAGGCTGCTCA




TACAACAAGCAATACTAGCTTGTCG




TATTAGTGACACTACATGCACTGAT




TATTATCTTCTATACTTTGATAATA




ATCAAGTCATGATGGGTGCAGAAGC




CCGAATTTATTATTTAAACAATCAG




ATGTACTTATATCAAAGATCTTCGA




GTTGGTGGCCGCATCCGCTTTTTTA




CAGATTCTCACTGCCTCATTGTGAA




CCTATGTCTGTCTGTATGATCACCG




ATACACACTTAATATTGACATATGC




TACCTCACGCCCTGGCACTTCAATT




TGTACAGGGGCCTCGCGATGTCCTA




ATAACTGTGTTGATGGTGTCTATAC




AGACGTTTGGCCCTTGACTGAGGGT




ACAACACAAGATCCAGATTCCTACT




ACACAGTATTCCTCAACAGTCCCAA




CCGCAGGATCAGTCCTACAATTAGC




ATTTACAGCTACAACCAGAAGATTA




GCTCTCGTCTGGCTGTAGGAAGTGA




AATAGGAGCTGCTTACACGACCAGT




ACATGTTTTAGCAGGACAGACACTG




GGGCACTATACTGCATCACTATAAT




AGAAGCTGTAAACACAATCTTTGGA




CAATACCGAATAGTACCGATCCTTG




TTCAACTAATTAGTGACTAGGAAAT




GATGTTTAATTACTCGATGTTGAGT




AAATGATCCTAGAACTTCTCCTTAG




AATGATATACATCGCTTGTACTATA




ATCAAGTAACGGGCAGCGGGTGATC




CATATTAAATAATATATGCATTAAG




CAGATACAAATCTTCACTTTGTCAA




TCAGAATTGATTATTGCACCTTTGC




CACGTAGATAACTAAGCATTTAAGA




AAAAACTTCACTATCACTCTTTGAG




TCGCTGAAGTGAGATTTCAGAAAGG




TATGCATCTAAGAAGTAGGAGCGGA




AGTGCTCTTGTTCATAATGTCTTCC




CACAATATTATCTTACCTGACCATC




ACTTAAATTCTCCTATAGTACTAAA




TAAATTAATGTATTACTGCAAATTG




CTCAATGTATTGCCTGGGCCTGATT




CTCCTTGGTTTGAGAAAACAAGAGG




ATGGACTAATTGCTGTATCCGTCTT




TCTGACTGCAACCGCTTAACTCTAG




CACGCGCCTCAAGAATTAGAGATCA




ATTAGCAACAATGGGAATATATTCA




AAGAATCAATCAACATGTTTTAAAA




CAATTATTCATCCACAATCCTTGCA




ACCAATTATGCATAGTGCATCAGAA




TTAGGACGGACTCTACCTACATGGT




CGCGAATGAGAAGCGAGGTGTCATA




CAGTGTAACAACACAATCAGCAAAA




TTTGGAGACCTATTCCAAGGCATAT




CTACTGATCTAACAGGGAAGACAAA




TTTGTTTGGCGGATTCTGCGATTTA




AATCACTCCCTTAGCCCACCTGCAC




ATGCATTAATGACTAAGCCTGGGAT




GTATCTAGAGACTAGTGATGCTTAC




GCTTGCCAATTTTTGTTCCACATTA




AAACTTGTCAACGAGAGTTGATCTT




ACTCATGAGGCAAAATGCAACAGCC




GAACTGATTAAGCAATTCCAGTATC




CAGGATTGACAATTATAACCACACC




TGAATATTCAGTTTGGGTCTTCCAT




GAAAGCAAACAAGTCACTATCCTTA




CTTTTGATTGCCTTTTAATGTACTG




TGATCTCGCTGATGGGCGTCACAAT




ATCCTCTTTACATGCCAATTACTTC




CGCACTTAAATCATCTAGGTATAAG




GATCCGAGACCTCTTAGGGCTAATA




GATAATCTCGGGAAGAATCATCCCT




TGATTGTGTATGATGTTGTTGCTAG




TTTAGAATCATTGGCATATGGGGCC




ATACAACTCCATGACAAAGTTGTTG




ATTATGCAGGTACCTTCTTCACTTT




CATTCTGGCTGAGATATATGAATCT




TTAGAGTCCTCTCTACCAAGTGGAA




ATAGTGAAGCGATTGTTACTCAAAT




TAGGAACATATATACAGGGTTAACA




GTAAATGAAGCAGCTGAGCTCTTAT




GTGTAATGAGACTCTGGGGGCATCC




TGCATTAAGCAGTATAGATGCAGCA




AATAAGGTGCGGCAAAGTATGTGCG




CAGGGAAACTGTTAAAATTTGATAC




GATCCAACTGGTATTAGCCTTCTTC




AATACGTTAATTATCAATGGCTATC




GCAGGAAACATCATGGTAGGTGGCC




AAATGTGGATAGTAATTCAATCTTA




GGAACAGATCTTAAGAGGATGTATT




ATGATCAATGTGAAATCCCCCATGA




GTTTACACTTAAACATTATCATACT




GTGAGTCTAATTGAGTTTGATTGTA




CGTTTCCAATCGAGCTATCCGACAA




ATTAAACATATTTCTTAAAGATAAG




GCAATTGCATTCCCTAAGTCAAAGT




GGACATCTCCTTTTAAAGCCGATAT




CACACCTAAACAATTACTCATCCCT




CCCGAATTTAAAGTTCGTGCAAATC




GCCTTCTCTTGACTTTCCTGCAGTT




AGATGAGTTTTCTATCGAATCAGAA




TTAGAATATGTTACAACCAAAGCAT




ATCTCGAAGATGATGAGTTCAATGT




ATCATACTCTCTCAAGGAGAAAGAA




GTGAAGACAGATGGTCGCATATTTG




CTAAATTAACTCGTAAGATGAGGAG




TTGTCAAGTAATCTTTGAAGAGCTC




CTTGCCGAACATGTGTCCCCCCTTT




TCAAAGACAACGGTGTAACTATGGC




TGAATTATCATTGACCAAAAGCCTA




CTTGCAATAAGCAATTTAAGTTCCA




CATTGTTTGAGACACAAACCCGTCA




GGGCGACAGAAATTCAAGATTTACT




CATGCTCATTTTATTACAACTGACT




TACAAAAGTACTGTCTTAATTGGAG




ATATCAAAGCGTGAAGCTCTTTGCA




CGCCAATTGAATCGTCTATTCGGGT




TACAGCATGGTTTTGAATGGATCCA




TTGTATCCTCATGCAGTCCACCATG




TATGTAGCTGATCCCTTCAATCCTC




CAAACGGGAACGCAAGCCCAAATTT




AGATGATAACCCAAATAATGACATC




TTTATTGTATCACCTCGAGGAGCAA




TTGAGGGCCTGTGTCAGAAGATGTG




GACAATTATATCAATCTCAGCAATT




CATGCAGCTGCAGCTGTAGCAGGCC




TAAGAGTCGCATCAATGGTTCAAGG




TGACAACCAGGTTATCGGTGTCACT




CGAGAATTCCTTGCAGGACATGATC




AAAGTCATGTGGATAGTCAACTTAC




TGCATCATTAGAAAACTTTACACAA




ATATTCAAGGAGATAAATTATGGGC




TTGGCCATAACCTCAAATTACGGGA




AACAATTAAGTCTAGTCACATGTTC




ATTTATTCTAAAAGAATTTTTTACG




ATGGGAGGATTCTCCCTCAATTGTT




AAAGAATATAAGTAAACTAACTTTG




TCGGCAACTACAACAGGGGAGAATT




GCTTAACTAGCTGTGGGGACTTATC




TTCATGTATTACCCGCTGTATTGAG




AATGGTTTCCCAAAGGATGCTGCAT




TCATTCTAAATCAGCTTACAATTAG




GACTCAGATACTTGCAGACCATTTT




TACTCAATACTTGGTGGGTGCTTCA




CTGGGCTAAATCAACATGATATTCG




CTTACTGCTCTCTGATGGTTCTATA




TTGCCAGCTCAGCTGGGGGGATTTA




ACAACTTGAATATATCCCGATTATT




CTGTAGAAATATAGGTGACCCTCTA




GTAGCCTCAATTGCAGATACAAAAC




GCTATGTGAAATGCGGCCTTTTGAC




TCCATCTATACTTGACTCAGTCGTC




TCCATCACTGATAGGAAAGGCTCAT




TTACTACCCTGATGATGGATCCCTA




TTCAATCAATCTCGATTATATTCAA




CAGCCAGAAACCCGCTTAAAACGTC




ATGTGCAGAAAGTTCTCCTTCAAGA




ATCAGTAAATCCTCTACTGCAGGGC




GTATTTCTCGAGACTCAGCAGGATG




AAGAGGAAGCACTAGCTGCGTTTTT




ATTAGACAGAGATATTGTGATGCCC




CGTGTAGCTCACGCAATTTTTGAAT




GTACGAGTCTCGGACGCCGTAGACA




CATACAGGGGCTGATTGATACAACA




AAGACTATAATAGCCCTGGCATTGG




ACACACAGAATCTGAGTCACACTAA




GCGTGAGCAAATAGTTACGTATAAT




GCAACCTATATGAGGTCCTTAACAC




AAATGCTTAAATTAAGCAGAACTGT




TCATAAGGGGATGACCAGGATGCTG




CCTATTTTCAATATCAATGATTGTT




CTGTAATACTAGCACAACAAGTTAG




GCGTGCAAGCTGGGCTCCGCTGCTA




AATTGGCGCACCTTGGAAGGGCTTG




AGGTCCCTGATCCAATTGAATCCGT




GTCTGGATACCTTGGTCTTGACTCC




AACAATTGCTTCCTCTGTTGCCATG




AACAAAATAGCTACTCTTGGTTTTT




CCTCCCCAAATTGTGCCATTTTGAC




GATTCGAGACAATCATACTCAACCC




AACGTGTACCTTATATAGGTTCAAA




AACAGATGAGAGACAAATGTCTACA




ATTAACCTCCTAGAGAAAACAACCT




GTCATGCCCGTGCCGCAACAAGGTT




AGCGTCATTATATATATGGGCATAT




GGTGATTCGGAAGACAGCTGGGATG




CAGTAGAATCACTATCAAATAGCCG




ATGCCAAATTACACGAGAGCAATTG




CAGGCCCTTTGCCCCATGCCGTCAT




CAGTAAATTTACATCATAGACTCAA




TGACGGTATTACCCAAGTTAAGTTC




ATGCCATCAACAAACAGCAGAGTAT




CCAGATTTGTACATATTTCTAATGA




CAGGCAGAATTACGTCCTGGACGAC




ACTGTCACTGATAGTAACTTGATAT




ATCAGCAGGTCATGCTTTTGGGTTT




GAGCATATTGGAGACATACTTTCGA




GAACCAACAACTGTGAACTTGTCGA




GTATCGTCCTCCATTTGCATACTGA




CGTGTCCTGTTGTCTCCGTGAATGC




CCTATGACACAGTATGCACCACCAC




TCAGAGACCTCCCTGAACTAACCAT




AACAATGACAAATCCATTCCTTTAT




GACCAAGCACCTATCAGTGAAGCAG




ATCTATGTCGGCTTTCGAAGGTAGC




CTTCCGTAAAGCAGGAGACAATTAT




GAACTATATGATCAATTCCAACTGC




GATCCACACTCTCTTCAACCACAGG




GAAGGATGTTGCGGCAACTATTTTT




GGACCACTTGCGGCAGTATCTGCAA




AAAATGATGCAATTGTTACTAATGA




CTACAGTGGTAACTGGATCTCAGAG




TTCAGGTACAGTGATTACTACCTAC




TGAGTACGAGTTTGGGTTACGAGAT




TTTACTAATATTTGCTTACCAACTC




TACTATCTAAGGATTAGGTATAAGC




AAAACATCATTTGTTACATGGAGTC




TGTATTCCGCCGTTGCCACTCATTA




TGCTTAGGTGACCTGATTCAAACAA




TCTCCCACTCAGAAATACTGACTGG




ATTAAATGCTGCAGGCTTCAACTTG




ATGTTGGATAGGAGTGATTTGAAGA




ATAACCAATTGTCTCGCCTAGCCGT




CAAGTATCTCACGCTCTGTGTCCAG




GCTGCCATTAACAACTTGGAGGTTG




GCTCAGAACCTCTCTGTATTATTGG




AGGTCAACTCGATGATGACATCTCG




TTTCAGGTAGCGCATTTTCTATGTA




GAAGGCTTTGCATTCTAAGTCTTGT




ACACTCAAATTTACAGAATCTCCCC




ACGATCCGTGATAATGAGGTTGATG




TGAAATCTAAATTAATTTATGACCA




TCTCAAACTGGTTGCTACAACTTTG




AATGATCGAGACCAATCGTATCTGT




TAAAGCTGTTAAATAACCCAAATTT




GGAATTACACACACCGCAAGTCTAC




TTCATAATGAGGAAGTGTCTAGGTT




TGCTCAAGGCGTATGGCGCAGTACC




ATACAAACAACCTTTTCCAACATCA




CCTATTGTACCATTCCCTAATCTGA




GTGGGTCTAAGTGGCACCTTGAACG




TGTTATAGACAGTATTGAGGCACCA




AAATCTTACACTTGGGTTCCTAACA




CAACACTCCCACTGGCCAAGGATCA




TGTATCCCCCAATCCAAGCAGAATT




CTTGACAAAATCAACTTGTTTAGAT




CACTGAGCCCCAGACACTCAGTTTG




GTACCGTAATCGTCAATACAAACTT




ATCCTTTCCCAGCTGAGTCATGATA




TTCTTGGGGGCTCTACACTTTACCT




AGGTGAAGGAGGGGGCTCAACTATC




CTCACAATTGAACCCCACATTAGAA




GTGACAAAATATACTACCATACATA




CTTCCCTGCCGATCAGAGTCCGGCT




CAACGCAACTTTATACCCCAGCCTA




CGACATTCTTGAGATCTAACTTTTA




TCACTTTGAACTGGAACCATCAGGA




TGTGAGTTTGTAAATTGCTGGTCTG




AGGATGCAAACGCCACAAATCTTAC




AGAACTTAGGTGTATTAACCACATC




ATGACAGTGATACCAGTTGGCTCGT




TAAACAGAATCATATGTGACATAGA




GCTAGCTAGAGACACATCAATCAAG




TCGATAGCCMCMGTTTATCTTAATC




TAGGAATTCTAGCTCATGCATTGCT




TAGTCCAGGGGGAATCTGCATATGC




AGGTGCCATTTACTGAACGCTTCAA




ATCTTGCGATTGTATCTTTTGTACT




AAAAACATTGTCAAGCAAGCTGGCA




ATTTCATTCTCTGGATTTAGCGGTG




TGAATGATCCTTCTTGTGTGGTTGG




AACTACCAAGGAAAGCACTATTAGC




TTAGATGTTCTCAGTTCAATTGCTT




CTGCATTCATAAACGAATTGACATC




GAATGAAGTACCGATTCCCCAAGAG




GTATTGACATTACTATCTTGTTACA




CAGAGCAGCTAGGGAACTTAGGGCA




ATTGATTGAGAAAACCTGGATCCGC




GAGATACGGAAACCGCATTTAATGC




AGTGTGAAATGGAGTGGATCGGGCT




TTTGGGAAATGATGCATTGAGTGAC




GTAGACAATTTCCTGAACTATTACA




ACCCATCATGCTCATCAGTTCCAGA




ACTAATTACACCTACAGTTAGTTCA




TTGCTTTTTGAACTGGTTAGCCTAA




CTCCAGAAGTCTGCTCTTACGATGA




ATCTAATTATAAACGAACAATTCAG




GTAGGGCAGGCATATAACATTACAG




TTTCTGGCAAAGTAAGCACTATGAT




AAGGACCTGTTGCGAACAATGCATT




AAGCTTCTAATAGCTAATAGTGAAG




TACTAATTGATACTGATTTGGCGTA




TCTTGTTAGAGGCATTCGCGATGGG




TCATTCACTCTAGGCTCGATCATAA




GCCAAAACCAAATACTAAAAGCATC




CAGAGCACCACGTTACCTCAAAACA




CCCAAAATTCAATTATGGGTATCAA




CACTGTTAGCCATTAGGATTGAGGA




AGTCTTCTCACGCCATTATAGAAAG




GTCCTCTTACGATCAATCCGCCTTT




TGTCACTCTACAAGTATCTCCAGGA




CAAGACGAAGTAGATAACCATTTAT




CATAGAGTCAGACGGGTTCTAGTTC




AATCCCTGCGTTATTCTTCGCTCAC




AGAATCTTGGATTCCATCCGGGGCT




GTGCTGACATAATATGTAAATATGT




AATATATTGGTTACTGGACATAATC




AATGAGGCTTCTGTAGTATTTATCC




CAACTCCTTAATATTAGTTTCAAAA




TGAGAACATTATATGTTAATAAAAA




ACTAAAAATGATAACCAGTTGAATC




TGGACCGAACTGGCAATTGCATAAA




AAATAAAAAATTTATTAAAATTAAA




ATTGAAATCATATAACAACACGTTT




AAGGGGAATAAAAACAAGATTGGGA




ATAAAAATAATAATAATAAAAGGAA




TAAAACAAAAAATAAAAATAAAAAT




GGGAATAAAAATAAAAATAAAAATA




AAGAAAAAAATGGGAGAAAAGCTCC




AATTAACAAACAAATCAAAACTAAA




CTTAAGATTACAACTAAAAATACAA




ATATTAACAAAAATAGACTGAGAAG




TAGAATCGTAAATAAGACCGGCAGT




CAGTTTAGTATGGAAAATAAGACCC




AGATTACTTACACATCCTGCCTTAG




TTTCCCCCTTATTTAATTTTAAGTG




GATTTAGGGAGTCACTGATCCAGCT




AAGAACCTATTTTCTTATAGCTAAA




ATCTCAATCTTGATGTCTCCAATCA




ATTAAAACCGGTTGTTTAATTAAGT




TGTTCCTAATCAATTCACCTCAGTA




GATCCAGTGTGAATCGCACTGGTCC




AATCCAACATGGGTCTAATTAAATA




AAACGACTGTAATAGGTCGAATGCG




GCCTCGATCAACAGAGTAACAAACA




TTACAAATTACAAATCAGAGTTGTT




AATTAAACCATTTATATAACTTTTT




GTTTAGT






Avian
GCGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


paramyxovir
AGCCTTTTAAAAGGAACCCTGGGCT
No: 3


us 4 strain
GTCGTAGGTGTGGGAAGGTTGTATT



APMV4/
CCGAGTGCGCCTCCGAGGCATCTAC



mallard/
TCTACACCTATCACAATGGCTGGTG



Belgium/
TCTTCTCCCAGTATGAGAGGTTTGT



15129/07
GGACAATCAATCCCAAGTATCAAGG



complete
AAGGATCATCGGTCCCTGGCAGGGG



genome
GATGCCTTAAAGTCAACATCCCTAT



Genbank:
GCTTGTCACTGCATCTGAAGATCCC



JN571485.1
ACCACTCGTTGGCAACTAGCATGTT




TATCTCTAAGGCTCTTGATCTCCAA




CTCATCAACCAGTGCTATCCGACAG




GGGGCAATACTGACTCTCATGTCAC




TACCGTCACAAAATATGAGAGCAAC




GGCAGCTATTGCTGGTTCCACAAAT




GCAGCTGTTATCAACACTATGGAAG




TCTTGAGTGTCAATGACTGGACCCC




ATCCTTCGACCCTAGGAGCGGTCTC




TCTGAAGAGGATGCTCAGGTTTTCA




GAGACATGGCAAGGGACCTGCCCCC




TCAGTTCACCTCCGGATCACCCTTT




ACATCAGCATTGGCGGAGGGGTTTA




CCCCAGAAGACACCCACGACCTAAT




GGAGGCCTTGACCAGTGTGCTGATA




CAGATCTGGATCCTGGTGGCTAAGG




CCATGACCAACATTGATGGCTCTGG




GGAGGCCAATGAGAGACGTCTTGCA




AAGTACATCCAAAAGGGACAGCTTA




ATCGCCAGTTTGCAATTGGTAATCC




TGCTCGTCTGATAATCCAACAGACG




ATCAAAAGCTCCTTAACTGTCCGCA




GGTTCTTGGTCTCTGAGCTTCGTGC




ATCACGAGGTGCAGTGAAAGAAGGA




TCCCCTTACTATGCAGCTGTTGGGG




ATATCCACGCTTACATCTTTAACGC




AGGACTGACACCATTCTTGACTACC




TTAAGATATGGGATAGGCACCAAGT




ATGCTGCTGTTGCACTCAGTGTGTT




CGCTGCAGACATTGCAAAATTAAAG




AGCCTACTTACCCTGTACCAAGACA




AGGGTGTGGAGGCCGGATACATGGC




ACTCCTTGAAGATCCAGATTCCATG




CACTTTGCACCCGGAAATTTCCCAC




ACATGTACTCCTATGCGATGGGGGT




GGCTTCTTACCATGACCCCAGCATG




CGCCAATACCAATATGCCAGGAGGT




TCCTCAGCCGTCCCTTCTACTTGCT




AGGGAGGGACATGGCCGCCAAGAAC




ACAGGCACGCTGGATGAGCAACTGG




CAAAGGAACTGCAAGTGTCAGAAAG




AGACCGCGCCGCATTGTCCGCTGCG




ATTCAATCAGCAATGGAGGGGGGAG




AATCTGACGACTTCCCACTGTCGGG




ATCCATGCCGGCTCTCTCCGACACT




GCGCAACCAGTTACCCCAAGAACCC




AACAGTCCCAGCTTTCCCCTCCACA




ATCATCAAGCATGTCTCAATCAGCG




CCCAGGACCCCGGACTACCAGCCTG




ATTTTGAACTGTAGGCTGCATCCAC




GCACCAACAACAGGCAAAAGAAATC




ACCCTCCTCCCCACACATCCCACCC




ACTCACCCGCCGAGATCCAATCCAA




CACCCCAGCATCCCCATCATTTAAT




TAAAAACTGACCAATAGGGTGGGGA




AGGAGAGTTATTGGCTGTTGCCAAG




TTTGTGCAGCAATGGATTTCACCGA




CATTGATGCTGTCAACTCATTAATT




GAATCATCATCAGCAATCATAGATT




CCATACAGCATGGAGGGCTGCAACC




ATCGGGCACTGTCGGCCTATCGCAA




ATCCCAAAGGGGATAACCAGCGCTT




TAACTAAGGCCTGGGAGGCTGAGGC




AGCAACTGCTGGCAATGGGGACACC




CAACACAAACCTGACAGTCCGGAGG




ATCATCAGGCCAACGACACAGACTC




CCCCGAAGACACAGGCACCAACCAG




ACCATCCAGGAAGCCAATATCGTTG




AAACACCCCACCCCGAAGTGCTATC




GGCAGCCAAAGCCAGACTCAAGAGG




CCCAAGGCAGGGAGGGACACCCACG




ACAATCCCTCTGCGCAACCTGATCA




TTTTTTAAAGGGGGGCCCCCTGAGC




CCACAACCAGCGGCACCATGGGTGC




AAAGTCCACCCATTCATGGAGGTCC




CGGCACCGTCGATCCCCGCCCATCA




CAAACTCAGGATCATTCCCTCACCG




GAGAGAAATGGCAATCGTCACCGAC




AAAGCAACCGGAGACATTGAACTGG




TGGAATGGTGCAACCCGGGGTGCAC




CGCAATCCGAACTGAACCAACCAGA




CTCGACTGTGTATGCGGACACTGCC




CCACCATCTGCAGCCTCTGCATGTA




TGACGACTGATCAGGTACAACTATT




AATGAAGGAGGTTGCCGATATGAAA




TCACTCCTTCAGGCATTAGTAAAGA




ACCTAGCTGTCCTGCCTCAACTAAG




GAACGAGGTTGCAGCAATCAGGACA




TCACAGGCCATGATAGAGGGGACAC




TCAATTCAATCAAGATTCTCGATCC




TGGGAATTATCAAGAATCATCACTA




AACAGCTGGTTCAAACCACGCCAAG




ATCACGCGGTTGTTGTGTCCGGACC




AGGGAATCCATTGACCATGCCAACC




CCAATCCAAGACAACACCATATTCC




TGGATGAACTGGCAAGACCTCATCC




TAGTTTGGTCAATCCGTCCCCGCCC




ACTACCAACACTAATGTTGATCTTG




GCCCACAGAAGCAGGCTGCGATAGC




TTATATCTCAGCAAAATGCAAGGAT




CCAGGGAAACGAGATCAGCTCTCAA




AGCTCATCGAGCGAGCAACCACCTT




GAGCGAGATCAACAAAGTCAAAAGA




CAGGCCCTCGGCCTCTAGATCACTC




GACCACCCCCAGTAATGAATACAAC




AATAATCAGAACCCCCCTAAAACAC




ATGGTCAACCCAACACACCACCCGC




ACCACCCGCTACTATCCTTTGCCAG




AAACTCCGCCGCAGCCGATTTATTC




AAAAGAAGCCATTTGATATGACTTA




GCAACCGCAAGATAGGGTGGGGAAG




GTGCTTTGCCTGCAAGAGGGCTCCC




TCATCTTCAGACACGTACCCGCCAA




CCCACCAGTGACGCAATGGCAGACA




TGGACACCGTATATATCAATCTGAT




GGCAGATGATCCAACCCACCAAAAA




GAACTGCTGTCCTTTCCCCTCGTTC




CCGTGACTGGTCCTGACGGGAAAAA




GGAACTCCAACACCAGGTCCGGACT




CAATCCTTGCTCGCCTCAGACAAGC




AAACTGAGAGGTTCATCTTCCTCAA




CACTTACGGGTTTATCTATGACACT




ACACCGGACAAGACAACTTTTTCCA




CCCCAGAGCACATCAATCAGCCCAA




GAGAACGATGGTGAGTGCTGCGATG




ATGACCATTGGCCTGGTCCCCGCCA




ATATACCCTTGAACGAATTAACAGC




TACTGTGTTCGGCCTGAAAGTAAGA




GTGAGGAAGAGTGCGAGATATCGAG




AGGTGGTCTGGTATCAGTGCAATCC




TGTACCAGCCCTGCTTGCAGCCACC




AGGTTCGGTCGCCAAGGAGGTCTCG




AATCAAGCACTGGAGTCAGCGTAAA




GGCCCCCGAGAAGATAGATTGCGAG




AAGGATTATACTTACTACCCTTATT




TCCTATCTGTGTGCTACATCGCCAC




TTCCAACCTGTTCAAGGTACCAAAA




ATGGTTGCTAATGCGACCAACAGTC




AATTATACCACCTGACTATGCAGGT




CACATTTGCCTTTCCAAAAAACATC




CCCCCAGCTAACCAGAAACTTCTGA




CACAAGTGGATGAAGGATTCGAGGG




CACTGTGGACTGCCATTTTGGGAAC




ATGCTGAAAAAGGATCGGAAAGGGA




ATATGAGGACATTGTCGCAGGCGGC




AGACAAGGTCAGACGGATGAATATC




CTTGTTGGTATCTTTGACTTGCATG




GGCCGACACTCTTCCTGGAGTATAC




TGGGAAACTAACAAAAGCTCTGTTA




GGGTTCATGTCTACTAGCCGAACAG




CAATCATCCCCATATCTCAGCTCAA




TCCTATGCTGGGTCAACTTATGTGG




AGCAGTGATGCCCAGATAGTAAAAT




TAAGAGTGGTCATAACTACATCCAA




ACGCGGCCCATGCGGGGGTGAGCAG




GAGTATGTGCTGGATCCCAAATTCA




CAGTTAAAAAAGAGAAAGCCCGACT




CAACCCTTTCAAGAAGGCAGCCCAA




TGATCAAATCTGCAGGATCTCAAGA




ATCAGACCACTCTATACTATTCACC




GATCAATAGACATGTAACTATACAG




TTGATGGACCTATGAAGAATCAATT




AGCAAACCGAATCCTTACTAGGGTG




GGGAAGGAGTTGATTGGGTGTCTAA




ACAAAAGCATTCCTTTACACCTCCT




CGCTACGAAACAACCATAATGAGGT




TATCACGCACAATCCTGACTTTGAT




TCTCAGCACACTTACCGGCTATTTA




ATGAATGCCCACTCCACCAATGTGA




ATGAGAAACCAAAGTCTGAGGGGAT




TAGGGGGGATCTTATACCAGGCGCA




GGTATTTTTGTAACTCAAGTCCGAC




AACTACAGATCTACCAACAGTCTGG




GTATCATGACCTTGTCATCAGGTTA




TTACCTCTTCTACCGGCAGAACTTA




ATGATTGTCAAAGGGAAGTTGTCAC




AGAGTACAACAACACGGTATCACAG




CTGTTGCAGCCTATCAAAACCAACC




TGGATACCTTATTGGCTGATGGTAG




CACAAGGGATGCCGATATACAGCCA




CGGTTCATTGGGGCAATAATAGCCA




CAGGTGCCCTGGCGGTGGCTACGGT




AGCTGAGGTGACTGCAGCCCAAGCA




CTATCTCAGTCGAAAACAAACGCTC




AAAATATTCTCAAGTTGAGAGATAG




TATTCAGGCTACCAACCAAGCAGTT




TTCGAAATTTCACAAGGACTCGAGG




CAACTGCAACTGTGCTATCAAAACT




GCAAACTGAGCTCAATGAGAACATT




ATCCCAAGCCTGAACAACTTGTCCT




GTGCTGCCATGGGGAATCGCCTTGG




TGTATCACTATCACTCTACTTGACC




TTAATGACCACTCTATTTGGGGACC




AGATCACAAACCCAGTGCTGACACC




AATCTCCTATAGCACTCTATCGGCA




ATGGCAGGCGGTCACATTGGCCCGG




TGATGAGTAAAATATTAGCTGGATC




TGTCACAAGTCAGTTGGGGGCAGAA




CAGTTGATTGCTAGCGGCTTAATAC




AGTCACAGGTAGTAGGTTATGATTC




CCAATATCAATTATTGGTTATCAGG




GTCAACCTTGTACGGATTCAAGAGG




TCCAGAATACGAGGGTCGTATCACT




AAGAACACTAGCGGTCAATAGGGAT




GGTGGACTTTATAGAGCCCAGGTGC




CTCCCGAGGTAGTTGAACGGTCTGG




CATTGCAGAGCGATTTTATGCAGAT




GATTGTGTTCTTACTACAACTGATT




ACATTTGCTCATCGATCCGATCTTC




TCGGCTTAATCCAGAGTTAGTCAAG




TGTCTCAGTGGTGCACTTGATTCAT




GCACATTTGAGAGGGAAAGTGCATT




ATTGTCGACCCCTTTCTTTGTATAC




AACAAGGCAGTCGTCGCAAATTGTA




AAGCAGCAACATGTAGATGTAATAA




ACCGCCATCTATTATTGCCCAATAC




TCTGCATCAGCTCTAGTCACCATCA




CCACCGACACCTGTGCCGACCTTGA




AATTGAGGGTTATCGCTTCAACATA




CAGACTGAATCCAACTCATGGGTTG




CACCAAACTTCACGGTCTCGACTTC




ACAGATTGTATCAGTTGATCCAATA




GACATCTCCTCTGACATTGCCAAAA




TCAACAGTTCCATCGAGGCTGCGAG




AGAGCAGCTGGAACTGAGCAACCAG




ATCCTTTCCCGGATCAACCCACGAA




TTGTGAATGATGAATCACTGATAGC




TATTATCGTGACAATTGTTGTGCTT




AGTCTCCTTGTAATCGGTCTGATTG




TTGTTCTCGGTGTGATGTATAAGAA




TCTTAAGAAAGTCCAACGAGCTCAA




GCTGCCATGATGATGCAGCAAATGA




GCTCATCACAGCCTGTGACCACTAA




ATTAGGGACGCCTTTCTAGGAGAAT




AATCATATCACTCTACTCAATGATG




AGCAAAACGTACCAATCGTCAATGA




TTGTGTCACGAGGCCGGTTGGGAAT




GCATCGAATCTCTCCCCTTTCTTTT




TAATTAAAAACATTTGAAGTGAGGG




TGAGAGGGGGGGAGTGTATGGTAGG




GTGGGGAAGGTAGCCAATTCCTGCC




TATTGGGCCGACCGTATCAAAAGAA




CTCAACAGAAGTCTAGATACAGGGT




GACATGGAGGGCAGCCGTGATAATC




TTACAGTGGATGATGAATTAAAGAC




AACATGGAGGTTAGCTTATAGAGTT




GTGTCCCTTCTATTGATGGTGAGCG




CTTTGATAATCTCTATAGTAATCCT




GACAAGAGATAACAGCCAAAGCATA




ATCACAGCGATCAACCAGTCATCCG




ACGCAGACTCAAAGTGGCAAACGGG




AATAGAAGGGAAAATCACCTCCATT




ATGACTGATACGCTCGATACCAGGA




ATGCAGCCCTTCTCCACATTCCACT




CCAGCTCAACACGCTTGAGGCGAAC




CTTTTGTCCGCCCTTGGGGGCAACA




CAGGAATTGGTCCCGGGGATCTAGA




TCACTGCCGTTACCCTGTTCATGAC




TCCGCTTACCTGCATGGAGTTAATC




GATTACTCATCAACCAGACAGCTGA




TTACACAGCAGAAGGCCCCCTAGAT




CATGTGAACTTTATTCCAGCCCCGG




TTACGACCACTGGATGCACAAGGAT




ACCATCCTTTTCCGTGTCATCGTCC




ATTTGGTGCTATACACACAACGTGA




TCGAAACCGGTTGCAATGACCACTC




AGGTAGTAACCAATATATCAGCATG




GGAGTCATTAAGAGAGCGGGCAACG




GCCTACCTTACTTCTCGACAGTTGT




AAGTAAATATCTGACTGATGGGTTG




AATAGGAAAAGCTGTTCTGTAGCCG




CCGGATCCGGGCATTGCTACCTCCT




TTGCAGCTTAGTGTCGGAACCCGAA




CCTGATGACTATGTGTCACCTGATC




CCACACCGATGAGGTTAGGGGTGCT




AACGTGGGATGGGTCTTACACTGAA




CAGGTGGTACCCGAAAGAATATTCA




AGAACATATGGAGTGCAAACTACCC




AGGAGTAGGGTCAGGTGCTATAGTA




GGGAATAAGGTGTTATTCCCATTTT




ACGGCGGAGTGAGAAATGGATCGAC




CCCGGAGGTGATGAATAGGGGAAGA




TACTACTACATCCAGGATCCAAATG




ACTATTGTCCTGACCCGCTACAAGA




TCAGATCTTAAGGGCGGAACAATCG




TATTACCCAACTCGATTTGGTAGGA




GGATGGTAATGCAAGGGGTCCTAGC




ATGTCCAGTATCCAACAATTCAACA




ATAGCAAGCCAATGTCAATCTTACT




ATTTTAATAACTCATTAGGATTCAT




TGGGGCAGAATCTAGAATCTATTAC




CTCAATGGTAACATTTACCTTTATC




AGAGAAGCTCGAGCTGGTGGCCTCA




TCCCCAGATTTACCTGCTTGATTCC




AGGATTGCAAGTCCGGGTACTCAGA




ACATTGACTCAGGTGTTAATCTCAA




GATGTTAAATGTTACTGTGATTACA




CGACCATCATCTGGTTTTTGTAATA




GTCAGTCACGATGCCCTAATGACTG




CTTATTCGGGGTCTACTCGGATATC




TGGCCTCTTAGCCTTACCTCAGATA




GCATATTCGCGTTCACAATGTATTT




ACAGGGGAAGACAACACGTATTGAC




CCGGCTTGGGCACTATTCTCCAATC




ATGCGATTGGGCATGAGGCTCGTCT




GTTCAATAAGRAGGTTAGTGCTGCT




TATTCTACCACCACTTGTTTTTCGG




ACACTATCCAAAATCAGGTGTATTG




CCTGAGTATACTTGAGGTCAGGAGT




GAGCTCTTGGGAGCATTCAAAATAG




TACCATTCCTCTATCGCGTCTTGTA




GGCATCCATTCAGCCAAAAAACTTG




AGTGACCATGAGGTTAACACCTGAT




CCCCTTCAAAAACATCTATCTTAAT




TACCGTTCTAGATCCATGATTAGGT




ACCTTTCCAATCAATCATTTGGTTT




TTAATTAAAAACGAAAGAATGGGCC




TAGTTCCAAGAAAGGGCTGGAACCC




ATTAGGGTGGGGAAGGATTGCTTTG




CTCCTTGACTCACACCTGCGTACAC




TCGATCTCACTTCTATAAAGAAGGA




ATCCTTCTCAAATTCGCCCCACAAT




GTCCAATCAGGCAGCTGAGATTATA




CTACCCACCTTCCATCTAGAATCAC




CCTTAATCGAGAATAAGTGCTTCTA




TTATATGCAATTACTTGGTCTCGTG




TTGCCACATGATCACTGGAGATGGA




GGGCATTCGTTAACTTTACAGTGGA




TCAGGTGCACCTTAAAAATCGTAAT




CCCCGCTTAATGGCCCACATCGACC




ACACTAAAGATAGATTAAGGACTCA




TGGTGTCTTAGGTTTCCACCAGACT




CAGACAAGTATGAGCCGTTACCGTG




TTTTGCTTCATCCTGAAACCTTACC




TTGGCTATCAGCCATGGGAGGATGC




ATCAATCAGGTTCCTAAAGCATGGC




GGAACACTCTGAAATCGATCGAGCA




CAGTGTAAAGCAGGAGGCACCTCAA




CTAAAGTTACTCATGGAGAGAACCT




CATTAAAATTAACTGGAGTACCTTA




CTTGTTCTCTAATTGCAATCCCGGG




AAAACCACAGCAGGAACTATGCCTG




TCCTAAGTGAGATGGCATCGGAACT




CTTATCAAATCCTATCTCCCAATTC




CAATCAACATGGGGGTGTGCTGCTT




CGGGGTGGCACCATGTAGTCAGTAT




CATGAGGCTCCAACAATATCAAAGA




AGGACAGGTAAGGAAGAGAAAGCAA




TCACTGAAGTTCAGTATGGCACGGA




CACCTGTCTCATTAACGCAGACTAC




ACCGTTGTTTTTTCCACACAGAACC




GTGTTATAACGGTCTTGCCTTTCGA




TGTTGTCCTCATGATGCAAGACCTG




CTAGAATCCCGACGGAATGTCCTGT




TCTGTGCCCGCTTTATGTATCCCAG




AAGCCAACTTCATGAGAGGATAAGT




ACAATATTAGCCCTTGGAGACCAAC




TGGGGAGAAAAGCACCCCAAGTCCT




GTATGATTTTGTAGCAACCCTTGAG




TCATTTGCATACGCAGCTGTTCAAC




TTCATGACAACAATCCTACCTACGG




TGGGGCCTTCTTTGAATTCAATATC




CAAGAGTTAGAATCTATTCTGTCCC




CTGCACTTAGTAAGGATCAGGTCAA




CTTCTACATAGGTCAAGTTTGCTCA




GCGTACAGTAACCTTCCTCCATCTG




AATCGGCAGAATTGCTGTGCCTGCT




ACGCCTGTGGGGTCATCCCTTGCTA




AACAGCCTTGATGCAGCAAAGAAAG




TCAGGGAATCTATGTGTGCCGGGAA




GGTTCTCGATTACAACGCCATTCGA




CTCGTCTTGTCTTTTTATCATACGT




TACTAATCAATGGGTATCGGAAGAA




GCACAAGGGTCGCTGGCCAAATGTG




AATCAACATTCACTCCTCAACCCGA




TAGTGAGGCAGCTTTATTTTGATCA




GGAGGAGATCCCACACTCTGTTGCC




CTTGAGCACTATTTGGATGTCTCAA




TGATAGAATTTGAGAAAACTTTTGA




AGTGGAACTATCTGACAGCCTAAGC




ATCTTCCTGAAGGATAAGTCGATAG




CTTTGGACAAGCAAGAATGGTACAG




TGGTTTTGTCTCAGAAGTGACTCCG




AAGCACCTGCGAATGTCCCGTCATG




ATCGCAAGTCTACCAATAGGCTCCT




GTTAGCCTTCATTAACTCCCCTGAA




TTCGATGTTAAGGAAGAGCTTAAAT




ACTTGACTACGGGTGAGTACGCTAC




TGACCCAAATTTCAATGTCTCTTAC




TCACTCAAAGAGAAGGAAGTAAAGA




AAGAAGGGCGCATTTTCGCAAAAAT




GTCACAAAAGATGAGAGCATGCCAG




GTTATTTGTGAAGAATTGCTAGCAC




ATCATGTGGCTCCTTTGTTTAAAGA




GAATGGTGTTACTCAATCGGAGCTA




TCCCTGACAAAAAATTTGTTGGCTA




TTAGCCAACTGAGTTACAACTCGAT




GGCCGCTAAGGTGCGATTGCTGAGG




CCAGGGGACAAGTTCACTGCTGCAC




ACTATATGACCACAGACCTAAAGAA




GTACTGTCTCAATTGGCGGCACCAG




TCAGTCAAACTGTTCGCCAGAAGCC




TGGATCGACTGTTTGGGCTAGACCA




TGCTTTTTCTTGGATACATGTCCGT




CTCACCAACAGCACTATGTACGTTG




CTGACCCCTTCAATCCACCAGACTC




AGATGCATGCACAAACTTAGACGAC




AATAAGAACACCGGGATTTTTATTA




TAAGTGCACGAGGTGGTATAGAAGG




CCTCCAACAAAAACTATGGACTGGC




ATATCAATCGCAATTGCCCAAGCAG




CAGCAGCCCTCGAAGGCTTACGAAT




TGCTGCTACTCTGCAGGGGGATAAC




CAAGTTTTGGCGATTACAAAGGAGT




TCATGACCCCAGTCCCGGAGGATGT




AATCCATGAGCAGCTATCTGAGGCG




ATGTCCCGATACAAAAGGACTTTCA




CATACCTCAATTATTTAATGGGGCA




TCAGTTGAAGGATAAGGAAACCATC




CAATCCAGTGATTTCTTTGTGTACT




CCAAAAGAATCTTCTTCAATGGATC




AATCTTAAGTCAATGCCTCAAGAAC




TTCAGTAAACTCACTACTAATGCCA




CTACCCTTGCTGAGAACACTGTGGC




CGGCTGCAGTGACATCTCTTCATGC




ATTGCCCGTTGTGTGGAAAACGGGT




TGCCTAAGGATGCCGCATATATTCA




GAATATAATCATGACTCGGCTTCAA




CTATTGCTAGATCATTACTATTCAA




TGCATGGCGGCATAAACTCAGAATT




AGAGCAGCCAACTTTAAGTATCTCT




GTTCGAAACGCGACCTACTTACCAT




CTCAACTAGGCGGTTACAATCATTT




GAATATGACCCGACTATTCTGCCGC




AATATCGGCGACCCGCTTACCAGTT




CTTGGGCGGAGTCAAAAAGACTAAT




GGATGTTGGCCTTCTCAGTCGTAAG




TTCTTAGAGGGGATATTATGGAGAC




CCCCGGGAAGTGGGACATTTTCAAC




ACTCATGCTTGATCCGTTCGCACTT




AACATTGATTACCTGAGGCCGCCAG




AGACAATTATCCGAAAACACACCCA




AAAAGTCTTGTTGCAAGATTGCCCA




AATCCCCTATTAGCAGGTGTCGTTG




ACCCGAACTACAACCAAGAATTAGA




GCTATTAGCTCAGTTCTTGCTTGAT




CGGGAAACCGTTATCCCCAGGGCTG




CCCATGCCATCTTTGAATTGTCTGT




CTTGGGAAGGAAAAAACATATACAA




GGATTGGTAGATACTACAAAAACAA




TTATTCAGTGCTCATTGGAAAGACA




GCCATTGTCCTGGAGGAAAGTTGAG




AACATTGTTACCTACAACGCGCAGT




ATTTCCTCGGGGCCACCCAACAGGC




TGATACTAATGTCTCAGAAGGGCAG




TGGGTGATGCCAGGTAACTTCAAGA




AGCTTGTGTCCCTTGACGATTGCTC




AGTCACGTTGTCCACTGTATCGCGG




CGCATATCGTGGGCCAATCTACTGA




ACTGGAGAGCTATAGATGGTTTAGA




AACCCCGGATGTGATAGAGAGTATT




GATGGCCGCCTTGTACAATCATCCA




ATCAATGTGGCCTATGTAATCAAGG




GTTGGGATCCTACTCCTGGTTCTTC




TTGCCCTCTGGGTGTGTGTTCGACC




GTCCACAAGATTCTCGGGTAGTTCC




AAAGATGCCATACGTGGGGTCCAAA




ACAGATGAGAGACAGACTGCATCAG




TGCAAGCTATACAGGGATCCACTTG




TCACCTCAGAGCAGCATTGAGGCTT




GTATCACTCTATCTATGGGCCTATG




GAGATTCTGACATATCATGGCTAGA




AGCTGCGACACTGGCTCAAACACGG




TGCAATGTTTCTCTTGATGACTTGC




GAATCTTGAGCCCTCTCCCTTCTTC




GGCGAATTTACACCACAGATTAAAT




GACGGGGTAACACAGGTTAAATTCA




TGCCCGCCACATCGAGCCGAGTGTC




AAAGTTCGTCCAAATTTGCAATGAC




AACCAGAATCTTATCCGTGATGATG




GGAGTGTTGATTCCAATATGATTTA




TCAACAAGTTATGATATTGGGGCTT




GGAGAGATTGAATGCTTGCTAGCTG




ACCCAATCGATACAAACCCAGAACA




ATTGATTCTTCATCTACACTCTGAT




AATTCTTGCTGTCTCCGGGAGATGC




CAACGACCGGCTTTGTACCTGCTCT




AGGACTAACCCCATGTTTAACTGTC




CCAAAGCACAATCCTTACATTTATG




ATGATAGCCCAATACCCGGTGATTT




GGACCAGAGGCTCATCCAGACCAAA




TTTTTCATGGGTTCTGACAATTTGG




ATAATCTTGATATCTACCAACAGCG




GGCTTTATTGAGTAGGTGTGTGGCT




TATGATGTTATCCAATCGATATTTG




CTTGTGATGCACCAGTCTCTCAGAA




GAATGACGCAATCCTTCACACTGAC




TATCATGAGAATTGGATCTCAGAGT




TCCGATGGGGTGACCCTCGTATTAT




CCAAGTAACGGCAGGCTACGAGTTA




ATTCTGTTCCTTGCATACCAGCTTT




ATTATCTCAGAGTGAGGGGTGACCG




TGCAATCCTATGTTATATTGACAGG




ATACTCAACAGGATGGTATCTTCCA




ATCTAGGCAGTCTCATCCAGACACT




CTCTCATCCAGAGATTAGGAGGAGA




TTCTCATTGAGTGATCAAGGGTTCC




TTGTTGAAAGGGAGCTAGAGCCAGG




TAAGCCCTTGGTTAAACAAGCGGTT




ATGTTCTTGAGGGACTCGGTCCGCT




GCGCTTTAGCAACTATCAAGGCAGG




AATTGAGCCTGAGATCTCCCGAGGT




GGCTGTACTCAGGATGAGCTGAGCT




TTACTCTTAAGCACTTACTGTGTCG




GCGTCTCTGTGTAATCGCTCTCATG




CATTCAGAAGCAAAGAACTTGGTTA




AAGTTAGAAACCTTCCTGTAGAAGA




GAAAACCGCCTTACTGTACCAGATG




TTGGTCACTGAGGCCAATGCTAGGA




AATCAGGATCTGCTAGCATCATCAT




AAATCTAGTCTCGGCACCCCAGTGG




GACATTCATACACCAGCATTGTATT




TTGTATCAAAGAAAATGCTAGGGAT




GCTTAAAAGGTCAACCACACCCTTG




GATATAAGTGACCTCTCCGAGAGCC




AGAATCCCGCACTTGCAGAGCTGAA




TGATGTTCCCGGTCACATGGCAGAA




GAATTTCCCTGTTTGTTTAGTAGTT




ATAACGCCACATATGAAGACACAAT




TACTTACAATCCAATGACTGAAAAA




CTCGCCTTACACTTGGACAACAGTT




CCACCCCATCCAGAGCACTTGGTCG




TCACTACATCCTGCGGCCTCTTGGG




CTCTACTCATCCGCATGGTACCGGT




CTGCAGCACTACTAGCGTCAGGGGC




CCTAAATGGGTTGCCTGAGGGGTCG




AGCCTGTACCTAGGAGAAGGGTACG




GGACCACCATGACTCTGCTTGAGCC




CGTTGTCAAGTCTTCAACTGTTTAC




TACCATACATTGTTTGACCCAACCC




GGAATCCTTCACAGCGGAACTATAA




ACCAGAACCACGGGTATTCACGGAT




TCTATTTGGTACAAGGATGATTTCA




CACGGCCACCTGGTGGTATTATCAA




TCTGTGGGGTGAAGATATACGTCAG




AGTGATATCACACAGAAAGACACGG




TCAACTTCATACTATCTCAGATCCC




GCCAAAATCACTTAAGTTGATACAC




GTTGATATTGAGTTCTCACCAGACT




CCGATGTACGGACACTACTATCTGG




CTATTCTCATTGTGCACTATTGGCC




TACTGGCTATTGCAACCTGGAGGGC




GATTTGCAGTTAGAGTTTTCTTAAG




TGACCATATCATAGTAAACTTGGTC




ACTGCAATCCTGTCTGCTTTTGACT




CTAATCTGGTGTGCATTGCATCAGG




ATTGACACACAAGGATGATGGGGCA




GGTTATATTTGCGCAAAAAAGCTTG




CAAATGTTGAGGCTTCAAGGATCGA




GTACTACTTGAGGATGGTCCATGGT




TGTGTTGACTCATTAAAGATCCCTC




ATCAATTAGGAATCATTAAATGGGC




CGAGGGCGAGGTGTCCCAACTTACC




AGAAAGGCGGATGATGAAATAAATT




GGCGGTTAGGTGATCCAGTTACCAG




ATCATTTGATCCAGTTTCTGAGCTA




ATAATTGCACGAACAGGGGGGTCTG




TATTAATGGAATACGGGGCTTTTAC




TAACCTCAGGTGTGCGAACTTGGCA




GATACATACAAACTTCTGGCTTCAA




TTGTAGAGACCACCCTAATGGAAAT




AAGGGTTGAGCAAGATCAATTAGAA




GATAATTCGAGGAGACAAATCCAAG




TAGTTCCCGCTTTCAACACTAGATC




TGGGGGAAGGATCCGTACGCTGATT




GAGTGTGCTCAGCTGCAGATTATAG




ATGTTATTTGTGTAAACATAGATCA




CCTCTTTCCTAAACACCGACATGTT




CTTGTCACACAACTTACCTACCAGT




CAGTGTGCCTTGGGGACTTGATTGA




AGGCCCCCAAATTAAGACGTATCTA




AGGGCCAGGAAGTGGATCCAACGTC




AGGGACTCAATGAGACAGTTAACCA




TATCATCACTGGACAAGTGTCGCGG




AATAAAGCAAGGGATTTTTTCAAGA




GGCGTCTGAAGTTGGTTGGCTTTTC




ACTCTGCGGTGGTTGGAGCTACCTC




TCACTTTAGCTGTTCAGGTTGTTGA




TTATTATGAATAATCGGAGTCGGAA




TCGTAAATAGGAAGTCACAAAGTTG




TGAATAAACAATGATTGCATTAGTA




TTTAATAAAAAATATGTCTTTTATT




TCGT






Avian
ACGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


paramyxovir
AGCCTTTTAAAAGGAACCCTGGGCT
NO: 4 


us 4 APMV-
GTCGTAGGTGTGGGAAGGTTGTATT



4/duck/
CCGAGTGCGCCTCCGAGGCATCTAC



Hongkong/
TCTACACCTATCACAATGGCTGGTG



D3/75,
TCTTCTCCCAGTATGAGAGGTTTGT



complete
GGACAATCAATCCCAAGTGTCAAGG



genome
AAGGATCATCGGTCCTTAGCAGGAG



Genbank:
GATGCCTTAAAGTTAACATCCCTAT



FJ177514.1
GCTTGTCACTGCATCTGAAGACCCC




ACCACTCGTTGGCAACTAGCATGCT




TATCTCTAAGGCTCCTGATCTCCAA




CTCATCAACCAGTGCTATCCGTCAG




GGGGCAATACTGACTCTCATGTCAT




TACCATCACAAAACATGAGAGCAAC




AGCAGCTATTGCTGGTTCCACAAAT




GCAGCTGTTATCAACACCATGGAAG




TCTTAAGTGTCAACGACTGGACCCC




ATCCTTCGACCCTAGGAGCGGTCTT




TCTGAGGAAGATGCTCAAGTTTTCA




GAGACATGGCAAGAGATCTGCCCCC




TCAGTTCACCTCTGGATCACCCTTC




ACATCAGCATTGGCGGAGGGGTTCA




CTCCTGAAGATACTCATGACCTGAT




GGAGGCCTTGACCAGTGTGCTGATA




CAGATCTGGATCCTGGTGGCTAAGG




CCATGACCAACATTGACGGCTCTGG




GGAGGCCAATGAAAGACGTCTTGCA




AAGTACATCCAAAAAGGACAGCTTA




ATCGTCAGTTTGCAATTGGTAATCC




TGCCCGTCTGATAATCCAACAGACA




ATCAAAAGCTCCTTAACTGTCCGTA




GGTTCTTGGTCTCTGAGCTTCGTGC




GTCACGAGGTGCAGTAAAAGAAGGA




TCCCCTTACTATGCAGCTGTTGGGG




ATATCCACGCTTACATCTTTAATGC




GGGATTGACACCATTCTTGACCACC




TTAAGATACGGGATAGGCACCAAGT




ACGCCGCTGTTGCACTCAGTGTGTT




CGCTGCAGATATTGCAAAGTTGAAG




AGCCTACTTACCCTGTACCAGGACA




AGGGTGTAGAAGCTGGATACATGGC




ACTCCTTGAGGATCCAGACTCCATG




CACTTTGCACCTGGAAACTTCCCAC




ACATGTACTCCTATGCAATGGGGGT




AGCTTCTTACCATGATCCTAGCATG




CGCCAATACCAATACGCCAGGAGGT




TCCTCAGCCGTCCTTTCTACTTACT




AGGAAGGGACATGGCCGCCAAGAAC




ACAGGCACGCTGGATGAGCAACTGG




CGAAGGAACTGCAAGTATCAGAGAG




AGATCGCGCCGCATTATCCGCTGCG




ATTCAATCAGCGATGGAGGGGGGAG




AGTCCGACGACTTCCCACTGTCGGG




ATCCATGCCGGCTCTCTCTGAGAAT




GCGCAACCAGTTACCCCCAGACCTC




AACAGTCCCAGCTCTCTCCCCCCCA




ATCATCAAACATGCCCCAATCAGCA




CCCAGGACCCCAGACTATCAACCCG




ACTTTGAACTGTAGGCTTCATCACC




GCACCAACAACAGCCCAAGAAGACC




ACCCCTCCCCCCACACATCTCACCC




AGCCACCCATAAAGACTCAGTCCCA




CGCCCCAGCATCTCCTTCATTTAAT




TAAAAACCGACCAACAGGGTGGGGA




AGGAGAGTCATTGGCTACTGCCAAT




TGTGTGCAGCAATGGATTTTACTGA




CATTGATGCTGTCAACTCATTGATC




GAATCATCATCGGCAATCATAGACT




CCATACAGCATGGAGGGCTGCAACC




AGCGGGCACCGTCGGCCTATCGCAG




ATCCCAAAAGGGATAACCAGCGCAT




TAACCAAGGCCTGGGAGGCTGAGGC




GGCAACTGCCGGTAATGGGGACACC




CAACACAAATCTGACAGTCCGGAGG




ATCATCAGGCCAACGACACAGATTC




CCCTGAAGACACAGGTACTGACCAG




ACCACCCAGGAGGCCAACATCGTTG




AGACACCCCACCCCGAGGTGCTGTC




AGCAGCCAAAGCCAGACTCAAGAGG




CCCAAAGCAGGGAGGGACACCCGCG




ACAACTCCCCTGCGCAACCCGATCA




TCTTTTAAAGGGGGGCCTCCTGAGC




CCACAACCAGCAGCATCATGGGTGC




AAAATCCACCCAGTCATGGAGGTCC




CGGCACCGCCGATCCCCGCCCATCA




CAAACTCAGGATCATTCCCCCACCG




GAGAGAAATGGCGATTGTCACCGAC




AAAGCAACCGGAGACATTGAACTGG




TGGAGTGGTGCAACCCGGGGTGCAC




AGCAGTCCGAATTGAACCCACCAGA




CTCGACTGTGTATGCGGACACTGCC




CCACCATCTGTAGCCTCTGCATGTA




TGACGACTGATCAGGTACAACTACT




AATGAAGGAGGTTGCTGACATAAAA




TCACTCCTTCAGGCGTTAGTGAGGA




ACCTCGCTGTCTTGCCCCAATTGAG




GAATGAGGTTGCAGCAATCAGAACA




TCACAGGCCATGATAGAGGGGACAC




TCAATTCGATCAAGATTCTTGACCC




TGGGAATTATCAGGAATCATCACTA




AACAGTTGGTTCAAACCTCGCCAAG




ATCACACTGTTGTTGTGTCTGGACC




AGGGAATCCATTGGCCATGCCAACC




CCAGTCCAAGACAACACCATATTCC




TGGACGAGCTAGCCAGACCTCATCC




TAGTGTGGTCAATCCTTCCCCACCC




ATCACCAACACCAATGTTGACCTTG




GCCCACAGAAGCAGGCTGCAATAGC




CTATATCTCCGCTAAATGCAAGGAT




CCGGGGAAACGAGATCAGCTATCAA




GGCTCATTGAGCGAGCAACCACCCC




AAGTGAGATCAACAAAGTTAAAAGA




CAAGCCCTTGGGCTCTAGATCACTC




GATCACCCCTCATGGTGATCACAAC




AATAATCAGAACCCTTCCGAACCAC




ATGACCAACCCAGCCCACCGCCCAC




ACCGTCCATCGACATCCCTTGCCAA




ACATCCTGCCGTAGCTGATTTATTC




AAAAGAGCTCATTTGATATGACCTG




GTAATCATAAAATAGGGTGGGGAAG




GTGCTTTGCCTGTAAGGGGGCTCCC




TCATCTTCAGACACGTGCCCGCCAT




CTCACCAACAGTGCAATGGCAGACA




TGGACACGGTGTATATCAATCTGAT




GGCAGATGACCCAACCCACCAAAAA




GAACTGCTGTCCTTTCCTCTCATCC




CTGTGACCGGTCCTGACGGGAAGAA




GGAACTCCAACACCAGATCCGGACC




CAATCCTTGCTCGCCTCAGACAAAC




AAACTGAACGGTTCATCTTCCTCAA




CACTTACGGATTCATCTATGACACC




ACACCGGACAAGACAACTTTTTCCA




CCCCAGAGCATATTAATCAGCCTAA




GAGGACGACGGTGAGTGCCGCGATG




ATGACCATTGGCCTGGTTCCCGCCA




ATATACCCCTGAACGAACTAACGGC




TACTGTGTTCAGCCTTAAAGTAAGA




GTGAGGAAAAGTGCGAGGTATCGGG




AAGTGGTCTGGTATCAATGCAATCC




AGTACCGGCCCTGCTTGCAGCCACC




AGGTTTGGTCGCCAAGGAGGTCTCG




AGTCGAGCACTGGAGTCAGTGTAAA




GGCTCCCGAGAAGATAGATTGTGAG




AAGGATTATACCTACTACCCTTATT




TCTTATCTGTGTGCTACATCGCCAC




CTCCAACCTGTTCAAGGTACCGAGG




ATGGTTGCTAATGCAACCAACAGTC




AATTATACCACCTTACCATGCAGGT




CACATTTGCCTTTCCAAAAAACATC




CCTCCAGCCAACCAGAAACTCCTGA




CACAGGTGGATGAGGGATTCGAGGG




CACTGTGGATTGCCATTTTGGGAAC




ATGCTGAAAAAGGATCGGAAAGGGA




ACATGAGGACACTGTCCCAGGCGGC




AGATAAGGTCAGACGAATGAATATT




CTTGTTGGTATCTTTGACTTGCATG




GGCCAACGCTCTTCCTGGAGTATAC




CGGGAAACTGACAAAGGCTCTGCTA




GGGTTCATGTCCACCAGCCGAACAG




CAATCATCCCCATATCTCAGCTCAA




TCCCATGCTGAGTCAACTCATGTGG




AGCAGTGATGCCCAGATAGTAAAGT




TAAGGGTTGTCATAACTACATCCAA




ACGCGGCCCGTGCGGGGGTGAGCAG




GAGTATGTGCTGGATCCCAAATTCA




CAGTTAAGAAAGAAAAGGCTCGACT




CAACCCTTTCGAGAAGGCAGCCTAA




TGATTTAATCCGCAAGATCCCAGAA




ATCAGACCACTCTATACTATCCACT




GATCACTGGAAATGTAATTGTACAG




TTGATGAATCTGTGAAGAATCAATT




AAAAAACCGGATCCTTATTAGGGTG




GGGAAGTAGTTGATTGGGTGTCTAA




ACAAAAGCATTTCTTCACACCTCCC




CGCCACGAAACAACCACAATGAGGC




TATCAAACACAATCTTGACCTTGAT




TCTCATCATACTTACCGGCTATTTG




ATAGGTGTCCACTCCACCGATGTGA




ATGAGAAACCAAAGTCCGAAGGGAT




TAGGGGTGATCTTACACCAGGTGCG




GGTATTTTCGTAACTCAAGTCCGAC




AGCTCCAGATCTACCAACAGTCTGG




GTACCATGATCTTGTCATCAGATTG




TTACCTCTTCTACCAACAGAGCTTA




ATGATTGTCAAAGGGAAGTTGTCAC




AGAGTACAATAACACTGTATCACAG




CTGTTGCAGCCTATCAAAACCAACC




TGGATACTTTGTTGGCAGATGGTAG




CACAAGGGATGTTGATATACAGCCG




CGATTCATTGGGGCAATAATAGCCA




CAGGTGCCCTGGCTGTAGCAACGGT




AGCTGAGGTAACTGCAGCTCAAGCA




CTATCTCAGTCAAAAACGAATGCTC




AAAATATTCTCAAGTTGAGAGATAG




TATTCAGGCCACCAACCAAGCAGTT




TTTGAAATTTCACAGGGACTCGAAG




CAACTGCAACCGTGCTATCAAAACT




GCAAACTGAGCTCAATGAGAATATC




ATCCCAAGTCTGAACAACTTGTCCT




GTGCTGCCATGGGGAATCGCCTTGG




TGTATCACTCTCACTCTATTTGACC




TTAATGACCACTCTATTTGGGGACC




AGATCACAAACCCAGTGCTGACGCC




AATCTCTTACAGCACCCTATCGGCA




ATGGCGGGTGGTCACATTGGTCCAG




TGATGAGTAAGATATTAGCCGGATC




TGTCACAAGTCAGTTGGGGGCAGAA




CAACTGATTGCTAGTGGCTTAATAC




AGTCACAGGTAGTAGGTTATGATTC




CCAGTATCAGCTGTTGGTTATCAGG




GTCAACCTTGTACGGATTCAGGAAG




TCCAGAATACTAGGGTTGTATCACT




AAGAACACTAGCAGTCAATAGGGAT




GGTGGACTTTACAGAGCCCAGGTGC




CACCCGAGGTAGTTGAGCGATCTGG




CATTGCAGAGCGGTTTTATGCAGAT




GATTGTGTTCTAACTACAACTGATT




ACATCTGCTCATCGATCCGATCTTC




TCGGCTTAATCCAGAGTTAGTCAAG




TGTCTCAGTGGGGCACTTGATTCAT




GCACATTTGAGAGGGAAAGTGCATT




ACTGTCAACTCCCTTCTTTGTATAC




AACAAGGCAGTCGTCGCAAATTGTA




AAGCAGCGACATGTAGATGTAATAA




ACCGCCATCTATCATTGCCCAATAC




TCTGCATCAGCTCTAGTAACCATCA




CCACCGACACTTGTGCTGACCTTGA




AATTGAGGGTTATCGTTTCAACATA




CAGACTGAATCCAACTCATGGGTTG




CACCAAACTTCACGGTCTCAACCTC




ACAAATAGTATCGGTTGATCCAATA




GACATATCCTCTGACATTGCCAAAA




TTAACAATTCTATCGAGGCTGCGCG




AGAGCAGCTGGAACTGAGCAACCAG




ATCCTTTCCCGAATCAACCCACGGA




TTGTGAACGACGAATCACTAATAGC




TATTATCGTGACAATTGTTGTGCTT




AGTCTCCTTGTAATTGGTCTTATTA




TTGTTCTCGGTGTGATGTACAAGAA




TCTTAAGAAAGTCCAACGAGCTCAA




GCTGCTATGATGATGCAGCAAATGA




GCTCATCACAGCCTGTGACCACCAA




ATTGGGGACACCCTTCTAGGTGAAT




AATCATATCAATCCATTCAATAATG




AGCGGGACATACCAATCACCAACGA




CTGTGTCACAAGGCCGGTTAGGAAT




GCACCGGATCTCTCTCCTTCCTTTT




TAATTAAAAACGGTTGAACTGAGGG




TGAGGGGGGGGGTGTGCATGGTAGG




GTGGGGAAGGTAGCCAATTCCTGCC




CATTGGGCCGACCGTACCAAGAGAA




GTCAACAGAAGTATAGATGCAGGGC




GACATGGAGGGTAGCCGTGATAACC




TCACAGTAGATGATGAATTAAAGAC




AACATGGAGGTTAGCTTATAGAGTT




GTATCCCTCCTATTGATGGTGAGTG




CCTTGATAATCTCTATAGTAATCCT




GACGAGAGATAACAGCCAAAGCATA




ATCACGGCGATCAACCAGTCGTATG




ACGCAGACTCAAAGTGGCAAACAGG




GATAGAAGGGAAAATCACCTCAATC




ATGACTGATACGCTCGATACCAGGA




ATGCAGCTCTTCTCCACATTCCACT




CCAGCTCAATACACTTGAGGCAAAC




CTGTTGTCCGCCCTCGGAGGTTACA




CGGGAATTGGCCCCGGAGATCTAGA




GCACTGTCGTTATCCGGTTCATGAC




TCCGCTTACCTGCATGGAGTCAATC




GATTACTCATCAATCAAACAGCTGA




CTACACAGCAGAAGGCCCCCTGGAT




CATGTGAACTTCATTCCGGCACCAG




TTACGACTACTGGATGCACAAGGAT




CCCATCCTTTTCTGTATCATCATCC




ATTTGGTGCTATACACACAATGTGA




TTGAAACAGGTTGCAATGACCACTC




AGGTAGTAATCAATATATCAGTATG




GGGGTGATTAAGAGGGCTGGCAACG




GCTTACCTTACTTCTCAACAGTCGT




GAGTAAGTATCTGACCGATGGGTTG




AATAGAAAAAGCTGTTCCGTAGCTG




CGGGATCCGGGCATTGTTACCTCCT




TTGTAGCCTAGTGTCAGAGCCCGAA




CCTGATGACTATGTGTCACCAGATC




CCACACCGATGAGGTTAGGGGTGCT




AACAAGGGATGGGTCTTACACTGAA




CAGGTGGTACCCGAAAGAATATTTA




AGAACATATGGAGCGCAAACTACCC




TGGGGTAGGGTCAGGTGCTATAGCA




GGAAATAAGGTGTTATTCCCATTTT




ACGGCGGAGTGAAGAATGGATCAAC




CCCTGAGGTGATGAATAGGGGAAGA




TATTACTACATCCAGGATCCAAATG




ACTATTGCCCTGACCCGCTGCAAGA




TCAGATCTTAAGGGCAGAACAATCG




TATTATCCTACTCGATTTGGTAGGA




GGATGGTAATGCAGGGAGTCCTAAC




ATGTCCAGTATCCAACAATTCAACA




ATAGCCAGCCAATGCCAATCTTACT




ATTTCAACAACTCATTAGGATTCAT




CGGGGCGGAATCTAGGATCTATTAC




CTCAATGGTAACATTTACCTTTATC




AAAGAAGCTCGAGCTGGTGGCCTCA




CCCCCAAATTTACCTACTTGATTCC




AGGATTGCAAGTCCGGGTACGCAGA




ACATTGACTCAGGCGTTAACCTCAA




GATGTTAAATGTTACTGTCATTACA




CGACCATCATCTGGCTTTTGTAATA




GTCAGTCAAGATGCCCTAATGACTG




CTTATTCGGGGTTTATTCAGATGTC




TGGCCTCTTAGCCTTACCTCAGACA




GCATATTTGCATTTACAATGTACTT




ACAAGGGAAGACGACACGTATTGAC




CCAGCTTGGGCGCTATTCTCCAATC




ATGTAATTGGGCATGAGGCTCGTTT




GTTCAACAAGGAGGTTAGTGCTGCT




TATTCTACCACCACTTGTTTTTCGG




ACACCATCCAAAACCAGGTGTATTG




TCTGAGTATACTTGAAGTCAGAAGT




GAGCTCTTGGGGGCATTCAAGATAG




TGCCATTCCTCTATCGTGTCTTATA




GGCACCTGCTTGGTCAAGAACCCTG




AGCAGCCATAAAATTAACACTTGAT




CTTCCTTAAAAACACCTATCTAAAT




TACTGTCTGAGATCCCTGATTAGTT




ACCCTTTCAATCAATCAATTAATTT




TTAATTAAAAACGGAAAAATGGGCC




TAGTTCCAAGGAAAGGATGGGACCC




ATTAGGGTGGGGAAGGATTACTTTG




TTCCTTGACTCGCACCCACGTACAC




CCAATCCCATTCCTGTCAAGAAGGA




ACCCTTCCCAAACTCACCTTGCAAT




GTCCAATCAGGCAGCTGAGATTATA




CTACCCACCTTCCATCTTTTATCAC




CCTTGATCGAGAATAAGTGCTTCTA




CTACATGCAATTACTTGGTCTCGTG




TTACCACATGATCACTGGAGATGGA




GGGCATTCGTCAATTTTACAGTGGA




TCAAGCACACCTTAAAAATCGTAAT




CCCCGCTTAATGGCCCACATCGATC




ACACTAAGGATAGACTAAGGGCTCA




TGGTGTCTTGGGTTTCCACCAGACT




CAGACAAGTGAGAGCCGTTTCCGTG




TCTTGCTCCATCCTGAAACTTTACC




TTGGCTATCAGCAATGGGAGGATGC




ATCAACCAGGTTCCCAAGGCATGGC




GGAACACTCTGAAATCTATCGAGCA




CAGTGTGAAGCAGGAGGCGACTCAA




CTGAAGTTACTCATGGAAAAAACCT




CACTAAAGCTAACAGGAGTATCTTA




CTTATTCTCCAATTGCAATCCCGGG




AAAACTGCAGCGGGAACTATGCCCG




TACTAAGTGAGATGGCATCAGAACT




CTTGTCAAATCCCATCTCCCAATTC




CAATCAACATGGGGGTGTGCTGCTT




CAGGGTGGCACCATGTAGTCAGCAT




CATGAGGCTCCAACAGTATCAAAGA




AGGACAGGTAAGGAAGAGAAAGCAA




TCACTGAAGTTCAGTATGGCTCGGA




CACCTGTCTCATTAATGCAGACTAC




ACCGTCGTTTTTTCCGCACAGGACC




GTGTCATAGCAGTCTTGCCTTTCGA




TGTTGTCCTCATGATGCAAGACCTG




CTTGAATCCCGACGGAATGTCTTGT




TCTGTGCCCGCTTTATGTATCCCAG




AAGCCAACTACATGAGAGGATAAGT




ACAATACTGGCCCTTGGAGACCAAC




TCGGGAGAAAAGCACCCCAAGTCCT




GTATGATTTCGTAGCTACCCTCGAA




TCATTTGCATACGCTGCTGTCCAAC




TTCATGACAACAACCCTATCTACGG




TGGGGCTTTCTTTGAGTTCAATATC




CAAGAACTGGAAGCTATTTTGTCCC




CTGCACTTAATAAGGATCAAGTCAA




CTTCTACATAAGTCAAGTTGTCTCA




GCATACAGTAACCTTCCCCCATCTG




AATCAGCAGAATTGCTATGCTTACT




ACGCCTGTGGGGTCATCCCTTGCTA




AACAGTCTTGATGCAGCAAAGAAAG




TCAGAGAATCTATGTGTGCTGGGAA




GGTTCTTGATTATAATGCTATTCGA




CTAGTTTTGTCTTTTTATCATACGT




TATTAATCAATGGGTATCGGAAGAA




ACATAAGGGTCGCTGGCCAAATGTG




AATCAACATTCACTACTCAACCCGA




TAGTGAAGCAGCTTTACTTTGATCA




GGAGGAGATCCCACACTCTGTTGCC




CTTGAGCACTATTTAGATATCTCGA




TGATAGAATTTGAGAAGACTTTTGA




AGTGGAACTATCTGATAGTCTAAGC




ATCTTTCTGAAGGATAAGTCGATAG




CTTTGGATAAACAAGAATGGCACAG




TGGTTTTGTCTCAGAAGTGACTCCA




AAGCACCTACGAATGTCTCGTCATG




ATCGCAAGTCTACCAATAGGCTATT




GTTAGCCTTTATTAACTCCCCTGAA




TTCGATGTTAAGGAAGAGCTTAAAT




ATTTGACTACAGGTGAGTATGCCAC




TGACCCAAATTTCAATGTCTCTTAC




TCACTGAAAGAGAAGGAAGTTAAGA




AAGAAGGGCGCATTTTCGCAAAGAT




GTCACAGAAAATGAGAGCATGCCAG




GTTATTTGTGAAGAGTTACTAGCAC




ATCATGTGGCTCCTTTGTTTAAAGA




GAATGGTGTTACACAATCGGAGCTA




TCCCTGACAAAGAATTTGTTGGCTA




TTAGCCAACTGAGTTACAACTCGAT




GGCCGCTAAGGTGCGATTGCTGAGG




CCAGGGGACAAGTTCACCGCTGCAC




ACTATATGACCACAGACCTAAAAAA




GTACTGCCTTAACTGGCGGCACCAG




TCAGTCAAATTGTTCGCCAGAAGCC




TGGATCGACTATTTGGGTTAGACCA




TGCTTTTTCTTGGATACACGTCCGT




CTCACCAATAGCACTATGTACGTTG




CTGACCCATTCAATCCACCAGACTC




AGATGCATGCACAAATTTAGACGAC




AATAAGAACACTGGGATTTTTATTA




TAAGTGCTCGAGGTGGTATAGAAGG




CCTTCAACAGAAACTATGGACTGGC




ATATCAATTGCAATCGCCCAGGCGG




CAGCAGCCCTCGAGGGCTTACGAAT




TGCTGCCACTTTGCAGGGGGATAAC




CAGGTTTTAGCGATTACGAAAGAAT




TCATGACCCCAGTCTCGGAGGATGT




AATCCACGAGCAGCTATCTGAAGCG




ATGTCGCGATACAAGAGGACTTTCA




CATACCTTAATTATTTAATGGGGCA




CCAATTGAAGGATAAAGAAACCATC




CAATCCAGTGACTTCTTCGTTTACT




CCAAAAGGATCTTCTTCAATGGGTC




AATCCTAAGTCAATGCCTCAAGAAC




TTCAGTAAACTCACTACCAATGCCA




CTACCCTTGCTGAGAACACTGTAGC




CGGCTGCAGTGACATCTCCTCATGC




ATAGCCCGTTGTGTGGAAAACGGGT




TGCCTAAGGATGCTGCATATGTTCA




GAATATAATCATGACTCGGCTTCAA




CTGTTGCTAGATCACTACTATTCTA




TGCATGGTGGCATAAACTCAGAGTT




AGAGCAGCCAACTCTAAGTATCCCT




GTCCGAAACGCAACCTATTTACCAT




CTCAATTAGGCGGTTACAATCATTT




GAATATGACCCGACTATTCTGTCGC




AATATCGGTGACCCGCTTACTAGTT




CTTGGGCAGAGTCAAAAAGACTAAT




GGATGTTGGCCTTCTCAGTCGTAAG




TTCTTAGAGGGGATATTATGGAGAC




CCCCGGGAAGTGGGACATTTTCAAC




ACTCATGCTTGATCCGTTCGCACTT




AACATTGATTACTTAAGGCCACCAG




AGACAATAATCCGAAAACACACCCA




AAAAGTCTTGTTGCAGGATTGTCCT




AATCCTCTATTAGCAGGTGTAGTTG




ACCCGAACTACAACCAGGAATTAGA




ATTATTAGCTCAGTTCCTGCTTGAT




CGGGAAACCGTTATTCCCAGGGCTG




CCCATGCCATCTTTGAACTGTCTGT




CTTGGGAAGGAAAAAACATATACAA




GGATTGGTTGATACTACAAAAACAA




TTATTCAGTGCTCATTAGAAAGACA




GCCACTGTCCTGGAGGAAAGTTGAG




AACATTGTAACCTACAATGCGCAGT




ATTTCCTCGGGGCCACCCAGCAGGT




TGACACCAATATCTCAGAAAGGCAG




TGGGTGATGCCAGGTAATTTCAAGA




AGCTTGTATCTCTTGACGATTGCTC




AGTCACGTTGTCCACTGTGTCACGG




CGCATTTCTTGGGCCAATCTACTTA




ACTGGAGGGCTATAGATGGTTTGGA




AACTCCAGATGTGATAGAGAGTATT




GATGGCCGCCTTGTGCAATCATCCA




ATCAATGCGGCCTATGTAATCAAGG




ATTGGGCTCCTACTCCTGGTTCTTC




TTGCCCTCCGGGTGTGTGTTCGACC




GTCCACAAGATTCTCGAGTGGTTCC




AAAGATGCCATACGTGGGATCCAAA




ACGGATGAGAGACAGACTGCGTCAG




TGCAGGCTATACAGGGATCCACATG




TCACCTTAGAGCAGCATTGAGACTT




GTATCACTCTACCTTTGGGCCTATG




GAGATTCTGACATATCATGGCTAGA




AGCCGCGACATTGGCTCAAACACGG




TGCAATATTTCTCTTGATGACCTGC




GGATCCTGAGCCCTCTTCCTTCCTC




GGCAAATTTACACCACAGATTGAAT




GACGGGGTAACACAAGTGAAATTCA




TGCCCGCCACATCGAGCCGGGTGTC




AAAGTTCGTCCAAATTTGCAATGAC




AACCAGAATCTTATCCGTGATGATG




GGAGTGTTGATTCCAATATGATTTA




TCAGCAGGTTATGATATTAGGGCTT




GGAGAGATTGAATGTTTGTTAGCTG




ACCCAATCGATACAAACCCAGAACA




ACTGATTCTTCACCTACACTCTGAT




AATTCTTGCTGTCTCCGGGAGATGC




CAACGACCGGTTTTGTACCTGCTTT




AGGATTGACCCCATGCTTAACTGTC




CCAAAGCACAATCCGTATATTTATG




ATGATAGCCCAATACCCGGTGATTT




GGATCAGAGGCTCATTCAAACCAAA




TTCTTTATGGGTTCTGACAATCTAG




ATAATCTTGATATCTACCAGCAGCG




AGCTTTACTGAGTCGGTGTGTGGCT




TATGACATTATCCAATCAGTATTCG




CTTGCGATGCACCAGTATCTCAGAA




GAATGATGCAATCCTTCACACTGAC




TACCATGAAAATTGGATCTCAGAGT




TCCGATGGGGTGACCCTCGCATAAT




CCAAGTAACAGCAGGTTACGAGTTA




ATTCTGTTCCTTGCATACCAGCTTT




ATTATCTCAGAGTGAGGGGTGACCG




TGCAATCCTGTGTTATATTGATAGG




ATACTCAACAGGATGGTATCTTCCA




ATCTAGGCAGTCTCATCCAGACGCT




CTCTCATCCGGAGATTAGGAGGAGA




TTTTCATTGAGTGATCAAGGGTTCC




TTGTCGAAAGGGAGCTAGAGCCAGG




TAAGCCACTGGTAAAACAAGCGGTT




ATGTTCCTAAGGGACTCAGTCCGCT




GCGCTTTAGCAACTATCAAGGCAGG




AATTGAGCCTGAGATCTCCCGAGGT




GGCTGTACCCAGGATGAGCTGAGCT




TTACCCTTAAGCACTTACTATGTCG




GCGTCTCTGTATAATTGCTCTCATG




CATTCGGAAGCAAAGAACTTGGTCA




AAGTTAGAAACCTTCCAGTAGAGGA




AAAAACCGCCTTACTATACCAGATG




TTGATCACTGAGGCCAATGCCAGGA




GATCAGGGTCTGCTAGTATCATCAT




AAGCTTAGTTTCAGCACCCCAGTGG




GACATTCATACACCAGCGTTGTATT




TTGTATCAAAGAAAATGCTGGGGAT




GCTCAAAAGGTCAACCACACCCTTG




GATATAAGTGACCTTTCTGAGAGCC




AGAACCTCACACCAACAGAATTGAA




TGATGTTCCTGGTCACATGGCAGAG




GAATTTCCCTGTTTGTTTAGCAGTT




ATAACGCTACATATGAAGACACAAT




TACTTACAATCCAATGACTGAAAAA




CTCGCAGTGCACTTGGACAATGGTT




CCACCCCTTCCAGAGCGCTTGGTCG




TCACTACATCCTGCGACCCCTTGGG




CTTTACTCGTCTGCATGGTACCGGT




CTGCAGCACTATTAGCGTCAGGGGC




CCTCAGTGGGTTGCCTGAGGGGTCA




AGCCTGTACTTGGGAGAGGGGTATG




GGACCACCATGACTCTACTTGAGCC




CGTTGTCAAGTCCTCAACTGTTTAC




TACCATACATTGTTTGACCCAACCC




GGAATCCTTCACAGCGGAACTACAA




ACCAGAACCGCGGGTATTCACTGAT




TCCATTTGGTACAAGGATGATTTCA




CACGACCACCTGGTGGCATTGTAAA




TCTATGGGGTGAAGACGTACGTCAG




AGTGATATTACACAGAAAGACACGG




TTAATTTCATATTATCTCGGGTCCC




GCCAAAATCACTCAAATTGATACAC




GTTGATATTGAGTTCTCCCCAGACT




CTGATGTACGGACGCTACTATCTGG




CTATTCCCATTGTGCACTATTGGCC




TACTGGCTACTGCAACCTGGAGGGC




GATTTGCGGTTAGAGTTTTCTTAAG




TGACCATATCATAGTCAACTTGGTC




ACTGCCATTCTGTCCGCTTTTGACT




CTAATCTGGTGTGCATTGCGTCAGG




ATTGACACACAAGGATGATGGGGCA




GGTTATATTTGTGCAAAGAAGCTTG




CAAATGTTGAGGCTTCAAGAATTGA




GTATTACTTGAGGATGGTCCACGGC




TGTGTTGACTCATTAAAAATTCCTC




ATCAATTAGGAATCATTAAATGGGC




TGAGGGTGAAGTGTCCCGACTTACC




AAAAAGGCGGATGATGAAATAAACT




GGCGGTTAGGTGATCCAGTTACCAG




ATCATTTGATCCGGTTTCTGAGCTA




ATAATTGCGCGAACAGGGGGATCAG




TATTAATGGAATACGGGACTTTTAC




TAACCTCAGGTGTGCGAACTTGGCA




GATACATATAAACTTTTGGCTTCAA




TTGTAGAGACCACCTTAATGGAAAT




AAGGGTTGAGCAAGATCAGTTGGAA




GATGATTCGAGGAGACAAATCCAGG




TAGTCCCTGCTTTTAATACAAGATC




CGGGGGAAGGATCCGTACATTGATT




GAGTGTGCTCAGCTGCAGGTCATAG




ATGTTATCTGTGTGAACATAGATCA




CCTCTTTCCCAAACACCGACATGCT




CTTGTCACACAACTTACTTACCAGT




CAGTGTGCCTTGGGGACTTGATTGA




AGGCCCCCAAATTAAGACATATCTA




AGGGCCAGGAAGTGGATCCAACGTA




GGGGACTCAATGAGACAATTAACCA




TATCATCACTGGACAAGTGTCGCGG




AATAAGGCAAGGGATTTTTTCAAGA




GGCGCCTGAAGTTGGTTGGCTTTTC




GCTCTGTGGCGGTTGGGGCTACCTC




TCACTTTAGCTGCTTAGATTGTTGA




TTATTATGAATAATCGGAGTCGAAA




TCGTAAATAGAAAGACATAAAATTG




CAAATAAGCAATGATCGTATTAATA




TTTAATAAAAAATATGTCTTTTATT




TCGT






Avian
ACGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


paramyxovir
AGCCTTTTAAAAGGAACCCTGGGCT
No: 5


us 4 isolate
GTCGTAGGTGTGGGAAGGTTGTATT



Uria_
CCGAGTGCGCCTCCGAGGCATCTAC



aalge/
TCTACACCTATCACAATGGCTGGTG



Russia/
TCTTCTCCCAGTATGAGAGGTTTGT



Tyuleniy_
GGATAACCAATCCCAAGTGTCAAGG



Island/115/
AAGGATCATCGGTCCCTGGCAGGGG



2015, genome
GATGCCTCAAAGTCAACATCCCTAT



Genbank:
GCTTGTCACTGCATCTGAAGATCCC



KU601399.1
ACCACTCGTTGGCAACTAGCATGTT




TATCTTTAAGGCTCTTGATCTCCAA




CTCATCAACCAGCGCTATCCGCCAG




GGGGCAATACTGACTCTCATGTCAC




TACCATCACAAAATATGAGAGCAAC




GGCAGCTATTGCTGGTTCCACAAAT




GCAGCTGTTATCAACACTATGGAAG




TCCTAAGTGTCAACGACTGGACCCC




ATCCTTCGACCCTAGGAGCGGTCTC




TCTGAAGAGGATGCTCAGGTTTTTA




GAGACATGGCAAGGGATCTGCCCCC




TCAGTTCACCTCCGGATCACCCTTT




ACATCAGCTTTGGCGGAGGGGTTTA




CCCCAGAAGACACCCACGACCTAAT




GGAGGCCTTGACCAGTGTGCTGATA




CAGATCTGGATCCTGGTGGCTAAGG




CCATGACCAACATTGATGGTTCTGG




GGAGGCCAATGAGAGACGTCTTGCA




AAGTATATCCAGAAGGGACAGCTCA




ATCGCCAGTTTGCAATTGGTAATCC




TGCTCGTCTAATAATCCAACAGACG




ATCAAAAGCTCCTTAACTGTCCGCA




GGTTCTTGGTCTCTGAGCTTCGTGC




ATCACGAGGTGCGGTGAAAGAAGGA




TCCCCTTATTATGCAGCTGTTGGGG




ATATCCACGCATACATCTTTAACGC




AGGACTGACACCATTCTTGACTACT




TTAAGATATGGGATCGGCACCAAGT




ATGCTGCTGTTGCACTCAGTGTGTT




CGCTGCAGACATTGCAAAATTAAAG




AGTCTACTTACCTTATACCAAGATA




AGGGTGTGGAGGCCGGATACATGGC




ACTCCTTGAAGATCCAGACTCCATG




CACTTTGCACCTGGAAACTTCCCAC




ACATGTACTCCTACGCGATGGGGGT




GGCTTCTTACCATGACCCCAGCATG




CGCCAGTACCAATATGCCAGGAGGT




TCCTCAGCCGACCCTTCTACTTGCT




AGGAAGGGACATGGCCGCCAAGAAT




ACAGGCACGCTGGATGAGCAACTGG




CAAAGGAACTGCAAGTGTCAGAGAG




AGACCGCGCCGCACTGTCCGCTGCG




ATTCAATCAGCAATGGAAGGGGGAG




AATCCGACGACTTCCCACTGTCGGG




ATCCATGCCGGCTCTCTCCGACAAT




GCACAACCAGTTACCCCAAGAACCC




AACAGTCCCAGCTCTCCCCTCCCCA




ATCATCAAGCATGTCTCAATCAGCG




CCCAGGACCCCGGACTACCAGCCTG




ATTTTGAACTGTAGGCTGCATCCAT




GCACCAGCAGCAGGCCAAAGAAACC




ACCCTCCTCTCCACACATCCCACCC




AATCACCCGCTGAGACTCAATCCAA




CACCCTAGCATCCCCCTCATTTAAT




TAAAAACTGACCAATAGGGTGGGGA




AGGAGAGTTATTGGCTATTGCCAAG




TTCGTGCAGCAATGGATTTTACCGA




TATTGATGCTGTCAACTCATTAATC




GAATCATCATCAGCAATCATAGATT




CCATACAGCATGGAGGGCTGCAACC




ATCAGGCACTGTCGGCCTATCGCAA




ATCCCAAAGGGGATAACCAGCGCTT




TAACCAAAGCCTGGGAGGCTGAGGC




AGCAAATGCTGGCAATGGGGACACC




CAACAAAAGTCTGACAGTCTGGAGG




ATCATCAGGCCAACGACACAGACTC




CCCCGAAGACACAGGCACTAACCAG




ACCATCCAGGAAACCAATATCGTTG




AAACACCCCACCCCGAAGTGCTATC




GGCAGCCAAAGCCAGACTCAAGAGG




CCCAAGGCAGGGAAGGACACCCACG




ACAATCCCTCTGCGCAACCTGATCA




TCTTTTAAAGGGGGGCCCCTTGAGC




CCACAACCAGTGGCACCGTGGGTGC




AAAATCCGCCCATTCATGGAGGTCC




CGGCACCGCCGATCCCCGCCCATCA




CAAACTCAGGATCATTCCCTCACCG




GAGAGAGATGGCAATCGTCACCGAC




AAAGCAACCGGAGCCATCGAACTGG




TGGAATGGTGCAACCCGGGGTGCAC




AGCAATCCGAATTGAACCTACCAGA




CTCGACTGTGTATGCGGACACTGCC




CCACCATCTGCAGCCTCTGCATGTA




TGACGACTGATCAGGTACAACTATT




AATGAAGGAGGTTGCCGATATGAAA




TCACTCCTTCAGGCACTAGTGAGGA




ACCTAGCTGTCCTGCCTCAACTAAG




GAACGAGGTTGCAGCAATCAGGACA




TCACAGGCTATGATAGAGGGGACAC




TTAATTCAATCAAGATTCTCGACCC




TGGGAATTATCAGGAATCATCACTA




AACAGTTGGTTCAAACCACGACAAG




ATCACGCGGTTGTTGTGTCCGGACC




AGGGAATCCATTGACCATGCCAACC




CCAATCCAGGACAATACCATATTCC




TGGATGAATTGGCAAGACCTCATCC




TAGTTTGGTCAATCCGTCCCCGCCC




ACTACCAACACTAATGTTGATCTTG




GCCCACAGAAGCAGGCTGCGATAGC




TTATATCTCAGCAAAATGCAAGGAT




CAAGGGAAACGAGATCAGCTCTCAA




AGCTCATCGAGCGAGCAACCACCTT




GAGTGAGATCAACAAAGTTAAAAGA




CAGGCTCTTGGCCTCTAGATCACCC




AATCACCCCCAGTAATGAGTACAAC




AATAATCAGAACCTCCCTAAACCAC




ATGGCCAACCAAGCACACCATCCAC




ACCACCCCTTACTATCCTTTGCCAG




AAACTCCGCCGCAGCTGATTTATTC




AAAAGAAGCCACTTGGTATAACCTA




GCAACCGCAAGATAGGGTGGGGAAG




GTGCTTTGCCTGCAAGAGGGCTCCC




TCATCTTCAGACACTTACCCGCCAA




CCCACCAGTGACACAATGGCAGACA




TGGACACTGTATATATCAATCTGAT




GGCAGATGATCCAACCCACCAAAAA




GAACTGCTGTCCTTTCCCCTCATTC




CAGTGACTGGTCCCGACGGGAAAAA




GGAACTCCAACACCAGGTTCGGACT




CAATCCTTGCTCGCCTCAGACAAGC




AAACTGAGAGGTTCATCTTCCTCAA




CACTTACGGGTTTATCTATGACACT




ACACCGGACAAGACAACTTTTTCCA




CCCCAGAGCATATCAATCAGCCCAA




GAGAACGATGGTGAGTGCTGCAATG




ATGACCATCGGCCTGGTCCCCGCCA




ATATACCCTTGAACGAACTAACAGC




TACTGTGTTTGGCCTGAAGGTGAGA




GTGAGGAAGAGTGCGAGATATCGAG




AGGTGGTCTGGTATCAGTGCAACCC




TGTACCAGCCCTGCTGGCAGCCACC




AGGTTCGGTCGCCAAGGGGGTCTCG




AATCGAGCACTGGAGTCAGTGTGAA




GGCCCCTGAGAAGATAGATTGTGAG




AAGGATTATACTTACTACCCTTATT




TCCTATCTGTGTGCTACATCGCTAC




TTCCAACCTGTTCAAGGTACCAAAA




ATGGTTGCTAATGCGACCAACAGTC




AATTATACCATCTGACCATGCAGGT




CACATTTGCCTTTCCAAAAAACATC




CCCCCAGCTAACCAGAAACTCCTGA




CACAAGTGGATGAAGGATTCGAGGG




CACTGTGGACTGCCATTTTGGGAAC




ATGCTGAAAAAGGATCGGAAAGGGA




ATATGAGGACATTGTCGCAGGCGGC




AGATAAGGTCAGACGGATGAACATC




CTTGTTGGTATCTTTGACTTGCATG




GGCCGACACTCTTCCTGGAGTATAC




CGGGAAACTAACAAAAGCTCTGCTA




GGGTTCATGTCTACCAGCCGAACAG




CAATCATCCCCATATCTCAGCTCAA




TCCTATGCTGAGTCAACTCATGTGG




AGTAGTGATGCCCAGATAGTAAAAT




TAAGAGTGGTCATAACTACATCCAA




ACGCGGCCCATGCGGGGGTGAGCAG




GAGTATGTGCTGGATCCCAAATTCA




CAGTTAAAAAAGAAAAAGCCCGACT




CAATCCTTTCAAGAAGGCAGCCCAA




TGATCAAATCTGCAGGATCTCAGAA




ATCAGACCACTCTATACTATCCACT




GATTAATAGACACGTAGCTATACAG




TTGATGAACCTATGAAGAATCAATT




AGCAAACCGAATCCTTGCTAGGGTG




GGGAAGGAGTTGATTGGGTGTCTAA




ACAAAAGCACTCCTTTGCACCTCCT




CGCCACGAAACAACCATAATGAGGT




TATCACGCACAATCCTGGCCCTGAT




TCTAGGCACACTTACCGGCTATTTA




ATGGATGCCCACTCCACCACTGTGA




ACGAGAGACCAAAGTCTGAAGGGAT




TAGGGGTGATCTTATACCAGGCGCA




GGTATCTTTGTAACTCAAGTCCGAC




AACTACAGATCTACCAACAGTCTGG




GTATCATGACCTTGTCATCAGGTTA




TTACCTCTTCTACCGGCAGAACTCA




ATGATTGTCAAAGGGAAGTTGTCAC




AGAGTACAACAATACGGTATCACAG




CTGTTGCAGCCTATCAAAACCAACC




TGGATACCTTATTGGCTGATGGTGG




TACAAGGGATGCCGATATACAGCCG




CGGTTCATTGGGGCGATAATAGCCA




CAGGTGCCCTGGCGGTGGCTACGGT




AGCTGAGGTGACTGCAGCCCAAGCA




CTATCGCAGTCGAAAACGAACGCTC




AAAATATTCTCAAGTTGAGAGATAG




TATTCAGGCCACCAACCAGGCAGTT




TTTGAAATTTCACAAGGACTTGAGG




CAACTGCAACTGTGCTATCAAAACT




GCAAACTGAGCTCAATGAGAACATT




ATCCCAAGCCTGAACAACTTGTCCT




GTGCTGCTATGGGGAATCGCCTTGG




TGTATCACTATCACTCTACTTGACC




TTAATGACCACCCTATTTGGGGACC




AGATCACAAACCCAGTGCTGACACC




AATCTCCTATAGCACTCTATCGGCA




ATGGCAGGTGGTCACATTGGCCCGG




TGATGAGTAAGATATTAGCCGGATC




TGTCACAAGTCAGTTGGGGGCAGAA




CAGTTGATTGCTAGCGGCTTAATAC




AGTCACAAGTAGTGGGTTATGATTC




CCAATATCAATTATTGGTTATCAGG




GTCAATCTTGTACGGATTCAAGAGG




TCCAGAATACGAGGGTCGTATCACT




AAGAACACTAGCGGTCAATAGGGAT




GGTGGACTTTATAGAGCCCAGGTGC




CTCCTGAGGTAGTTGAACGGTCTGG




CATTGCAGAGCGATTTTACGCAGAT




GATTGCGTTCTTACTACAACTGATT




ACATTTGCTCATCGATCCGATCTTC




TCGGCTTAATCCAGAGTTAGTCAAG




TGTCTCAGTGGGGCACTTGATTCAT




GCACATTTGAGAGGGAAAGTGCATT




ATTGTCAACCCCTTTCTTTGTATAC




AACAAGGCAGTTGTCGCAAATTGTA




AAGCAGCAACATGTAGATGTAATAA




ACCGCCGTCTATTATTGCCCAATAC




TCTGCATCGGCTCTGGTCACCATCA




CCACTGACACCTGCGCCGACCTTGA




AATTGAGGGTTATCGCTTCAACATA




CAGACTGAATCCAACTCATGGGTTG




CACCAAACTTCACTGTCTCGACTTC




ACAGATTGTATCAGTTGATCCAATA




GACATCTCCTCTGACATTGCCAAAA




TCAACAGTTCCATCGAGGCTGCAAG




AGAGCAGCTGGAACTAAGCAACCAG




ATCCTCTCCCGGATTAACCCACGAA




TCGTGAATGATGAATCACTGATAGC




TATTATCGTGACAATTGTTGTGCTT




AGTCTCCTCGTAATCGGTCTGATTG




TTGTTCTCGGTGTGATGTATAAGAA




TCTTAAGAAAGTCCAACGAGCTCAA




GCTGCCATGATGATGAAGCAAATGA




GCTCATCACAGCCTGTGACCACTAA




ATTAGGGACGCCTTTCTAGGAGGAT




AATCATATTACTCTACTCAATGATG




AGCAAGACGTACCAATTATCAATGA




TTGTGTCACAAGGCCGGTTGGGAAT




GCACCGAATCTCTCCCCTTTCTTTT




TAATTAAAAACATTTGAAGTGAGGA




TAAGAGGGGGGAAGAGTATGGTAGG




GTGGGGAAGGTAGCCAATCCCTGCC




TATTAGGCTGATCGTATCAAAAGAA




CCCAACAGAAGTCTAGATACAGGGC




AACATGGAGGGCAGCCGTGATAATC




TAACAGTGGATGATGAATTAAAGAC




AACATGGAGGTTAGCTTATAGAGTT




GTGTCCCTCCTATTGATGGTGAGCG




CTTTGATAATCTCTATAGTAATCCT




GACAAGAGATAACAGCCAAAGCATA




ATCACGGCGATCAACCAGTCATCTG




ACGCAGACTCTAAGTGGCAAACGGG




AATAGAAGGGAAAATCACCTCCATT




ATGACTGATACGCTCGATACCAGAA




ATGCAGCCCTTCTCCACATTCCACT




CCAGCTCAACACGCTTGCGGCGAAC




CTATTGTCCGCCCTTGGAGGCAACA




CAGGAATTGGCCCCGGAGATCTGGA




ACACTGCCGTTACCCTGTTCATGAC




ACCGCTTACCTGCATGGAGTTAATC




GATTACTCATCAACCAGACAGCTGA




TTATACAGCAGAAGGCCCCCTAGAT




CATGTGAACTTCATACCAGCCCCGG




TTACGACCACTGGATGCACAAGGAT




ACCATCCTTTTCTGTGTCATCGTCC




ATTTGGTGCTATACACACAACGTGA




TTGAAACCGGTTGCAATGACCACTC




AGGTAGTAACCAATATATCAGCATG




GGAGTCATTAAGAGAGCAGGCAACG




GCTTACCTTACTTCTCAACAGTTGT




AAGTAAGTATCTGACTGATGGGTTG




AATAGGAAGAGCTGTTCTGTAGCTG




CCGGATCTGGGCATTGCTACCTCCT




TTGCAGCTTAGTGTCGGAGCCTGAA




CCTGATGACTATGTATCACCTGATC




CCACACCGATGAGGTTAGGGGTGCT




AACGTGGGATGGGTCTTACACTGAA




CAGGTGGTACCCGAAAGAATATTCA




AGAACATATGGAGTGCAAACTACCC




GGGAGTAGGGTCAGGTGCTATAGTA




GGAAATAAAGTGTTATTCCCATTTT




ACGGCGGAGTGAGGAATGGATCGAC




CCCGGAGGTGATGAATAGGGGAAGA




TACTACTACATCCAGGATCCAAATG




ACTATTGCCCTGACCCGCTGCAAGA




TCAGATCTTAAGAGCGGAACAATCG




TATTACCCAACTCGATTCGGTAGGA




GGATGGTAATGCAAGGGGTCCTAGC




ATGTCCAGTATCCAACAATTCAACA




ATAGCAAGCCAATGTCAATCTTACT




ATTTTAATAACTCATTAGGGTTCAT




CGGGGCAGAATCTAGAATCTATTAT




CTCAATGGTAACATTTATCTTTATC




AGAGAAGCTCGAGTTGGTGGCCTCA




CCCCCAAATCTACCTGCTTGATTCT




AGAATTGCAAGTCCGGGTACTCAGA




CCATTGACTCAGGTGTCAATCTCAA




AATGTTAAATGTCACTGTGATTACA




CGACCATCATCTGGTTTTTGTAATA




GTCAGTCACGATGCCCTAATGATTG




CTTATTCGGGGTCTATTCGGATATC




TGGCCTCTTAGCCTTACCTCAGATA




GCATATTCGCATTCACAATGTATTT




ACAGGGGAAGACAACACGTATTGAC




CCGGCTTGGGCGCTATTCTCCAATC




ATGCAATTGGGCATGAGGCTCGTCT




GTTTAATAAGGAAGTTAGTGCTGCT




TATTCTACCACCACTTGTTTTTCGG




ACACCATCCAAAATCAGGTGTATTG




CCTGAGTATACTTGAGGTCAGAAGT




GAGCTCTTGGGAGCATTCAAAATAG




TACCATTCCTCTACCGCGTCTTGTA




GGCATCCATTCAGCCAAAAAACTTG




AGTGACCATGAGATTGACACCTGAT




CCCCCTCAAAGACACCTATCTAAAT




TACTGTTCTAGACCCATGATTAGGT




ACCTTCTTAATCAATCATTTGGTTT




TTAATTAAAAATGGAAAAATGGACC




TAGTTCCAAGAGAGGGCTGGAACCC




ATTAGGGTGGGGAAGGATTGCTTTG




CTCCTTGACTCACACTCACGTACAC




TCGATCAGACTTCTGTTAAAAAGGA




AACCTTCTCAAACTCGCCCCACGAT




GTCCAATCAGGCAGCTGAGATTATA




CTACCTAGCTTCCATCTAGAATCAC




CCTTAATCGAGAATAAGTGCTTCTA




TTATATGCAATTACTTGGTCTCGTG




TTGCCACATGATCACTGGAGATGGA




GGGCATTCGTTAACTTTACAGTGGA




TCAGGTGCACCTTAAAAATCGTAAT




CCCCGCTTAATGGCCCACATCGACT




ACACTAAAGATAGATTGAGGACTCA




TGGTGTCTTAGGTTTCCACCAGACT




CAGACAAGTTTGAGCCGTTATCGTG




TTTTGCTCCATCCTGAAACCTTACC




TTGGCTGTCAGCCATGGGAGGATGC




ATCAATCAGGTGCCTAAAGCATGGC




GGAACACCCTGAAATCGATCGAGCA




CAGTGTAAAGCAGGAGGCACCTCAA




CTAAAGCTACTCATGGAGAGAACCT




CATTAAAATTAACTGGGGTACCTTA




CTTGTTCTCTAATTGCAATCCCGGG




AAAACCAAAGCAGGAACTATACCTG




TCCTAAGTGAGATGGCATCGGAACT




CTTGTCAAATCCTATCTCCCAATTC




CAATCAACATGGGGATGTGCTGCTT




CGGGGTGGCACCATGTAGTCAGTAT




CATGAGGCTTCAGCAATATCAAAGA




AGGACAGGTAAGGAGGAAAAAGCAA




TCACTGAAGTTCAGTATGGCACAGA




CACCTGTCTCATTAACGCAGACTAC




ACCGTTGTTTTTTCCACACAGAACC




GTATCATAACGGTCTTGCCTTTCGA




TGTTGTCCTCATGATGCAAGACCTG




CTCGAATCCCGACGGAATGTCCTGT




TCTGTGCCCGCTTTATGTATCCCAG




AAGCCAACTTCATGAGAGGATAAGT




ACAATATTAGCCCTTGGAGACCAAT




TGGGGAGGAAAGCACCCCAAGTCCT




GTATGATTTTGTAGCAACCCTTGAG




TCATTTGCATACGCAGCGGTTCAAC




TTCATGACAACAATCCTACCTACGG




TGGGGCCTTCTTTGAATTCAACATC




CAAGAGTTAGAATCGATTCTGTCCC




CTGCACTTAGTAAGGATCAGGTCAA




CTTCTACATAAGTCAAGTTGTCTCA




GCGTACAGTAACCTTCCTCCATCCG




AATCGGCAGAGCTGCTGTGCCTGTT




ACGCCTGTGGGGTCATCCCTTGCTA




AACAGCCTTGATGCAGCAAAGAAAG




TCAGGGAGTCTATGTGCGCCGGGAA




GGTTCTCGATTACAACGCCATTCGA




CTTGTCTTGTCTTTTTATCATACGT




TGCTAATCAATGGGTACCGGAAGAA




ACACAAGGGTCGCTGGCCAAATGTG




AATCAACATTCACTTCTCAACCCGA




TAGTGAGGCAGCTTTATTTTGATCA




GGAGGAGATCCCACACTCTGTTGCC




CTTGAGCACTATTTGGATGTTTCAA




TGATAGAATTTGAAAAAACTTTTGA




AGTGGAACTATCTGACAGCCTAAGC




ATCTTCCTGAAGGATAAGTCGATAG




CTTTGGATAAGCAAGAATGGTATAG




TGGTTTTGTCTCAGAAGTGACTCCG




AAGCACCTGCGAATGTCCCGTCATG




ATCGCAAGTCTACCAATAGGCTCCT




GTTAGCCTTCATTAACTCCCCTGAA




TTCGATGTTAAGGAAGAGCTTAAAT




ACTTGACTACGGGTGAGTACGCCAC




TGACCCAAATTTCAATGTCTCATAC




TCACTTAAAGAGAAGGAGGTAAAGA




AAGAAGGGCGCATTTTCGCAAAAAT




GTCACAAAAGATGAGAGCGTGCCAG




GTTATTTGTGAAGAATTGCTAGCAC




ATCATGTGGCTCCTTTGTTTAAAGA




GAATGGTGTTACTCAATCAGAGCTA




TCCCTGACAAAAAATTTGTTGGCTA




TTAGCCAACTGAGTTACAACTCGAT




GGCCGCTAAGGTTCGATTGCTGCGG




CCAGGGGACAAGTTCACTGCTGCAC




ACTATATGACCACAGACCTAAAAAA




GTACTGTCTTAATTGGCGGCACCAG




TCAGTCAAACTGTTCGCCAGAAGCC




TGGATCGACTGTTTGGGTTAGACCA




TGCTTTTTCTTGGATACATGTCCGT




CTCACCAACAGCACTATGTACGTTG




CTGACCCCTTTAATCCACCAGACTC




AGATGCATGCACAAATTTAGACGAC




AATAAGAATACCGGGATCTTTATTA




TAAGTGCACGAGGTGGTATAGAAGG




CCTCCAACAAAAGCTATGGACTGGC




ATATCAATTGCAATTGCCCAAGCGG




CAGCGGCCCTCGAAGGCTTACGAAT




TGCTGCTACTCTGCAGGGGGATAAC




CAAGTTTTGGCGATTACAAAGGAAT




TCATGACCCCAGTCCCAGAAGATGT




AATCCATGAGCAGCTATCTGAGGCG




ATGTCTCGATACAAAAGGACTTTCA




CATACCTCAATTATTTAATGGGACA




TCAGTTGAAGGATAAGGAAACCATC




CAATCTAGTGATTTCTTTGTTTACT




CCAAAAGAATCTTCTTCAATGGATC




AATCTTAAGTCAATGCCTCAAGAAC




TTCAGTAAACTCACTACTAATGCCA




CTACCCTTGCTGAGAATACTGTGGC




CGGCTGCAGTGACATCTCTTCATGC




ATTGCCCGTTGTGTGGAAAACGGGT




TGCCAAAGGATGCCGCATACATCCA




GAATATAATCATGACTCGGCTTCAA




CTATTGCTAGATCATTACTATTCAA




TGCATGGCGGCATAAACTCAGAGTT




AGAGCAGCCAACGTTAAGTATCTCT




GTTCGAAACGCAACCTACTTACCAT




CTCAACTAGGCGGTTACAATCATTT




AAATATGACTCGACTATTCTGCCGC




AATATCGGCGACCCGCTTACCAGTT




CTTGGGCAGAGTCAAAAAGACTAAT




GGATGTTGGTCTCCTCAGTCGTAAG




TTCTTGGAGGGGATATTATGGAGAC




CCCCGGGAAGTGGGACGTTTTCAAC




ACTCATGCTTGATCCGTTCGCACTT




AACATTGATTACCTGAGGCCGCCAG




AGACAATTATCCGAAAACACACCCA




AAAAGTCTTATTGCAAGATTGTCCA




AACCCCCTATTAGCAGGTGTCGTTG




ACCCAAACTACAACCAAGAATTAGA




GCTGTTAGCTCAGTTCTTGCTTGAT




CGGGAAACCGTTATTCCCAGGGCTG




CCCATGCCATCTTTGAGTTGTCTGT




CTTGGGGAGGAAAAAACATATACAA




GGATTGGTAGATACTACAAAAACAA




TTATTCAGTGCTCATTGGAAAGACA




GCCATTGTCCTGGAGGAAAGTTGAG




AACATTGTTACCTACAACGCGCAGT




ATTTCCTCGGGGCCACCCAACAGGC




TGACACTAATGTCTCAGAAGGGCAG




TGGGTGATGCCAGGTAACTTCAAGA




AGCTTGTGTCCCTTGACGATTGCTC




GGTCACGTTGTCTACCGTATCACGG




CGCATATCGTGGGCCAATCTACTGA




ACTGGAGAGCTATAGACGGTTTGGA




AACCCCGGATGTGATAGAGAGTATC




GATGGCCGCCTTGTACAATCATCCA




ATCAATGTGGCCTATGTAATCAAGG




GTTGGGGTCCTACTCCTGGTTCTTC




TTGCCCTCTGGGTGTGTGTTCGACC




GTCCACAAGATTCCCGGGTGGTTCC




AAAGATGCCATATGTGGGGTCCAAA




ACAGATGAGAGACAGACTGCATCAG




TGCAAGCTATACAAGGATCCACTTG




TCACCTCAGGGCGGCATTGAGGCTT




GTATCACTCTACCTATGGGCCTATG




GGGATTCTGACATATCATGGCTAGA




AGCTGCGACACTGGCTCAAACACGG




TGCAACGTTTCTCTTGATGACTTGC




GAATCTTGAGCCCTCTCCCTTCTTC




GGCGAATTTACACCACAGATTAAAT




GACGGGGTAACACAGGTTAAATTCA




TGCCCGCCACATCGAGCCGAGTGTC




AAAGTTCGTCCAAATTTGCAATGAC




AACCAGAATCTTATCCGTGACGATG




GAAGTGTTGATTCCAATATGATTTA




TCAACAGGTTATGATATTAGGGCTT




GGGGAGATTGAATGCTTGTTAGCTG




ACCCAATTGATACAAACCCAGAACA




ATTGATTCTTCATCTACACTCTGAT




AATTCTTGCTGTCTCCGGGAGATGC




CAACGACCGGCTTTGTACCAGCTCT




AGGACTGACCCCATGTTTAACTGTC




CCAAAGCACAATCCTTACATATATG




ATGATAGCCCAATACCTGGTGATTT




GGATCAGAGGCTCATTCAGACCAAA




TTTTTCATGGGTTCTGACAATTTGG




ATAATCTTGATATCTACCAACAGCG




AGCTTTACTGAGTAGGTGTGTGGCT




TATGATGTTATCCAATCGATCTTTG




CTTGTGATGCACCAGTCTCTCAGAA




GAATGACGCAATCCTTCACACTGAC




TATCATGAGAATTGGATCTCAGAGT




TCCGATGGGGTGACCCTCGTATTAT




CCAAGTAACGGCAGGCTACGAGTTA




ATTCTGTTCCTTGCATACCAGCTTT




ATTATCTCAGAGTGAGAGGTGATCG




TGCAATCCTGTGTTATGTTGACAGG




ATACTCAATAGGATGGTATCTTCCA




ATCTAGGCAGTCTCATCCAGACACT




CTCTCATCCAGAGATTAGGAGGAGA




TTCTCGTTGAGTGATCAAGGGTTCC




TTGTTGAGAGGGAACTAGAGCCAAG




TAAGCCCTTGGTTAAACAAGCGGTT




ATGTTCTTGAGGGACTCAGTCCGCT




GCGCTCTAGCTACTATCAAGGCAGG




AATTGAGCCTGAGATCTCCCGAGGT




GGCTGTACTCAGGATGAGCTAAGCT




TTACTCTTAAGCACTTACTGTGTCG




GCGTCTCTGTGTAATCGCTCTCATG




CATTCAGAGGCAAAGAACTTGGTTA




AGGTTAGAAACCTTCCTGTAGAAGA




GAAAACCGCCTTACTGTATCAGATG




TTGGTCACTGAGGCCAATGCTAGGA




AATCAGGATCTGCTAGCATTATCAT




AAACCTAGTATCGGCACCCCAGTGG




GATATTCATACACCAGCATTGTATT




TTGTGTCAAAGAAAATGTTAGGGAT




GCTTAAGAGGTCAACCACACCCTTG




GATATAAGTGACCTCTCTGAGAGCC




AGAATCCCGCACCGGCAGAGCTGAA




TGATGTTCCTGATCACATGGCAGAA




GAATTTCCCTGTTTGTTTAGTAGTT




ATAACGCTACATATGAAGACACAAT




CACTTACAATCCAATGACTGAAAAA




CTCGCCTTGCACTTGGACAATAGTT




CCACCCCATCCAGAGCACTTGGTCG




TCACTACATCCTGCGGCCTCTTGGG




CTTTACTCATCTGCATGGTACCGGT




CTGCAGCACTACTAGCATCAGGGGC




CCTAAATGGGTTGCCTGAGGGGTCA




AGCCTGTATCTAGGAGAAGGGTACG




GGACCACCATGACTCTGCTTGAGCC




CGTTGTCAAGTCTTCAACTGTTTAC




TACCACACATTGTTTGACCCAACCC




GGAATCCTTCACAGCGGAACTATAA




ACCAGAACCACGGGTATTCACGGAT




TCTATTTGGTACAAGGATGATTTCA




CACGGCCACCTGGTGGTATTATCAA




CCTGTGGGGTGAAGATATACGTCAG




AGTGATATCACACAGAAAGACACGG




TCAACTTCATACTATCTCAGATCCC




GCCAAAGTCACTTAAGTTGATACAC




GTTGATATTGAATTCTCACCAGACT




CCGATGTACGGACACTACTTTCTGG




CTATTCTCATTGTGCATTATTGGCC




TACTGGCTATTGCAACCTGGAGGGC




GATTTGCGGTTAGGGTTTTCTTAAG




TGACCATGTCATAGTAAACTTGGTC




ACTGCAATTCTGTCTGCTTTTGACT




CTAATTTGGTGTGCATTGCATCAGG




ATTGACACACAAGGATGATGGGGCA




GGTTATATTTGCGCAAAGAAGCTTG




CAAATGTTGAGGCTTCAAGGATTGA




ATACTACCTGAGGATGGTCCATGGT




TGTGTTGACTCATTAAAGATCCCTC




ATCAATTAGGAATCATTAAATGGGC




CGAGGGTGAGGTGTCCCAACTTACC




AGAAAGGCAGATGATGAAATAAATT




GGCGGTTAGGTGATCCGGTTACCAG




ATCATTTGATCCAGTTTCTGAGCTA




ATCATTGCACGAACAGGGGGGTCTG




TATTGATGGAATACGGGGCTTTTAC




TAACCTCAGGTGTGCGAACTTGGCA




GATACATACAAACTTCTGGCTTCAA




TTGTAGAGACCACCTTAATGGAAAT




AAGGGTTGAACAAGACCAGTTGGAA




GATAATTCGAGGAGGCAAATCCAAA




TAGTCCCCGCTTTTAACACGAGATC




TGGGGGAAGGATCCGTACACTGATT




GAGTGTGCTCAGCTGCAGATTATAG




ATGTTATTTGTGTAAACATAGATCA




CCTCTTTCCTAGACACCGACATGTT




CTTGTCACGCAACTTACCTACCAGT




CGGTGTGCCTTGGGGACTTGATTGA




AGGCCCCCAAATTAAGACGTATCTG




AGGGCCAGAAAGTGGATCCAACGTC




GGGGACTCAATGAGACAGTTAACCA




TATCATCACTGGACAAGTGTCACGG




AATAAAGCAAGGGATTTTTTCAAGA




GGCGCCTGAAGTTGGTTGGCTTTTC




ACTCTGCGGTGGTTGGAGCTACCTC




TCACTTTAACTGTTCAAGTTGTTGA




TTATTATGAATAATCGGAGTCGGAA




TCGTAAATAGTAAGCCACAAAGTCG




TGAATAAACAATGATTGCATTAGTA




TTTAATAAAAAATATGTCTTTTATT




TCGT






Avian
ACGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


paramyxovir
AGCCTTTTAAAAGGAACCCTGGGCT
NO: 6


us 4 isolate
GTCGTAGGTGTGGGAAGGTTGTATT



APMV-
CCGAGCGCGCCTCCGAGGCATCTAC



4/Egyptian
TCTACACCTATCACAATGGCTGGTG



goose/South
TCTTCTCCCAATATGAGAGGTTTGT



Africa/N146
GGACAATCAATCCCAAGTGTCAAGG



8/2010,
AAGGATCATCGGTCCCTGGCAGGGG



complete
GATGCCTTAAAGTCAACATTCCTAT



genome
GCTTGTCACTGCATCTGAAGATCCC



Genbank:
ACCACTCGTTGGCAACTAGCGTGTT



JX133079.1
TATCTTTGAGGCTCTTGATCTCCAA




CTCATCAACCAGTGCTATCCGCCAG




GGGGCAATACTGACTCTCATGTCAC




TACCATCACAAAATATGAGAGCAAC




GGCAGCTATTGCTGGTTCCACAAAT




GCAGCTGTTATCAACACTATGGAAG




TCTTGAGTGTCAATGACTGGACCCC




ATCCTTCGACCCTAGGAGCGGTCTC




TCTGAAGAGGATGCTCAGGTTTTCA




GAGACATGGCAAAGGACCTGCCCCC




TCAGTTCACCTCCGGATCACCCTTT




ACATCAGCATTGGCGGAGGGGTTTA




CCCCAGAAGACACCACACGACCTAA




TGGAGGCCTTGACTAGTGTGCTGAT




ACAGATCTGGATCCTGGTGGCTAAG




GCCATGACCAACATTGATGGCTCTG




GAGAGGCCAATGAGAGACGTCTTGC




AAAGTACATCCAGAAGGGACAACTC




AATCGCCAGTTTGCAATTGGTAATC




CTGCTCGTCTGATAATCCAACAGAC




GATCAAAAGCTCCTTAACTGTCCGC




AGATTCTTGGTCTCTGAACTTCGTG




CATCACGAGGTGCGGTGAAAGAAGG




ATCCCCTTACTATGCAGCTGTTGGG




GACATCCACGCTTACATCTTTAACG




CAGGACTGACACCATTCTTGACTAC




CTTAAGATATGGGATCGGCACCAAG




TATGCTGCAGTTGCACTCAGTGTGT




TCGCTGCAGACATTGCAAAATTAAA




GAGCCTACTTACCCTATATCAAGAC




AAGGGTGTGGAGGCTGGATACATGG




CACTCCTTGAAGATCCAGACTCCAT




GCACTTTGCACCTGGAAACTTCCCA




CACATGTACTCCTACGCGATGGGGG




TGGCTTCTTACCATGACCCCAGCAT




GCGCCAGTACCAATATGCTAGGAGG




TTCCTCAGCCGACCTTTCTACTTGC




TAGGGAGGGACATGGCCGCCAAGAA




CACAGGCACGCTGGATGAGCAACTG




GCAAAGGAACTGCAAGTGTCAGAAA




GAGACCGCGCCGCATTGTCCGCTGC




GATTCAGTCAGCAATAGAGGGGGGA




GAATCCGACGACTTCCCACTGTCGG




GATCCATGCCGGCTCTCTCCGACAA




TGCGCAACCAGTTACCCCAAGAACC




CAACAGTCCCAGCCCTCCCCTCCCC




AATCATCAAGCATGTCTCAATCAGC




ACCCAAGACCCCGGACTACCAGCCT




GATTTTGAACTGTAGGCTGCATCAG




TGCACCAACAGCAGGCCAAAGGGAC




CACCCTCCTCCCCACACATCCCACC




CAATCACCCGCTGAGACCCAATCCA




ACACCCCAGCATCCCCCTCATTTAA




TTAAAAACTGACCAATAGGGTGGGG




AAGGAGAGCTGTTGGCTATCGCCAA




GATCGTGCAGCGATGGATTTTACCG




ATATTGATGCTGTCAACTCATTAAT




TGAATCATCATCAGCAATCATAGAT




TCCATACAGCATGGAGGGCTGCAAC




CATCAGGTACTGTTGGCCTATCGCA




AATCCCCAAGGGGATAACCAGCGCT




TTAACCAAGGCCTGGGAGGCTGAGA




CAGCAACTGCTGGCTACGGGGACAC




CCAACACAAATCTGACAGTCCGGAG




GATCATCAGGCCAACGACACAGACT




CCCCCGAAGACACAGGCACCAACCA




GACCATCCAGGAAGCCAACATCGTC




GAAACACCCCACCCCGAAGTTCTAT




CGGCAGCCAAAGCCAGACTCAAGAG




GCCCAAGGCAGGGAAGGACACCCAC




GACAATCCCCCTGCGCAACCCGATC




CCCTTTTAAAGGGGGGCCCCCTGAG




CCCACAACCAGCAGCACCGTGGGTG




CAAAATTCACCCATTCATGGAGGTC




CCGGCACCGCCGATCCCCGCCCATC




ACAAACTCAGGATCATTCCCTCACC




GGAGAGAGATGGCAATCGTCACCGA




TAAAGCAACCGGAGACATTGAACTG




GTGGAATGGTGCAACCCGGGGTGCA




CAGCAATCCGAACTGAACCAACCAG




ACTCGACTGTGTATGCGGATACTGC




CCCACCATCTGCAGCCTCTGCATGT




ATGACGACTGATCAGGTACAACTAT




TAATGAAGGAGGTTGCCGATATGAA




ATCACTCCTTCAGGCACTAGTGAGG




AACCTAGCTGTCCTGCCTCAACTAA




GGAACGAGGTTGCAGCAATCAGGAC




ATCACAGGCTATGATAGAGGGGACA




CTCAATTCAATCAAGATTCTCGACC




CTGGGAATTATCAAGAATCATCACT




GAACAGTTGGTTCAAACCACGCCAA




GATCACGCGGTTGCTGTGTCCGGAC




CAGGGAATCCATTGACCATGCCAAC




TCCAATCCAAGACAACACCATATTC




CTGGATGAACTGGCAAGACCTCATC




CTAGTTTGGTCAATCCGTCCCCGCC




CACTACCAACACTAATGTTGACCTT




GGCCCACAGAAGCAGGCTGCGATAG




CTTATATCTCAGCAAAATGCAAGGA




TCAAGGGAGACGAGATCAGCTCTCA




AAGCTCATCGAGCGAGCAACCACCT




TGAGTGAGATCAACAAAGTCAAAAG




ACAGGCCCTTGGCCTCTAGACCACT




CGACCACCCCCAGTAATGAACACAA




CAATAATCAGAACCTCCCTAAACCA




CACGGCCAACCCAGCACACCATCCA




CACCGCCCACCACTATCCCCCGCCA




AAAACTCCGCTGCAGCCGATTTATT




CAAAAGAAGCCACTTGATATGACTT




ATCAACCGCAAGGTAGGGTGGGGAA




GGTGCTTTGCCTGCAAGAGGGCTCC




CTCATCTTCAGACACGTACCCGCCA




ACCCACCAGTGACGCAATGGCAGAC




ATGGACACTGTATATATCAATCTGA




TGGCAGATGATCCAACCCACCAAAA




AGAACTGCTGTCCTTCCCTCTCATT




CCAGTGACTGGTCCCGACGGGAAAA




AGGAACTCCAACACCAGGTTCGGAC




TCAATCCTTGCTCGCCTCAGACAAG




CAAACTGAGAGGTTCATCTTCCTCA




ACACTTACGGGTTTATCTATGACAC




TACACCGGACAAGACAACTTTTTCC




ACCCCAGAGCATATCAATCAGCCCA




AGAGAACGATGGTGAGTGCTGCAAT




GATGACCATCGGCCTGGTCCCCGCC




AATATACCCTTGAACGAACTAACAG




CTACTGTGTTTGGCCTGAAAGTAAG




AGTGAGGAAGAGTGCGAGATATCGA




GAGGTGGTCTGGTATCAGTGCAACC




CTGTACCAGCCCTGCTTGCAGCCAC




CAGGTTTGGTCGCCAAGGAGGTCTC




GAATCGAGCACTGGAGTCAGTGTGA




AGGCCCCCGAGAAGATAGATTGCGA




GAAGGATTATACTTACTACCCTTAT




TTCCTATCTGTGTGCTACATCGCCA




CTTCTAACCTGTTCAAGGTACCAAA




AATGGTTGCTAATGCGACCAACAGT




CAATTATACCACCTGACGATGCAGG




TCACATTTGCCTTTCCAAAAAACAT




TCCCCCAGCTAACCAGAAACTCCTG




ACACAAGTGGATGAAGGATTCGAGG




GCACTGTGGACTGCCATTTTGGGAA




CATGCTGAAAAAGGATCGGAAAGGG




AATATGAGGACATTGTCGCAGGCGG




CAGATAAGGTCCGACGGATGAACAT




CCTTGTTGGTATCTTTGACTTGCAT




GGGCCGACACTCTTCCTGGAGTATA




CCGGGAAACTAACGAAAGCTCTGTT




AGGGTTCATGTCTACCAGCCGAACA




GCAATCATCCCCATATCTCAGCTCA




ATCCTATGCTGAGTCAACTCATGTG




GAGCAGTGATGCTCAGATAGTAAAA




TTAAGAGTGGTCATAACTACATCCA




AACGCGGCCCATGCGGGGGTGAGCA




GGAATATGTGCTGGACCCCAAATTC




ACAGTTAAAAAAGAAAAAGCCCGAC




TCAACCCTTTCAAGAAGGCAGCTTA




ATGATCAAATCTGCAGGATCTCAGG




AATCAGACCACTCTATACTATCTAC




TGATCAATAGATATGTAGCTATACA




GTTGATGAACCTATGAAGAATCAAT




TAGCAAACCGAATCCTTGCTAGGGT




GGGGAAGGAATTGATTGGGTGTCTA




AACAAAAGCACTTCTTTGCACCTAC




TCACCACAAAACAATCATAATGAGG




TTATCACGAACAATCCTGGCCCTGA




TTCTCGGCGCACTTACCGGCTATTT




AATGGATGCCCACTCCACCACTGTG




AATGAGAGACCAAAGTCTGAGGGGA




TTAGGGGTGACCTTATACCAGGTGC




AGGAATCTTTGTAACTCAAATCCGG




CAACTACAGATCTACCAACAATCTG




GGTATCATGACCTTGTCATCAGGTT




ATTACCTCTTTTACCGGCAGAACTC




AATGATTGCCAAAGGGAAGTTGTCA




CAGAGTACAACAATACAGTATCACA




GCTGTTGCAGCCTATCAAAACTAAC




CTGGATACCTTATTGGCTGATGGTG




GCACAAGGGATGCCGATATACAGCC




GCGGTTCATTGGGGCGATAATAGCC




ACAGGTGCCCTGGCAGTGGCTACGG




TAGCTGAGGTGACTGCAGCCCAAGC




ACTATCTCAGTCGAAAACGAACGCT




CAAAATATTCTCAAGTTGAGAGATA




GTATTCAGGCCACCAACCAGGCAGT




TTTTGAAATTTCACAAGGACTTGAG




GCAACTGCAACTGTACTATCAAAAC




TGCAAGCTGAGCTCAATGAGAACAT




TATCCCAAGTCTGAACAACTTGTCC




TGTGCTGCCATGGGGAATCGCCTTG




GTGTATCACTATCACTCTACTTGAC




CCTAATGACTACCCTATTTGGGGAC




CAGATCACAAACCCAGTGCTGACAC




CAATCTCCTATAGCACTTTATCGGC




AATGGCAGGTGGTCACATTGGCCCG




GTGATGAGTAAAATATTAGCCGGAT




CTGTCACAAGTCAGTTGGGGGCAGA




ACAGTTGATTGCTAGCGGCTTAATA




CAATCACAGGTAGTAGGTTATGATT




CCCAATATCAATTATTGGTTATCAG




GGTCAACCTTGTACGGATTCAAGAG




GTCCAGAATACGAGGGTCGTATCAC




TAAGAACACTAGCGGTCAATAGGGA




TGGTGGACTTTATAGAGCCCAGGTG




CCTCCCGAGGTAGTCGAACGGTCTG




GCATTGCAGAGCGATTTTATGCAGA




TGATTGTGTTCTTACTACAACTGAT




TACATTTGCTCCTCGATCCGATCTT




CTCGGCTTAATCCAGAGTTAGTCAA




ATGTCTCAGTGGGGCACTTGATTCA




TGCACATTTGAGAGGGAAAGTGCAT




TATTGTCAACCCCTTTCTTTGTATA




CAACAAGGCAGTTGTCGCAAATTGT




AAAGCGGCAACATGTAGATGCAATA




AACCGCCGTCTATTATTGCCCAATA




CTCTGCATCAGCTCTGGTCACCATC




ACCACCGACACCTGCGCCGACCTTG




AAATTGAGGGCTATCGCTTCAATAT




ACAGACTGAATCCAACTCATGGGTT




GCACCAAACTTCACTGTCTCGACTT




CACAGATTGTATCAGTTGATCCAAT




AGACATCTCCTCTGACATTGCTAAA




ATCAACAGTTCCATCGAGGCTGCAA




GAGAGCAGCTGGAACTAAGCAACCA




GATCCTTTCCCGAATTAACCCACGA




ATTGTGAATGATGAATCATTGATAG




CTATTATCGTGACAATTGTTGTGCT




TAGTCTCCTCGTAATCGGTCTGATT




GTTGTTCTCGGTGTGATGTATAAGA




ATCTTAAAAAAGTCCAACGAGCTCA




AGCTGCCATGATGATGCAGCAGATG




AGCTCATCACAGCCCGTGACCACTA




AATTAGGGACGCCCTTCTAGGATAA




TAATCATATCACTCTACTCAATGAT




GAGCAAGACGTACCAATCATCAATG




ATTGTGTCACAAGGCCGGTAGGGAA




TGCACCGAATTTCTCCCCTTTCTTT




TTAATTAAAAACATTTGTAGTGAGG




ATGAGAAGGGGAAAATGTTTGGTAG




GGTGGGGAAGGTAGCCAATTCCTGC




CTATTAGGCCGACCGTATCAAAAGA




ACTCAACAGAAGTCCAGATACAAGG




TAACATGGAGGGCAGCCGTGATAAT




CTTACAGTGGATGATGAATTAAAGA




CAACGTGGAGGTTAGCTTATAGAGT




TGTGTCCCTTCTATTGATGGTGAGC




GCTTTGATAATCTCTATAGTAATCC




TGACGAGAGATAACAGCCAAAGCGT




AATCACGGCGATCAACCAGTCATCT




GAAGCTGACTCCAAGTGGCAAACGG




GAATAGAAGGGAAAATCACCTCCAT




TATGACTGATACGCTCGATACCAGG




AATGCAGCCCTTCTCCACATTCCAC




TCCAGCTCAACTCGCTTGAGGCGAA




CCTATTGTCCGCCCTTGGGGGCAAC




ACAGGAATTGGCCCCGGAGATATAG




AGCACTGCCGTTACCCTGTTCATGA




CACCGCTTACCTGCATGGAGTTAAT




CGATTACTCATCAACCAGACAGCTG




ATTATACAGCAGAAGGCCCCCTAGA




TCATGTGAACTTCATTCCAGCCCCG




GTTACGACCACTGGATGCACAAGGA




TACCATCCTTTTCCGTGTCATCGTC




CATTTGGTGCTATACACACAACGTG




ATTGAAACCGGTTGCAATGACCACT




CAGGTAGTAACCAATATATCAGCAT




GGGAGTCATTAAGAGAGCGGGCAAC




GGCCTACCTTACTTCTCAACAGTTG




TAAGTAAGTATCTGACTGATGGGTT




GAATAGGAAAAGCTGTTCTGTAGCT




GCCGGATCTGGGCATTGCTACCTCC




TTTGCAGCTTGGTGTCGGAGCCCGA




ATCTGATGACTATGTGTCACCTGAT




CCTACACCGATGAGGTTAGGGGTGC




TAACGTGGGATGGGTCTTACACTGA




GCAGGTGGTACCCGAAAGAATATTC




AAGAACATATGGAGTGCAAACTACC




CAGGAGTAGGGTCAGGTGCTATAGT




AGGAAATAAGGTGTTATTCCCATTT




TACGGCGGAGTGAGTAATGGATCGA




CCCCGGAGGTGATGAATAGGGGAAG




ATATTACTACATCCAGGATCCAAAT




GACTATTGCCCTGACCCGCTGCAAG




ATCAGATCTTAAGGGCGGAACAATC




GTATTACCCAACTCGATTCGGTAGG




AGGATGGTGATGCAAGGGGTCCTAG




CATGTCCAGTATCCAACAATTCAAC




AATAGCAAGCCAATGTCAATCTTAC




TATTTTAATAACTCATTAGGGTTCA




TTGGGGCAGAATCTAGGATCTATTA




CCTCAATGATAACATTTATCTTTAC




CAGAGAAGCTCGAGCTGGTGGCCTC




ACCCCCAGATTTACCTGCTTGATTC




TAGGATTGCAAGTCCGGGTACTCAG




AACATTGACTCAGGTGTCAATCTCA




AGATGTTAAATGTCACTGTAATTAC




ACGACCATCATCTGGTTTTTGTAAT




AGTCAGTCACGATGCCCTAATGACT




GCTTATTCGGGGTCTACTCGGATAT




CTGGCCTCTTAGCCTTACCTCAGAT




AGCATATTCGCATTCACAATGTATT




TACAGGGGAAGACAACACGTATTGA




CCCGGCTTGGGCGCTATTCTCCAAT




CATGCGATTGGGCATGAGGCTCGTC




TGTTTAATAAGAAGGTTAGTGCTGC




TTATTCTACCACCACTTGTTTTTCG




GACACCGTCCAAAATCAGGTGTATT




GCCTGAGTATACTTGAGGTCAGGAG




TGAGCTCTTGGGAGCATTCAAAATA




GTACCATTCCTCTATCGCGTCTTGT




AGGCATCCATTCAGCCAGAAAACTT




GAGTGACCATGATATTAACACCTGA




TCCCCCTCAAAGACACCTATCTAAA




TTACTGTTCTAGACTCATGATTAGG




TACCTTCTTAATCAATCATTTGGTT




TTTAATTAAAAATGAAAAAATAGGC




CTAGTTCCAAGAGAGGGCTGGAACC




CATTAGGGTGGGGAAGGATTGCTTT




GCTCCTTGACTCACACACACGTACA




CTCGATCAGACTCCTGTTTAAAAGG




AATCCTTCTCAAACTCGCCCCACGA




TGTCCAATCAGGCGGCTGAGATTAT




ACTACCCACCTTCCATCTAGAATCA




CCCTTAATCGAAAATAAGTGCTTCT




ATTATATGCAATTACTTGGTCTCGT




GTTGCCACATGATCACTGGAGATGG




AGGGCATTCGTTAACTTTACAGTGG




ATCAGGTGCACCTTAAAAATCGTAA




TCCCCGCTTGATGGCCCACATCGAC




TACACTAAGGATAGATTAAGGACTC




ATGGTGTCTTAGGTTTCCACCAGAC




TCAGACAAGTTTGAGCCGTTATCGT




GTTTTGCTCCATCCTGAAACCTTAT




CTTGGCTATCAGCCATGGGGGGATG




CATCAATCAGGTTCCTAAAGCATGG




CGGAACACTCTGAAATCGATCGAGC




ACAGTGTAAAGCAGGAGGCACCTCA




ACTAAAGCTACTCATGGAGAGAACC




TCATTAAAATTAACTGGAGTACCTT




ACTTGTTCTCTAATTGCAATCCCGG




GAAAACCACAGCAGGTACTATGCCT




GTCCTAAGTGAGATGGCATCGGAAC




TCTTGTCGAATCCTATCTCCCAATT




CCAATCAACATGGGGGTGTGCTGCT




TCGGGGTGGCACCATGTAGTCAGTA




TCATGAGGCTCCAACAATACCAAAG




AAGGACAGGTAAAGAAGAGAAAGCG




ATCACTGAAGTTCAGTATGGCACAG




ACACCTGTCTCATTAATGCAGACTA




CACTGTTGTGTTTTCCACACAGAAC




CGTATCATAACAGTCTTGCCTTTTG




ATGTTGTCCTCATGATGCAAGACCT




GCTCGAATCCCGACGGAATGTCCTG




TTCTGTGCCCGCTTTATGTATCCCA




GAAGCCAACTTCATGAGAGGATAAG




TACAATATTAGCTCTTGGAGACCAA




CTGGGGAGAAAAGCACCCCAAGTCC




TGTATGATTTCGTAGCAACCCTTGA




GTCATTTGCATACGCGGCTGTTCAA




CTTCATGACAACAATCCTACCTACG




GTGGGGCCTTCTTTGAATTCAATAT




CCAAGAGTTAGAATCCATTCTGTCC




CCTGCACTTAGTAAGGATCAGGTCA




ACTTCTACATAAATCAAGTTGTCTC




AGCGTACAGTAACCTTCCCCCATCT




GAATCGGCAGAATTGCTGTGCCTGT




TACGCCTGTGGGGTCACCCCCTGCT




AAACAGCCTTGATGCAGCAAAGAAA




GTCAGGGAGTCTATGTGCGCCGGGA




AGGTTCTCGATTACAACGCCATTCG




ACTTGTCTTGTCTTTTTATCATACG




TTGCTAATCAACGGATACCGGAAGA




AACACAAGGGTCGCTGGCCAAATGT




GAATCAACATTCACTCCTCAACCCG




ATAGTGAGGCAGCTTTATTTTGATC




AGGAGGAGATCCCACACTCTGTTGC




TCTTGAGCACTATTTGGACGTCTCA




ATGGTAGAATTTGAAAAAACTTTTG




AAGTGGAATTATCTGACAGCCTAAG




CATCTTCCTAAAGGATAAGTCGATA




GCTTTGGATAAGCAAGAGTGGTACA




GTGGTTTTGTCTCAGAAGTGACTCC




GAAGCACCTGCGAATGTCCCGTCAT




GATCGCAAGTCTACCAATAGGCTCC




TGTTAGCCTTCATTAACTCCCCTGA




ATTCGATGTTAAGGAAGAGCTTAAA




TACTTGACTACGGGTGAGTACGCCA




CTGACCCAAATTTCAATGTCTCATA




CTCACTTAAAGAGAAGGAAGTAAAG




AAAGAGGGGCGCATTTTCGCAAAAA




TGTCACAAAAGATGAGAGCATGCCA




GGTTATTTGTGAAGAATTGCTAGCA




CATCATGTGGCTCCTTTGTTTAAAG




AGAATGGTGTTACTCAATCAGAGCT




ATCCCTGACAAAAAATTTGTTGGCT




ATTAGCCAACTGAGTTACAACTCGA




TGGCCGCTAAGGTGCGATTGCTGAG




ACCAGGGGACAAGTTCACTGCTGCA




CACTATATGACCACAGACCTAAAAA




AGTACTGTCTTAATTGGCGGCACCA




GTCAGTCAAACTGTTCGCCAGAAGC




CTGGATCGACTGTTTGGGTTAGACC




ATGCTTTTTCTTGGATACATGTCCG




CCTCACCAACAGCACTATGTACGTT




GCTGACCCCTTCAATCCACCAGACT




CAGATGCATGCATTAATTTAGACGA




CAATAAGAACACTGGGATTTTTATT




ATAAGTGCACGAGGTGGTATAGAAG




GCCTCCAACAAAAACTATGGACTGG




CATATCAATTGCAATTGCCCAAGCG




GCAGCGGCCCTCGAAGGCTTACGAA




TTGCTGCTACTCTGCAGGGGGATAA




CCAAGTTTTGGCGATTACAAAGGAA




TTCATGACCCCAGTCCCAGAGGATG




TAATCCATGAGCAGCTATCTGAGGC




GATGTCTCGATACAAAAGGACTTTC




ACATACCTCAATTATTTAATGGGAC




ATCAATTGAAGGATAAGGAAACCAT




CCAATCCAGTGATTTCTTTGTCTAT




TCCAAAAGAATCTTCTTCAATGGAT




CAATCTTAAGTCAATGCCTCAAGAA




CTTCAGTAAACTCACTACTAATGCC




ACTACCCTTGCTGAGAATACTGTGG




CCGGCTGCAGTGACATCTCTTCATG




CATTGCCCGTTGTGTGGAAAACGGG




TTGCCTAAGGATGCCGCATATATCC




AGAATATAATCATGACTCGGCTTCA




ATTATTGCTAGATCATTACTATTCA




ATGCATGGCGGCATAAACTCAGAAT




TAGAGCAGCCAACTTTAAGTATCTC




TGTTCGAAACGCAACCTACTTACCA




TCTCAACTAGGCGGTTACAATCATC




TAAATATGACCCGACTATTCTGCCG




CAATATCGGCGACCCGCTTACCAGT




TCTTGGGCGGAGTCAAAAAGACTAA




TGGATGTTGGTCTCCTCAGTCGTAA




GTTCTTGGAGGGGATATTATGGAGA




CCCCCGGGAAGTGGGACGTTTTCAA




CACTCATGCTTGACCCGTTCGCACT




TAACATTGATTACCTGAGGCCGCCA




GAAACAATTATCCGAAAACACACCC




AAAAAGTCTTGTTGCAAGATTGCCC




AAACCCCCTATTAGCAGGTGTCGTT




GACCCAAACTACAACCAAGAATTAG




AGCTGTTAGCTCAGTTCTTGCTTGA




TCGGGAGACCGTTATTCCCAGGGCT




GCCCATGCCATCTTTGAGTTGTCTG




TCTTGGGGAGGAAAAAACATATACA




AGGATTGGTGGACACTACAAAAACA




ATTATTCAGTGCTCATTGGAAAGAC




AGCCATTGTCCTGGAGGAAAGTTGA




GAACATTGTTACCTACAACGCGCAG




TATTTCCTCGGGGCCACCCAACAGG




CTGATACTAATGTCTCAGAAGGGCA




GTGGGTGATGCCAGGTAACTTCAAG




AAGCTTGTGTCCCTTGACGATTGCT




CGGTCACGTTGTCTACTGTATCACG




GCGCATATCGTGGGCCAATCTACTG




AACTGGAGAGCTATAGATGGTTTGG




AAACCCCGGATGTGATAGAGAGTAT




TGATGGCCGCCTTGTACAATCATCA




AATCAATGTGGCCTATGTAATCAAG




GGTTGGGGTCCTACTCTTGGTTCTT




CTTGCCCTCTGGGTGTGTGTTCGAC




CGTCCACAAGATTCCCGGGTAGTTC




CAAAGATGCCATACGTGGGGTCCAA




AACAGATGAGAGACAGACTGCATCA




GTGCAAGCTATACAAGGATCCACTT




GTCACCTCAGGGCAGCATTGAGGCT




TGTATCACTCTACTTATGGGCTTAT




GGAGATTCTGACATATCATGGCTAG




AAGCTGCGACACTGGCTCAAACACG




GTGCAATGTTTCTCTTGATGACTTG




CGAATCTTGAGCCCTCTCCCTTCTT




CGGCGAATTTACACCACAGATTAAA




TGACGGGGTAACACAGGTTAAATTC




ATGCCCGCCACATCGAGCCGAGTGT




CAAAGTTCGTCCAAATTTGCAATGA




CAACCAAAATCTTATCCGTGATGAT




GGGAGTGTTGATTCCAATATGATTT




ATCAACAGGTTATGATATTAGGGCT




TGGGGAGATTGAATGCTTGTTAGCT




GACCCAATTGATACAAACCCAGAAC




AATTGATTCTTCATCTACACTCTGA




TAATTCTTGCTGTCTCCGGGAGATG




CCAACGACTGGCTTTGTACCTGCTC




TAGGACTGACCCCATGTTTAACTGT




CCCAAAGCACAATCCTTACATTTAT




GATGATAGCCCAATACCTGGTGATT




TGGATCAGAGGCTCATTCAGACCAA




ATTTTTCATGGGTTCTGACAATTTG




GATAATCTTGATATCTACCAACAGC




GAGCTTTACTGAGCAGGTGTGTGGC




TTATGATGTTATCCAATCGATCTTT




GCCTGTGATGCACCAGTCTCTCAGA




AGAATGACGCAATCCTTCACACTGA




CTATCATGAGAATTGGATCTCAGAG




TTCCGATGGGGTGACCCTCGTATTA




TCCAAGTAACGGCAGGCTACGAGTT




AATTCTGTTCCTTGCATACCAGCTT




TATTATCTCAGAGTGAGGGGTGACC




GTGCAATCCTGTGTTATATTGACAG




GATACTCAATAGGATGGTATCTTCC




AATCTAGGCAGTCTCATCCAGACAC




TCTCTCATCCAGAGATTAGGAGGAG




ATTCTCATTGAGTGATCAAGGGTTC




CTTGTTGAAAGGGAATTAGAGCCAG




GTAAGCCCTTGGTTAAGCAAGCGGT




TATGTTCTTGAGGGACTCGGTCCGC




TGCGCTTTAGCAACTATCAAGGCAG




GAATTGAGCCTGAGATCTCCCGAGG




TGGCTGTACTCAGGATGAGCTGAGC




TTTACTCTTAAGCACTTACTATGCC




GGCGTCTCTGTGTAATCGCTCTCAT




GCATTCAGAAGCAAAGAACTTGGTT




AAAGTCAGAAACCTTCCTGTAGAGG




AGAAAACCGCCTTACTGTACCAAAT




GTTGGTCACTGAGGCCAATGCTAGG




AAGTCAGGATCTGCTAGCATTATCA




TAAACCTAGTCTCGGCACCCCAGTG




GGACATTCATACACCAGCACTGTAT




TTTGTGTCAAAGAAAATGCTAGGGA




TGCTTAAGAGGTCAACCACACCCTT




GGATATAAGTGACCTCTCCGAGAGC




CAGAATTCCGCACCTGCAGAGCTGA




CTGATGTTCCTGGTCACATGGCAGA




AGAGTTTCCCTGTTTGTTTAGTAGT




TATAACGCCACATATGAAGACACAA




TTACTTACAATCCAACGACTGAAAA




ACTCGCCTTGCACTTGGACAACAGT




TCCACCCCATCCAGAGCACTTGGCC




GTCACTACATCCTGCGGCCTCTTGG




GCTTTATTCATCCGCATGGTACCGG




TCTGCAGCACTACTAGCGTCAGGGG




CCTTGAATGGGTTGCCTGAGGGGTC




AAGCCTGTATCTAGGAGAAGGGTAC




GGGACCACCATGACTCTGCTTGAGC




CCGTTGTCAAGTCTTCAACTGTTTA




CTACCATACATTGTTTGACCCAACC




CGGAATCCTTCTCAGCGGAACTATA




AGCCAGAACCACGGGTATTCACGGA




TTCTATTTGGTACAAGGATGATTTC




ACACGGCCACCTGGTGGTATTATCA




ACCTGTGGGGTGAAGATATACGGCA




GAGTGATATCACACAGAAAGACACG




GTCAACTTCATACTATCTCAGATCC




CGCCAAAATCACTTAAGTTGATACA




CGTTGATATTGAATTCTCACCAGAC




TCCGATGTACGGACACTACTATCTG




GCTATTCTCATTGTGCACTATTAGC




CTACTGGCTATTGCAACCTGGAGGG




CGATTTGCAGTTAGGGTTTTCTTAA




GTGACCATATCATAGTAAACTTAGT




CACTGCAATTCTGTCTGCTTTTGAC




TCTAATTTGGTGTGCATTGCATCAG




GATTGACACACAAGGATGATGGGGC




AGGTTATATTTGCGCAAAGAAGCTT




GCAAATGTTGAGGCTTCAAGGATTG




AGCACTACTTGAGGATGGTCCATGG




TTGCGTTGACTCATTAAAGATCCCT




CATCAATTAGGAATCATTAAATGGG




CCGAGGGTGAGGTGTCCCAACTTAC




CAGAAAGGCGGATGATGAAATAAAT




TGGCGGTTAGGCGATCCTGTTACCA




GATCATTTGATCCAGTTTCTGAGCT




AATCATTGCACGAACAGGGGGGTCT




GTATTAATGGAATACGGGGCTTTTA




CTAACCTCAGGTGTGCGAACTTGGC




AGATACATACAAGCTTCTGGCTTCA




ATTGTAGAGACCACCCTAATGGAAA




TAAGGGTTGAGCAAGATCAGTTGGA




AGATAATTCGAGGAGACAAATCCAA




GTAGTCCCCGCTTTCAACACGAGAT




CTGGGGGAAGGATCCGTACGCTGAT




TGAGTGTGCTCAGCTGCAGATTATA




GATGTTATTTGTGTAAACATAGACC




ACCTCTTTCCTAAACACCGACATGT




TCTTGTCACGCAACTTACCTACCAG




TCGGTGTGCCTTGGGGACCTGATTG




AAGGCCCCCAAATTAAGACGTATCT




AAGGGCCAGAAAGTGGATCCAACGT




CAGGGACTCAATGAGACAGTTAACC




ATATCATCACTGGACAAGTGTCACG




GAATAAAGCAAGGGATTTTTTCAAG




AGGCGCTTGAAGTTGGTTGGGTTTT




CACTCTGCGGTGGTTGGAGCTACCT




CTCACTTTAGCTGTTCAGGTTGTCG




ATTATTATGAATAATCGGAGTCGGA




ATCGCAAATAGGAAGCCACAAAGTT




GTGGAGAAACAATGATTGCATTAGT




ATTTAATAAAAAATATGTCTTTTAT




TTCGT






Avian
ACGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


paramyxovir
AGCCTTTTAAAAGGAACCCTGGGCT
NO: 7


us 4 strain
GTCGTAGGTGTGGGAAGGTTGTATT



APMV4/
CCGAGTGCGCCTTCGAGGCATCTAC



duck/China/
TCTACACCTATCACAATGGCTGGTG



G302/2012,
TCTTCTCCCAGTATGAGAGGTTTGT



complete
GGACAATCAATCCCAAGTGTCAAGG



genome
AAGGATCATCGTTCCCTGGCAGGGG



Genbank:
GATGCCTAAAAGTCAACATCCCTAT



KC439346.1
GCTTGTCACTGCATCTGAAGATCCC




ACCACTCGTTGGCAACTAGCATGTT




TATCCTTAAGGCTCTTGGTCTCCAA




CTCATCAACCAGTGCTATCCGCCAG




GGGGCGATACTGACTCTCATGTCAC




TACCATCACAAAATATGAGAGCAAC




GGCAGCTATTGCTGGTTCCACAAAT




GCGGCTGTTATCAACACTATGGAAG




TCTTGAGTGTCAACGACTGGACCCC




ATCCTTCGACCCCAGGAGCGGTCTC




TCTGAAGAGGATGCTCAGGTTTTCA




GAGACATGGCAAGGGACCTGCCCCC




TCAGTTCACCTCCGGGTCACCCTTT




ACATCGGCATTGGCGGAGGGGTTTA




CCCCGGAGGACACCCACGACCTAAT




GGAGGCCCTGACCAGTGTGCTGATA




CAGATCTGGATCCTGGTGGCTAAGG




CCATGACCAACATTGATGGCTCTGG




GGAAGCCAATGAGAGACGTCTTGCA




AAGTACATCCAGAAGGGACAGCTTA




ATCGCCAGTTTGCAATTGGTAATCC




TGCTCGTCTGATAATCCAACAGACG




ATCAAAAGCTCCTTAACTGTCCGCA




GGTTCTTGGTCTCTGAGCTTCGTGC




ATCACGAGGTGCGGTGAAAGAAGGA




TCCCCTTACTATGCGGCTGTTGGGG




ATATCCACGCTTACATCTTTAACGC




AGGACTGACACCATTCTTGACTACC




TTAAGATACGGGATAGGCACCAAAT




ATGCTGCTGTTGCACTCAGTGTGTT




CGCTGCAGACATTGCAAAATTAAAG




AGTCTACTTACCCTATACCAGGACA




AGGGTGTGGAGGCCGGATACATGGC




ACTCCTCGAAGATCCAGACTCTATG




CACTTTGCGCCTGGAAACTTCCCAC




ACATGTACTCCTACGCGATGGGGGT




GGCTTCTTACCATGACCCCAGCATG




CGCCAGTACCAATATGCTAGGAGGT




TCCTCAGCCGTCCTTTCTACTTGCT




AGGGAGGGACATGGCTGCCAAGAAC




ACAGGCACGCTGGATGAGCAACTGG




CAAAGGAACTACAAGTGTCAGAAAG




AGACCGTGCCGCATTGTCCGCTGCG




ATTCAATCAGCAATGGAGGGGGGAG




AATCTGACGACTTCCCACTATCGGG




ATCCATGCCGGCTCTCTCCGACAAT




GCGCAACCAGTTACCCCAAGAACTC




AACAGTCCCAGCTCTCCCCTCCCCA




ATCATCAAGCATGTCTCAATCAGCG




CCCAGGACCCCGGACTACCAGCCTG




ATTTTGAACTGTAGGCTGCATCCAC




GCACCAACAGCAGGCCAAAGAAACC




ACCCCCCTCCTCACACATCCCACCC




AATCACCCGCCAAGACCCAATCCAA




CACCCCAGCATCCCCCTCATTTAAT




TAAAAACTGACCAATAGGGTGGGGA




AGGAGAGTTATTGGCTATTGCCAAG




TTCGTGCAGCAATGGATTTTACCGA




TATTGATGCTGTCAACTCATTAATT




GAATCATCATCAGCAATCATAGATT




CCATACAGCATGGAGGGCTGCAACC




ATCAGGCACTGTCGGCCTATCACAA




ATCCCAAAGGGGATAACCAGCGCCT




TAACCAAGGCCTGGGAGGCCGAGGC




AGCAACTGCTGGCAACGGGGACACC




CAACACAAATCTGACAGTCCGGAAG




ACCATCAGGCCAACGACGCAGACTC




CCCCGAAGACACAGGCACCAACCAG




ACCATCCAAGAAGCCAATATCGTTG




AAACACCCCACCCCGAAGTGCTATC




GGCAGCCAAAGCCAGACTCAAGAGG




CCCAAGACAGGGAGGGACACCCACG




ACAATCCCTCTGCGCAACCTGATCA




TCTTTTAAAGGGGGGCCCCCTGAGC




CCACAACCAGCGGCACCGTGGGTGA




AAGATCCATCCATTCATGGAGGTCC




CGGCACCGCCGATCCCCGCCCATCA




CAAACTCAGGATCATTCCCTCACCG




GAGAGAGATGGCAATCGTCACCGAC




AAAGCAACCGGAGACATCGAACTGG




TGGAATGGTGCAACCCGGGGTGCAC




AGCTATCCGAGCTGAACCAACCAGA




CTCGACTGTGTATGCGGACACTGCC




CCACCATCTGCAGCCTCTGCATGTA




TGACGACTGATCAGGTACAACTATT




AATGAAGGAGGTTGCCGACATGAAA




TCACTCCTTCAGGCACTAGTGAGGA




ACCTAGCTGTCCTGCCTCAACTAAG




GAATGAGGTTGCAGCAATCAGGACA




TCACAGGCCATGATAGAGGGGACAC




TCAATTCAATCAAGATTCTCGACCC




TGGGAATTATCAAGAATCATCACTA




AACAGTTGGTTCAAACCACGCCAAG




ATCACGCGGTTGTTGTGTCCGGACC




AGGGAATCCATTGGCCATGCCAACC




CCGATCCAAGACAACACCATATTCC




TAGATGAACTGGCAAGACCTCATCC




TAGTTTGGTCAATCCGTCCCCGCCC




GCTACCAACACCAATGCTGATCTTG




GCCCACAGAAGCAGGCTGCGATAGC




TTATATCTCAGCAAAATGCAAGGAT




CAAGGGAAACGAGACCAGCTCTCAA




AGCTCATCGAGCGAGCAACCACCCT




GAGCGAGATCAACAAAGTCAAAAGA




CAGGCCCTTGGCCTCTAGACCACTC




GACCACCCCCAGTGATGAATACAAC




AATAATCAGAACCTCCCTAAACCAC




ATGGCCAACCCAGCGCACCATCCAC




ACCACCTATTACTACCCTTCGCCAG




AAACTCCGCCGCAGCCGATTTATTC




AAAAGAAGCCACTCGATATGACTTA




GCAACCGCAAGATAGGGTGGGGAAG




GTGCTTTACCTGCAAGAGGGCTCCC




TCATCTTCAGACACGCACCCGCCAA




CCCACCAGTGACGCAATGGCAGACA




TGGACACTGTATATATCAATCTGAT




GGCAGATGATCCAACCCACCAAAAA




GAACTGCTGTCCTTTCCCCTCATTC




CCGTGACTGGTCCTGACGGGAAAAA




GGAACTCCAACACCAGGTCCGGACT




CAATCCTTGCTCGCCTCAGACAAGC




AAACTGAGAGGTTCATCTTCCTCAA




CACTTACGGGTTTATCTATGACACT




ACACCGGACAAGACAACTTTTTCTA




CCCCAGAGCATATCAATCAACCCAA




GAGAACGATGGTGAGTGCTGCAATG




ATGACCATCGGCCTGGTCCCCGCCA




ATATACCCTTGAACGAACTAACAGC




TACTGTGTTTGGCCTGAAAATAAGA




GTGAGGAAGAGTGCGAGATATCGAG




AGGTGGTCTGGTACCAGTGCAACCC




TGTACCAGCCCTGCTTGCAGCCACA




AGGTTTGGTCGCCAAGGAGGTCTCG




AATCGAGCACTGGAGTTAGTGTAAG




GGCCCCCGAGAAGATAGACTGCGAG




AAGGATTATACTTACTACCCTTATT




TCCTATCTGTGTGCTACATCGCCAC




TTCCAACCTGTTCAAGGTACCAAAA




ATGGTCGCTAATGCGACCAACAGTC




AATTATACCACCTGACCATGCAGAT




CACATTTGCCTTTCCAAAAAACATC




CCCCCAGCTAACCAGAAACTCCTGA




CACTAGTGGATGAAGGATTCGAGGG




CACTGTGGACTGCCATTTTGGGAAC




ATGCTGAAAAAGGATCGGAAAGGGA




ACATGAGGACACTGTCGCAGGCGGC




AGACAAGGTCAGACGGATGAACATC




CTTGTTGGTATCTTTGACTTGCATG




GGCCAACACTCTTCCTGGAGTACAC




CGGGAAGCTAACAAAAGCTCTGTTA




GGGTTCATGTCTACCAGCCGAACAG




CAATCATCCCCATATCTCAGCTCAA




TCCTATGCTGAGTCAACTCATGTGG




AGCAGTGATGCCCAGATAGTAAAAT




TAAGAGTGGTCATAACTACATCCAA




ACGCGGCCCATGCGGGGGTGAGCAG




GAGTATGTGCTGGATCCCAAATTCA




CTGTTAAAAAAGAGAAAGCCCGACT




CAACCCTTTCAAGAAGGCAGCCCAA




TGATCAAATCTACAAGATCTCAGGA




ATCAGACCACTCTATACTATCCACT




GATCAATAGACATGTAGCTATACAG




TTGATGAACCTATGAAGAATCAGTT




AGAAAACCGAATCCTTACTAGGGTG




GGGAAGGAGTTGATTGGGTGTCTAA




ACAAAAACATTCCTTTACACCTCCT




CGCCACGAAACAACCATAATGAGGT




TATCACGCACAATCCTGACCTTGAT




TCTCGGCACACTTACTGATTATTTA




ATGGGTGCTCACTCCACCAATGTAA




CTGAGAGACCAAAGTCTGAGGGGAT




TAGGGGTGATCTTACACCAGGCGCA




GGTATCTTTGTAACTCAAGTCCGAC




AACTACAGATCTACCAACAGTCTGG




GTATCATGACCTTGTCATCAGATTA




TTACCTCTTCTACCGGCAGAACTCA




ATGATTGTCAAAGGGAAGTTGTCAC




AGAGTACAACAATACGGTATCACAG




CTGTTGCAGCCTATCAAAACCAACC




TGGATACCTTACTGGCTGGTGGTGG




CACAAGGGATGCCGATATACAGCCG




CGGTTCATTGGGGCAATCATAGCCA




CAGGTGCCCTGGCGGTGGCTACGGT




AGCTGAGGTGACTGCAGCCCAAGCA




CTATCTCAGTCGAAAACAAACGCTC




AAAATATTCTCAAGTTGAGGGATAG




TATTCAGGCCACCAACCAGGCAGTT




TTCGAAATTTCACAAGGACTCGAGG




CAACTGCAACTGTGCTATCAAAACT




GCAAACTGAGCTCAATGAGAACATT




ATCCCAAGCCTGAACAACTTGTCCT




GTGCTGCCATGGGTAATCGCCTTGG




TGTATCACTATCACTCTACTTGACC




TTAATGACCACCCTATTTGGGGACC




AGATCACAAACCCAGTGCTGACACC




GATCTCCTATAGCACTCTATCGGCA




ATGGCAGGTGGTCATATTGGCCCGG




TAATGAGTAAAATATTAGCCGGATC




TATCACAAGTCAGTTGGGGGCGGAA




CAGTTGATTGCTAGCGGCTTAATAC




AGTCACAGGTAGTAGGTTATGATTC




CCAATACCAATTATTGGTTATCAGG




GTCAACCTTGTACGGATTCAAGAGG




TCCAGAATACGAGAGTCGTATCACT




AAGAACACTAGCAGTCAATAGGGAC




GGTGGACTCTATAGAGCCCAGGTGC




CTCCCGAGGTAGTTGAACGGTCTGG




CATTGCAGAACGATTTTATGCAGAT




GATTGTGTTCTTACTACAACCGATT




ACATTTGCTCATCGATCCGATCTTC




TCGGCTTAATCCAGAGTTAGTTAGA




TGTCTCAGTGGGGCACTTGATTCAT




GCACATTTGAGAGGGAAAGTGCATT




ATTGTCAACCCCTTTCTTTGTATAC




AACAAGGCAGTTGTCGCAAATTGTA




AAGCAGCAACATGTAGATGTAATAA




ACCGCCGTCTATTATTGCCCAATAC




TCTGCATCAGCTCTGGTCACCATCA




CCACCGACACCTGTGCCGACCTCGA




AATTGAGGGTTATCGCTTCAACATA




CAGACTGAATCCAACTCATGGGTTG




CACCAAACTTCACTGTCTCGACTTC




ACAGATTGTATCAGTTGATCCCATA




GACATCTCTTCTGACATTGCCAAAA




TCAACAGTTCCATCGAGGCTGCAAG




AGAGCAGCTGGAACTAAGCAACCAG




ATCCTTTCCCGGATCAACCCACGAA




TCGTGAATGATGAATCACTGATAGC




TATTATCGTGACAATTGTTGTGCTT




AGTCCCCTCGTAATCGGTCTGATTG




TTGTTCTCGGTGTGATGTATAAGAA




TCTTAGGAAAGTCCAACGAGCTCAA




GCTGCCATGATGATGCAGCAAATGA




GCTCATCACAGCCTGTGACCACTAA




ATTAGGGACGCCTTTCTAGGAGAAC




AACCATATCACTCCACTCAATGATG




AGCAAGACGTACCAATCATCAATGA




TTGTGTCACAAGGCCGGTTGGGAAT




GCATCGAATCTCTCCCCTTTCTTTT




TAATTAAAAACATTTGAAGTGAAGA




TGAGAGGGGGGAAGTGTATGGTAGG




GTGGGGAAGGCAGCCAATTCCTGCC




CATTAGGCCGACCGTATCAAAAGGA




TTCAATAGAAGTCTAGGTACAGGGT




AACATGGAGGGCAGCCGCGATAATC




TTACAGTGGATGATGAATTAAAGAC




AACATGGAGGTTAGCTTATAGAGTT




GTGTCTCTTCTATTGATGGTGAGCG




CTTTGATAATCTCTATAGTAATCCT




GACGAGAGATAACAGCCAAAGCATA




ATCACGGCGATCAACCAGTCATCTG




ACGCAGACTCTAAGTGGCAAACGGG




AATAGAAGGGAAAATCACCTCCATT




ATGGCTGATACGCTCGATACCAGGA




ATGCAGTTCTTCTCCACATTCCACT




CCAGCTCAACACTCTTGAGGCGAAC




CTATTGTCTGCCCTTGGGGGCAACA




CAGGAATTGGCCCCGGAGATCTAGA




GCACTGCCGTTACCCTGTTCATGAC




ACCGCTTACCTGCATGGAGTTAATC




GATTACTCATCAATCAGACAGCTGA




TTATACAGCAGAAGGCCCCCTAGAT




CATGTGAACTTCATTCCAGCCCCGG




TTACGACTACTGGATGCACAAGGAT




ACCATCCTTTTCCGTGTCATCGTCC




ATTTGGTGCTATACACATAACGTGA




TTGAAACCGGTTGCAATGACCACTC




AGGTAGTAATCAATATATCAGCATG




GGAGTCATTAAGAGAGCGGGCAACG




GCCTACCTTACTTCTCAACAGTTGT




AAGTAAGTATCTGACTGATGGGTTG




AATAGGAAAAGCTGTTCTGTGGCTG




CCGGATCTGGGCATTGCTACCTCCT




TTGCAGCTTAGTGTCGGAGCCCGAA




CCTGATGACTATGTGTCACCTGATC




CTACACCGATGAGGTTAGGGGTGCT




AACGTGGGATGGATCTTACACTGAA




CAGGTGGTACCCGAAAGAATATTCA




GGAACATATGGAGTGCAAACTACCC




AGGAGTAGGGTCAGGTGCTATAGTA




GGAAATAAGGTGTTATTCCCATTTT




ACGGCGGAGTGAGGAATGGATCGAC




CCCGGAGGTGATGAATAGGGGAAGG




TACTACTACATCCAGGATCCAAATG




ACTATTGCCCTGACCCGCTGCAAGA




TCAGATCTTAAGGGCGGAACAATCG




TATTACCCAACTCGATTCGGTAGGA




GGATGATAATGCAGGGGGTCCTAGC




ATGTCCAGTATCCAACAATTCAACA




ATAGCAAGCCAATGTCAATCTTACT




ATTTTAATAACTCATTAGGGTTCAT




TGGAGCAGAATCTAGAATCTATTAC




CTCAATAGTAACATTTACCTTTATC




AGAGGAGCTCGAGCTGGTGGCCTCA




CCCCCAGATTTACCTGCTTGATTCT




AGGATTGCAAGTCCGGGTACTCAGA




ACATTGACTCAGGTGTCAATCTCAA




GATGTTAAACGTCACTGTGATTACA




CGACCATCATCTGGTTTTTGTAATA




GTCAGTCACGATGCCCTAATGACTG




CTTATTCGGGGTCTACTCGGATATC




TGGCCTCTTAGCCTTACCTCGGATA




GCATATTCGCGTTCACTATGTATTT




ACAGGGGAAGACAACACGTATTGAC




CCGGCTTGGGCGCTATTCTCCAATC




ATGCGATTGGGCATGAGGCTCGTCT




GTTTAATAAGGAGGTTAGTGCTGCT




TATTCTACCACCACTTGTTTTTTGG




ACACCATCCAAAACCAGGTGTATTG




CCTGAGTATACTTGAGGTCAGGAGT




GAGCTCTTGGGAGCATTCAAAATAG




TACCATTCCTCTATCGTGTCTTGTA




GGCATCCATTCGGCCAAAAAACTTG




AGTGACTATGAGGTTAACACTTGAT




CCCCCTTAAAGACACCTATCTAAAT




TACTGTCCTAGACCCATGATTAGGT




ACCTTTTAAATCAATCATTTGGTTT




TTAATTAAAAATGAAAAAATGGGCC




TAGTTTCAAGAGAGGGCTGGAACCC




ACTAGGGTGGGGAAGGATTGCTTTG




CTCCTTGACTCACACCCACGTATAC




TCGATCTCACTTCTGTAAAGAAGGG




ATCCTTCTCAAACTCGCCCCACAAT




GTCCAATCAGGCAGCTGAGATTATA




CTACCCACCTTCCATCTAGAATCAC




CCTTAATCGAGAATAAGTGCTTTTA




TTATATGCAATTACTTGGTCTCGTG




TTGCCACATGATCATTGGAGATGGA




GGGCATTCGTTAACTTTACAGTGGA




TCAGGTGCACCTTAAAAATCGTAAT




CCCCGCTTAATGGCCCATATCGACC




ACACTAAAGATAGATTAAGGACTCA




TGGTGTCTTAGGTTTCCACCAGACT




CAGACAAGTTTGAGCCGTTATCGTG




TTTTGCTCCATCCTGAAACCTTACC




TTGGCTATCAGCCATGGGAGGATGC




ATCAATCAGGTTCCTAAAGCATGGC




GGAATACTCTGAAATCGATCGAGCA




TAGTGTAAAGCAGGAGGCACCTCAA




CTAAAGCTACTCATGGAGAGAACCT




CATTAAAATTAACTGGAGTACCTTA




CTTGTTCTCTAATTGCAATCCCGGG




AAAACCACAGCAGGAACTATGCCTG




TCCTAAGTGAGATGGCATCGGAACT




CTTGTCAAATCCTATCTCCCAATTC




CAATCAACATGGGGGTGTGCTGCTT




CGGGGTGGCACCATGTAGTCAGTAT




CATGAGGCTCCAACAATATCAAAGA




AGGACAGGTAAGGAAGAGAAAGCAA




TCACCGAAGTTCAGTATGGCACAGA




CACTTGTCTCATTAACGCAGACTAT




ACCGTTGTTTTTTCCACACAGAACC




GTGTTATAACGGTCTTGCCCTTCGA




TGTTGTCCTCATGATGCAAGACCTA




CTCGAATCCCGACGGAATGTTCTGT




TCTGTGCCCGCTTTATGTATCCCAG




AAGCCAACTTCATGAGAGGATAAGT




GCAATATTAGCCCTTGGAGACCAAC




TGGGGAGAAAAGCACCCCAAGTCCT




GTATGATTTCGTGGCGACCCTCGAG




TCATTTGCATACGCAGCTGTTCAAC




TTCATGACAACAATCCTACCTACGG




TGGGGCCTTCTTTGAATTCAATATC




CAAGAGTTAGAATCTATTCTGTCCC




CTGCACTTAGTAAGGATCAGGTCAA




CTTCTACATAGGTCAAGTTGTCTCA




GCGTACAGTAACCTTCCTCCATCTG




AATCGGCAGAATTGTTGTGCCTGCT




ACGCCTGTGGGGTCATCCCTTGCTA




AACAGCCTTGATGCAGCAAAGAAAG




TCAGGGAGTCTATGTGTGCCGGGAA




GGTTCTCGATTACAACGCCATTCGA




CTCGTCTTGTCTTTTTACCATACAT




TGTTAATCAATGGGTACCGAAAGAA




ACACAAGGGTCGCTGGCCAAATGTG




AATCAACATTCACTCCTCAACCCGA




TAGTGAGGCAGCTCTATTTTGATCA




GGAAGAGATCCCACACTCTGTTGCC




CTTGAGCACTATTTGGATGTCTCAA




TGATAGAATTTGAAAAAACTTTTGA




AGTGGAACTATCTGACAGCCTAAGC




ATCTTCCTGAAGGATAAGTCGATAG




CTTTGGATAAGCAAGAATGGTACAG




TGGTTTTGTCTCAGAAGTGACTCCG




AAGCACCTACGAATGTCTCGTCATG




ATCGCAAGTCTACCAATAGGCTCCT




GTTAGCTTTCATTAACTCCCCTGAA




TTCGACGTTAAGGAGGAGCTTAAGT




ACTTGACTACGGGTGAGTACGCCAC




TGACCCAAATTTCAATGTCTCATAC




TCACTTAAAGAGAAGGAAGTAAAAA




AAGAAGGGCGCATATTCGCAAAAAT




GTCACAAAAGATGAGAGCATGCCAG




GTTATTTGTGAAGAATTGCTAGCAC




ATCATGTGGCTCCTTTGTTTAAAGA




GAATGGTGTTACTCAATCAGAGCTA




TCCCTGACAAAAAATTTGTTGGCTA




TTAGCCAACTGAGTTACAACTCGAT




GGCTGCTAAGGTGCGATTGCTGAGG




CCAGGGGACAAGTTCACTGCTGCAC




ACTATATGACCACAGACCTAAAGAA




GTACTGTCTCAATTGGCGGCACCAG




TCAGTCAAACTGTTCGCCAGAAGCC




TGGATCGACTGTTTGGATTAGACCA




TGCGTTTTCTTGGATACATGTCCGT




CTCACCAACAGCACTATGTACGTTG




CTGACCCCTTCAATCCACCAGACTC




AGAGGCATGCACAGATTTAGACGAC




AATAAGAACACCGGGATTTTTATTA




TAAGTGCAAGAGGTGGTATAGAAGG




CCTCCAACAAAAATTATGGACTGGC




ATATCGATTGCAATTGCCCAAGCGG




CAGCGGCCCTCGAAGGCTTACGAAT




TGCTGCTACTCTGCAGGGGGATAAC




CAAGTTTTGGCGATTACGAAGGAAT




TCATGACCCCAGTCCCAGAGGATGT




AATCCATGAGCAGCTATCTGAGGCG




ATGTCTCGATACAAAAGGACTTTCA




CATACCTCAATTATTTAATGGGGCA




TCAGTTGAAGGATAAAGAAACCATC




CAATCCAGTGACTTCTTTGTTTATT




CCAAAAGAATCTTCTTCAATGGATC




GATCTTAAGTCAATGCCTCAAAAAC




TTCAGTAAACTCACTACTAATGCCA




CTACCCTTGCTGAGAATACTGTGGC




CGGCTGCAGTGACATCTCTTCATGC




ATTGCCCGTTGTGTGGAAAACGGGT




TGCCTAAGGATGCCGCATATATCCA




GAATATAATCATGACTCGGCTTCAA




CTATTGCTAGATCATTACTATTCAA




TGCATGGCGGCATAAATTCAGAATT




AGAGCAGCCAACTTTAAGTATCTCT




GTTCGAAACGCAACCTACTTACCAT




CTCAACTAGGCGGTTACAATCATTT




GAATATGACCCGACTATTCTGCCGC




AATATCGGCGACCCGCTTACCAGTT




CTTGGGCGGAGTCAAAAAGACTAAT




GGATGTTGGTCTCCTCAGTCGTAAG




TTCTTAGAGGGGATATTATGGAGAC




CCCCGGGAAGTGGGACGTTTTCAAC




ACTCATGCTTGACCCGTTCGCACTT




AACATTGATTACCTGAGGCCGCCAG




AGACAATTATCCGAAAACACACCCA




AAAAGTCTTGTTGCAAGATTGCCCA




AATCCCCTATTAGCAGGTGTCGTTG




ACCCGAACTACAACCAAGAATTAGA




GCTGTTAGCTCAGTTCTTGCTTGAT




CGGGAAACCGTTATTCCCAGGGCTG




CCCATGCCATCTTCGAGTTATCTGT




CTTGGGAAGGAAAAAACATATACAA




GGATTGGTAGATACTACAAAGACAA




TTATTCAGTGCTCATTGGAAAGACA




GCCATTGTCTTGGAGGAAAGTTGAG




AACATTGTTACCTACAACGCGCAGT




ATTTCCTCGGGGCCACCCAACAGGC




TGATACTAATGTCTCAGAAGGGCAG




TGGGTGATGCCAGGTAACCTTAAGA




AGCTTGTGTCCCTCGACGATTGCTC




GGTCACGCTGTCTACTGTATCACGG




CGCATATCATGGGCCAATCTACTGA




ACTGGAGAGCTATAGATGGTCTGGA




AACCCCGGATGTGATAGAGAGTATT




GATGGTCGCCTTGTACAATCATCCA




ATCAATGTGGCCTATGTAATCAAGG




GTTGGGATCCTACTCCTGGTTTTTC




TTGCCCTCTGGGTGTGTGTTCGACC




GTCCACAAGATTCTCGGGTAGTTCC




AAAGATGCCATACGTGGGGTCCAAA




ACAGATGAGAGACAGACTGCATCAG




TGCAAGCTATACAAGGATCCACTTG




TCACCTCAGGGCAGCATTGAGGCTT




GTATCACTCTACCTATGGGCCTATG




GAGATTCTGACATATCATGGCTAGA




AGCTGCAACGCTGGCTCAAACACGG




TGCAATGTCTCTCTCGATGATTTGC




GAATCTTGAGCCCTCTTCCTTCTTC




GGCGAATTTACACCACAGATTAAAT




GACGGGGTAACACAGGTTAAATTCA




TGCCCGCCACATCTAGCCGAGTGTC




AAAGTTCGTCCAAATTTGCAATGAC




AACCAGAATCTTATCCGTGATGATG




GGAGTGTTGATTCCAATATGATTTA




TCAACAGGTTATGATATTAGGGCTT




GGAGAGATTGAATGCTTGTTAGCTG




ACCCAATTGATACAAACCCAGAACA




ATTGATTCTTCATCTACACTCTGAT




AATTCTTGCTGTCTCCGGGAGATGC




CAACGACCGGCTTTGTACCTGCTCT




AGGACTAACCCCATGTTTAACTGTC




CCAAAGCATAATCCTTACATTTATG




ACGATAGCCCAATACCCGGTGATTT




GGATCAGAGGCTCATTCAGACCAAA




TTTTTCATGGGGTCTGACAATTTGG




ATAATCTTGATATCTACCAGCAGCG




AGCTTTACTGAGTAGGTGTGTAGCT




TATGATGTCATCCAATCGATCTTTG




CCTGTGATGCACCAGTCTCTCAGAA




GAATGACGCAATCCTTCACACTGAT




TACCATGAGAATTGGATCTCAGAGT




TCCGATGGGGTGACCCTCGTATTAT




CCAAGTAACGGCAGGCTATGAGTTA




ATTCTGTTCCTTGCATACCAGCTTT




ATTATCTCAGAGTGAGGGGTGACCG




TGCAATCCTGTGCTATATCGACAGG




ATACTCAATAGGATGGTATCTTCCA




ATCTAGGTAGTCTCATCCAGACACT




CTCTCATCCAGAGATTAGGAGGAGA




TTCTCGTTGAGTGATCAAGGGTTTC




TTGTTGAAAGAGAACTAGAGCCAGG




TAAGCCCTTGGTTAAACAAGCGGTT




ATGTTCTTAAGGGACTCGGTCCGCT




GCGCTTTAGCAACTATCAAGGCAGG




AATTGAGCCTGAAATCTCCCGAGGT




GGTTGTACTCAGGATGAGCTGAGCT




TTACTCTTAAGCACTTACTATGTCG




GCGTCTCTGTGTAATCGCTCTCATG




CATTCAGAAGCAAAGAACTTGGTTA




AAGTTAGAAACCTTCCTGTAGAAGA




GAAAACCGCCTTATTGTACCAGATG




TTGGTCACTGAGGCCAATGCTAGGA




AATCAGGGTCTGCCAGCATTATCAT




AAACCTAGTCTCGGCACCCCAGTGG




GACATTCATACACCAGCATTGTATT




TTGTGTCAAAGAAAATGCTAGGGAT




GCTTAAGAGGTCAACCACACCCTTG




GATATAAGTGACCTCTCTGAGAACC




AGAACCCCGCACCTGCAGAGCTTAG




TGATGCTCCTGGTCACATGGCAGAA




GAATTCCCCTGTTTGTTTAGTAGTT




ATAACGCTACATATGAAGACACAAT




CACTTACAATCCAATGACTGAAAAA




CTCGCCTTGCATTTGGACAACAGTT




CCACCCCATCCAGAGCACTTGGTCG




TCACTACATCCTGCGGCCTCTTGGG




CTTTACTCATCCGCATGGTACCGGT




CTGCGGCACTACTAGCGTCAGGGGC




CCTAAATGGGTTGCCTGAGGGGTCG




AGCCTGTATTTAGGAGAAGGGTACG




GGACCACCATGACTCTGCTTGAGCC




CGTTGTCAAGTCTTCAACTGTTTAC




TACCATACATTGTTTGACCCAACCC




GGAACCCTTCACAGCGGAACTATAA




ACCAGAACCACGGGTATTCACGGAT




TCTATTTGGTACAAGGATGATTTCA




CACGGCCACCCGGTGGTATTATCAA




CCTGTGGGGTGAAGATATACGTCAG




AGTGATATCACACAGAAAGACACGG




TCAACTTCATACTATCTCAGATCCC




GCCAAAATCACTTAAGTTGATACAC




GTTGATATTGAGTTCTCACCAGACT




CCGATGTACGGACACTACTATCCGG




CTATTCTCATTGTGCACTATTGGCC




TACTGGCTATTGCAACCTGGAGGGC




GATTCGCAGTTAGGGTTTTCTTAAG




TGACCATATCATAGTTAACTTGGTC




ACTGCGATCCTGTCTGCTTTTGACT




CCAATTTGGTGTGCATTGCGTCAGG




ATTGACACACAAGGATGATGGGGCA




GGTTATATTTGCGCGAAAAAGCTTG




CAAATGTTGAGGCTTCAAGAATTGA




GTACTACTTGAGGATGGTCCATGGT




TGTGTTGACTCATTAAAGATCCCTC




ATCAATTAGGAATCATTAAATGGGC




CGAGGGTGAGGTGTCCCAGCTTACC




AGAAAGGCGGATGATGAAATAAATT




GGCGGTTAGGTGATCCAGTTACCAG




ATCATTTGATCCAGTTTCTGAGCTA




ATAATTGCACGAACAGGGGGGTCTG




TATTAATGGAATACGGGGCTTTTAC




TAACCTCAGGTGTGCGAACTTGGTA




GATACATACAAACTTCTGGCTTCAA




TTGTAGAGACCACCCTAATGGAAAT




AAGGGTTGAGCAAGATCAGTTGGAA




GATAGTTCGAGGAGACAAATCCAAG




TAATCCCCGCTTTCAACACAAGATC




TGGGGGAAGGATCCGTACACTGATT




GAGTGTGCTCAGCTGCAGATTATAG




ATGTTATTTGTGTAAACATAGATCA




CCTCTTTCCTAAACACCGACATGTT




CTTGTCACACAACTTACCTACCAGT




CGGTGTGCCTTGGGGATTTGATTGA




AGGTCCCCAAATTAAGACGTATCTA




AGGGCCAGAAAGTGGATCCAACGTC




GGGGACTCAATGAGACAGTTAACCA




TATCATCACTGGACAAGTGTCACGG




AATAAAGCAAGGGATTTTTTTAAGA




GGCGCCTGAAGTTGGTTGGCTTTTC




ACTCTGCGGAGGTTGGAGCTACCTC




TCACTTTAGCTGTTCAGGTTGCTGA




TCATCATGAACAATCGGAGTCGGAA




TCGTAAACAGAAAGTCACAAAATTG




TGGATAAACAATGATTGCATTAGTA




TTTAATAAAAAATATGTCTTTTATT




TCGT






Avian
ACGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


paramyxovir
AGCCTTTTAAAAGGAACCCTGGGCT
NO: 8


us 4 strain
GTCGTAGGTGTGGGAAGGTTGTATT



APMV-
CCGAGTGCGCCTCCGAGGCATCTAC



4/duck/
TCTACACCTATCACAATGGCTGGTG



Delaware/
TCTTTTCCCAGTATGAGAGGTTTGT



549227/
GGACAATCAATCTCAGGTGTCAAGG



2010,
AAGGATCATCGGTCCTTAGCAGGAG



complete
GGTGCCTTAAAGTGAACATCCCTAT



genome
GCTTGTCACTGCATCCGAAGACCCC



Genbank:
ACCACGCGTTGGCAACTAGCATGCT



JX987283.1
TATCTCTGAGGCTCTTGATTTCCAA




TTCATCAACCAGTGCTATCCGCCAG




GGAGCAATACTGACCCTCATGTCAT




TGCCATCGCAAAACATGAGAGCAAC




AGCAGCTATTGCTGGGTCCACGAAT




GCGGCTGTTATCAACACTATGGAAG




TCTTAAGTGTCAATGACTGGACCCC




ATCTTTTGACCCAAGAAGTGGTCTA




TCTGAGGAGGACGCTCAGGTGTTCA




GAGACATGGCAAGAGATCTGCCTCC




TCAGTTCACTTCTGGATCACCCTTT




ACATCAGCATTGGCGGAGGGGTTTA




CTCCCGAGGACACTCATGACCTGAT




GGAGGCACTGACTAGTGTACTGATA




CAGATCTGGATTCTGGTGGCCAAGG




CCATGACCAATATTGATGGATCTGG




GGAGGCTAACGAAAGACGCCTTGCA




AAATACATCCAAAAGGGACAGCTCA




ATCGTCAGTTTGCAATTGGCAATCC




TGCCCGTCTGATAATCCAACAGACA




ATCAAAAGCTCATTAACTGTCCGCA




GGTTCTTGGTCTCTGAGCTCCGCGC




ATCACGTGGTGCAGTAAAGGAGGGT




TCCCCTTACTATGCAGCCGTTGGGG




ATATCCACGCTTACATCTTCAATGC




AGGATTGACACCATTCTTGACCACC




CTGAGATATGGCATTGGCACCAAGT




ACGCCGCTGTCGCACTCAGTGTGTT




TGCTGCAGACATTGCAAAATTGAAG




AGTCTACTCACCCTGTATCAAGACA




AAGGTGTAGAAGCTGGATACATGGC




ACTCCTTGAAGATCCAGATTCCATG




CACTTTGCACCTGGAAACTTCCCAC




ACATGTATTCCTATGCGATGGGAGT




GGCCTCCTATCACGACCCTAGCATG




CGCCAATACCAGTATGCCAGGAGGT




TTCTCAGTCGTCCCTTCTACCTGCT




AGGAAGAGACATGGCTGCTAAGAAC




ACAGGAACTCTGGATGAGCAGCTGG




CGAAAGAACTGCAAGTGTCAGAGAG




GGACCGCGCTGCACTGTCTGCCGCG




ATTCAATCAGCAATGGAGGGGGGAG




AGTCAGATGACTTCCCATTGTCAGG




ATCCATGCCGGCCCTCTCTGAGAGC




ACACAACCGGTCACCCCCAGGACTC




AACAGTCCCAGCTCTCTCCTCCTCA




ATCATCAAACATGTCCCAATCGGCG




CCTAGGACCCCGGACTATCAACCCG




ACTTTGAGCTGTAGACTATATCCAC




ACACCGACAATAGCTCCAGAAGACC




CCCTTCCCCCCCATACACCCCACCC




GGTCATCCACAAAGACCCAGTCCAA




CATCCCAGCACTATTCCCTTTTAAT




TAAAAACTGGCCGACAGGGTGGGGA




AGGAGGACTGTTAGCTGCCACCAAC




GGTGTGCAGCAATGGATTTTACAGA




CATTGACGCTGTCAACTCACTGATT




GAGTCATCATCGGCAATTATAGACT




CCATACAGCATGGAGGGCTGCAACC




AGCAGGCACTGTTGGCTTATCTCAA




ATTCCAAAAGGGATAACCAGTGCAC




TGAATAAAGCCTGGGAAGCTGAGGC




GGCAACTGCCGGCAGTGGAGACACC




CAACACAAACCCGATGACCCAGAGG




ACCACCAGGCTAGGGACACGGAGTC




CCTGGAAGACACAGGCAACGACCCG




GCCACACAGGGGACTAACATTGTTG




AGACACCCCACCCAGAAGTACTGTC




AGCAGCCAAAGCTAGACTCAAGAGA




CCCAAAGCAGGGAAAGACACCCATG




GCAATCCCCCCACTCAACCCGATCA




CTTTTTAAAGGGGGGCCTCCCGAGT




CCACAACCGACAGCACCGCGGATGC




AAAGTCCACCCAACCATGGAAGCTC




CAGCACCGCCGATCCCCGCCAATCA




CAAACTCAGGATCATTCCCCCACCG




GAGAGAAATGGCAATTGTCACCGAC




AAAGCAACCGGAGACATCGAACTGG




TGGAGTGGTGCAACCCAGGGTGTAC




AGCAGTCCGAATTGAACCAGCCAGA




CTTGACTGTGTATGCGGACACTGCC




CCACCATCTGCAGTCTCTGCATGTA




TGACGACTGATCAGGTACAGTTGTT




GATGAAGGAGGTTGCTGACATAAAA




TCACTCCTCCAGGCACTAGTAAGGA




ATCTAGCTGTCTTGCCCCAACTAAG




GAATGAGGTTGCAGCAATCAGAACA




TCACAGGCCATGATAGAGGGGACAC




TCAATTCAATTAAGATTCTTGATCC




TGGAAATTATCAGGAATCATCACTA




AACAGTTGGTTCAAACCTCGCCAGG




AACACACTGTTATTGTGTCAGGACC




AGGGAATCCACTGGCCATGCCGACT




CCAGTTCAGGACAGTACCATATTCT




TAGATGAGCTAGCAAGACCTCATCC




TAATTTGGTCAATCCGTCTCCGCCC




GTCACCAGCACCAATGTTGACCTTG




GCCCACAGAAGCAGGCTGCAATAGC




CTACGTTTCCGCCAAGTGCAAGGAC




CCAGGGAAACGGGACCAGCTTTCAA




GGCTTATTGAACGGGCGGCTACCTT




GAGTGAGATCAACAAGGTTAAAAGA




CAGGCTCTCGGGCTCTAAATTAATC




AACCACCCGTTGCAACGATCGAGAC




AACAATAAAAATCCCCCTGAATCAC




ATGACCAAATCTGCATACCACTCAC




ATCATCCGCCTATACCCCTCACCAT




AAATACCACCTTAGCCGATTTATTT




AAAAGAAATCATTCATCACAACCTG




GTAATCATAAACTAGGGTGGGGAAG




GTCTCTTGTCTGCAGGAAGGCTCCT




CTGTCTCCAGGCACGCACCCGTCAA




CCCACCAATAACACAATGGCGGACA




TGGACACGATATACATCAACTTGAT




GGCAGATGATCCAACCCATCAAAAA




GAATTGCTGTCATTCCCTCTGATTC




CAGTGACTGGACCTGATGGGAAGAA




AGTGCTCCAACACCAGATCCGGACC




CAATCCTTGCTCACCTCAGACAAAC




AAACGGAGAGGTTCATCTTTCTCAA




CACTTACGGGTTCATCTATGACACA




ACCCCGGACAAGACAACTTTTTCCA




CCCCTGAGCATATCAATCAGCCTAA




GAGGACAATGGTGAGTGCTGCGATG




ATGACTATTGGTCTGGTTCCTGCTA




CAATACCCCTGAATGAATTGACGGC




CACTGTGTTTAACCTTAAAGTAAGA




GTGAGGAAAAGTGCGAGGTATCGAG




AAGTGGTTTGGTACCAGTGCAACCC




CGTACCAGCTCTGCTCGCAGCCACC




AGATTTGGCCGCCAAGGGGGTCTTG




AGTCGAGCACCGGAGTCAGTGTAAA




GGCACCTGAGAAGATTGATTGTGAG




AAAGATTATACTTACTACCCTTATT




TCCTATCTGTGTGCTACATCGCCAC




TTCCAACCTCTTTAAGGTACCGAAG




ATGGTTGCCAATGCAACCAACAGTC




AATTGTATCACCTAACCATGCAGGT




CACATTTGCATTTCCGAAAAACATT




CCCCCAGCCAATCAGAAACTCCTGA




CACAGGTAGATGAAGGATTTGAGGG




TACCGTGGATTGCCATTTTGGGAAC




ATGCTAAAAAAGGATAGGAAAGGGA




ACATGAGGACTTTGTCTCAAGCAGC




AGATAAGGTCAGAAGAATGAATATC




CTTGTGGGAATATTTGACTTGCACG




GACCTACACTATTCCTGGAATATAC




TGGGAAATTGACAAAAGCCCTGTTG




GGGTTCATGTCCACCAGCCGAACAG




CAATCATCCCCATATCACAACTCAA




TCCTATGCTGAGTCAACTCATGTGG




AGCAGTGACGCCCAGATAGTAAAGT




TACGGGTGGTCATCACTACATCTAA




ACGTGGCCCGTGTGGGGGCGAGCAG




GAATATGTGCTGGATCCTAAATTCA




CAGTTAAGAAAGAAAAGGCTCGACT




CAATCCATTCAAGAAGGCAGCCTAA




TAATTAAACCTACAAGATCCCAAGA




ATTAAACAGCTCTATACAATTCATA




GGTTGATAGAAATGCCACTACACAG




CTAATGATTTTCCAGAAAATCACTT




AGAAAACCAAATCCTTATTAGGGTG




GGGAAGTAGTTGATTGGGTGTCTAA




ACAAAAGTGCTTCTTTGCAACTCCC




CACCCCGAAGCAATCACAATGAGAC




CATTAAACACGCTTTTGACCGTGAT




TCTTATCATACTCATCAGCTATTTG




GTGATTGTTCATTCTAGTGATGCGG




TTGAGAGGCCAAGGACTGAGGGAAT




TAGGGGCGACCTCATTCCAGGTGCG




GGTATCTTCGTGACTCAAGTCCGAC




AACTGCAAATCTATCAGCAGTCAGG




GTACCACGACCTTGTCATAAGATTA




TTACCCCTTTTACCAACGGAACTCA




ATGATTGCCAAAAAGAAGTAGTCAC




AGAATACAATAATACAGTATCACAA




TTGTTGCAGCCTATCAAAACCAACT




TGGATACCCTATTAGCAGATGGTAA




TACGAGGGAAGCGGATATACAGCCG




CGGTTTATTGGAGCAATAATAGCCA




CAGGTGCCTTGGCGGTAGCAACAGT




GGCAGAAGTAACTGCAGCTCAGGCA




CTCTCCCAGTCCAAAACAAATGCTC




AAAATATTCTCAAGCTAAGAGATAG




TATCCAGGCCACCAACCAAGCGGTC




TTTGAAATTTCACAAGGGCTTGAGG




CAACTGCAACTGTGCTATCGAAACT




ACAGACAGAGCTCAATGAGAATATT




ATCCCAAGCCTGAACAATTTATCCT




GTGCTGCCATGGGGAATCGTCTTGG




TGTATCACTCTCACTCTATTTAACT




CTAATGACTACCCTCTTTGGGGACC




AAATTACGAACCCAGTGCTGACACC




AATTTCTTACAGCACACTATCGGCA




ATGGCAGGTGGTCATATTGGCCCAG




TGATGAGTAAAATATTAGCCGGATC




GGTCACGAGCCAGTTGGGGGCAGAA




CAATTGATTGCTAGTGGCTTAATAC




AATCACAGGTGGTAGGCTATGATTC




CCAGTATCAATTATTGGTAATCAGG




GTTAACCTTGTTCGGATTCAGGAAG




TCCAGAATACCAGGGTTGTATCATT




AAGAACGCTAGCTGTCAATAGAGAT




GGTGGACTTTATAGAGCCCAAGTTC




CACCTGAGGTAGTCGAACGATCCGG




CATTGCAGAGCGGTTTTACGCAGAT




GATTGTGTTCTCACCACGACCGACT




ATATTTGCTCATCAATCAGATCCTC




TCGGCTTAATCCAGAATTAGTCAAG




TGTCTCAGTGGGGCACTTGATTCAT




GTACATTCGAGAGGGAGAGTGCCCT




GTTATCAACTCCTTTCTTTGTGTAC




AATAAGGCTGTCGTAGCAAATTGCA




AAGCGGCAACATGCAGATGCAACAA




ACCACCGTCAATTATTGCTCAATAT




TCTGCATCAGCTCTAGTAACCATCA




CCACTGACACCTGTGCCGATCTCGA




AATTGAGGGTTACCGTTTCAACATA




CAGACTGAATCTAACTCGTGGGTTG




CACCTAACTTTACTGTCTCAACCTC




ACAGATAGTGTCAGTTGATCCAATA




GACATATCCTCTGACATCGCAAAAA




TCAACAATTCGATTGAGGCCGCACG




AGAGCAGCTAGAACTGAGCAACCAG




ATCCTATCCCGGATTAACCCCCGAA




TCGTGAATGACGAATCACTGATAGC




TATTATCGTGACAATTGTTGTGCTT




AGTCTCCTTGTAGTCGGTCTTATCA




TTGTTCTCGGCGTGATGTATAAAAA




TCTCAAGAAGGTCCAACGAGCTCAG




GCTGCTATGATGATGCAGCAAATGA




GTTCATCGCAGCCTGTAACCACAAA




ACTGGGGACACCCTTCTAGGTGAAT




AAATGCATCACCTCTTTCCTTGATG




AGCGAGATGTCTTAATCATTGATAA




TTATGCCGTAAGGCTGGTAGGGAAT




GTGCTGAATCTCTCCTCTTCCTTTT




TAATTAAAAACGGTTGAACTGAGGG




GGAGAATGTGCATGGTAGGGTGGGG




AAGGTGTCTGATTCCTACCTATCGG




GCCAACTGTACCAGTAGAAGCTAAC




AGGAATTCTAATGCAGAGTGACATG




GAGGGCAGTCGTGATAACCTCACAG




TGGATGATGAGTTAAAGACAACATG




GAGGTTAGCTTACAGAGTTGTATCT




CTCCTATTAATGGTGAGTGCTTTGA




TAATTTCTATAGTAATCTTGACGAG




GGATAACAGCCAAAGCATAATCACG




GCAATCAACCAGTCATATGATGCAG




ACTCAAAGTGGCAAACAGGGATAGA




GGGGAAAATCACCTCTATCATGACT




GATACGCTTGATACTAGGAATGCAG




CTCTCCTCCACATTCCACTCCAACT




TAATACACTTGAAGCAAACCTATTA




TCAGCCCTCGGTGGCAACACAGGAA




TCGGCCCCGGGGATCTAGAGCATTG




CCGTTATCCAGTTCATGATTCTGCT




TACCTGCATGGAGTCAACCGATTAC




TTATCAATCAAACGGCTGATTATAC




AGCAGAGGGTCCACTAGATCATGTG




AACTTCATACCGGCACCAGTTACGA




CCACTGGATGCACTAGGATACCATC




TTTTTCCGTGTCCTCATCCATTTGG




TGTTATACTCACAATGTGATTGAAA




CTGGTTTTAATGATCACTCAGGCAG




CAATCAGTATATTAGCATGGGGGTG




ATTAAGAGGGCTGGCAACGGCTTGC




CTTATTTCTCAACCGTTGTGAGTAA




GTATCTGACCGACGGATTGAATAGG




AAAAGTTGTTCTGTGGCTGCTGGGT




CTGGGCATTGCTATCTTCTCTGCAG




CCTAGTATCAGAGCCCGAGCCTGAC




GACTATGTATCACCAGACCCCACAC




CGATGAGGTTAGGGGTTCTGACATG




GGATGGGTCCTATACTGAACAGGTG




GTGCCTGAAAGGATATTCAAAAACA




TATGGAGTGCAAATTACCCTGGGGT




GGGATCAGGTGCTATTGTGGGAAAT




AAGGTGTTGTTCCCATTTTACGGAG




GAGTGAGGAATGGGTCGACACCTGA




GGTTATGAATAGGGGAAGGTATTAC




TACATTCAAGATCCTAATGATTATT




GTCCTGATCCACTGCAAGACCAAAT




CTTAAGGGCAGAACAATCATATTAT




CCTACACGGTTTGGTAGGAGGATGG




TGATGCAGGGTGTCTTAGCGTGCCC




AGTGTCCAACAACTCAACAATTGCC




AGCCAATGCCAGTCCTACTATTTCA




ACAACTCATTAGGGTTCATTGGGGC




GGAATCTAGGATTTATTACCTAAAT




GGGAACCTCTACCTTTACCAAAGAA




GCTCGAGCTGGTGGCCCCACCCCCA




GATTTATCTGCTTGACCCCAGAATT




GCAAGCCCGGGCACTCAGAACATCG




ACTCAGGCATTAATCTCAAGATGTT




GAATGTTACCGTTATTACACGACCG




TCATCTGGTTTTTGTAATAGTCAGT




CAAGATGCCCTAATGACTGCTTATT




CGGGGTCTATTCAGACGTCTGGCCT




CTTAGCCTAACCTCAGATAGTATAT




TCGCATTCACGATGTATTTACAAGG




GAAGACAACACGTATTGACCCGGCG




TGGGCACTGTTCTCCAATCACGCAA




TTGGGCATGAAGCTCGTCTATTCAA




CAAGGAGGTCAGTGCTGCTTACTCC




ACTACCACTTGCTTTTCGGACACCA




TCCAAAACCAGGTGTATTGCCTGAG




TATACTTGAAGTTAGAAGTGAGCTT




TTGGGGCCATTCAAGATAGTACCAT




TCCTCTACCGTGTCCTATAGGTGCC




TGCTCGATCGAGAACTCCAAATAAT




CGTGGAATTAGTACTTAATCTTCCC




TATGGATATCTGCCTTAATTACTGT




CCTAGGTCTCTGGATTAGCGCCCTT




TAAACCAGTTTTTTGATTTTTAATT




AAAAATAGAAGATTAGACCTGGACT




CGGGGAGGGAGAAGAACCTATTAGG




GTGGGGAAGGATTACTTTACTCCAT




GACTCACAATCGCACACACCTGACC




TCATTTCCACTGAGAAGGAACCCTC




CTCAAATTTGATTTGCAATGTCCAA




TCAAGCAGCTGAGATTATACTCCCT




ACCTTTCACCTAGAGTCACCCTTAA




TCGAGAACAAATGCTTCTACTATAT




GCAATTACTTGGTCTTATGTTGCCG




CATGATCATTGGAGATGGAGGGCAT




TTGTCAACTTTACAGTGGATCAAGC




ACACCTTAGAAACCGTAATCCTCGC




TTGATGGCCCACATCGACCACACTA




AGGATAAACTAAGGGCTCATGGTGT




CTTAGGTTTCCATCAGACCCAAACA




GGTGAGAGCCGTTTCCGTGTCTTGC




TTCACCCGGAAACCTTACCATGGCT




ATCAGCAATGGGAGGATGCATAAAC




CAAGTCCCCAAAGCATGGCGGAACA




CTCTGAAGTCCATCGAGCACAGTGT




GAAGCAGGAGGCAACACAACTACAA




TCGCTTATGAAAAAAACCTCATTGA




AATTAACAGGAGTACCCTACTTATT




TTCCAACTGTAATCCCGGGAAAACC




ACAACAGGCACTATGCCTGTATTAA




GCGAGATGGCATCAGAGCTCCTATC




AAATCCCATCTCCCAATTCCAATCA




ACATGGGGGTGTGCTGCTTCAGGGT




GGCACCATATTGTTAGCATCATGAG




GCTTCAACAGTATCAAAGAAGGACA




GGTAAAGAGGAGAAGGCGATCACTG




AGGTTCATTTTGGTTCAGACACCTG




TCTCATTAATGCAGACTACACCGTT




ATCTTTTCCTTACAGAGCCGTGTAA




TAACAGTTTTACCTTTTGACGTTGT




CCTCATGATGCAAGACCTGCTCGAA




TCTCGACGAAATGTCCTGTTCTGTG




CCCGCTTTATGTACCCCAGAAGCCA




ATTGCATGAGAGGATAAGCATGATA




CTAGCTCTCGGAGATCAACTTGGGA




AAAAGGCACCCCAAGTTCTATATGA




CTTTGTTGCAACCCTTGAATCATTT




GCATACGCAGCTGTCCAACTTCATG




ACAATAACCCTATCTACGGTGGGAC




TTTCTTTGAATTCAATATCCAAGAA




TTAGAATCTATCTTGTCTCCTGCGC




TTAGCAAGGACCAGGTCAACTTCTA




CATTAGTCAGGTTGTCTCAGCATAC




AGTAACCTCCCCCCATCTGAATCGG




CAGAATTGCTATGCCTGTTACGCCT




ATGGGGTCACCCTTTACTAAATAGC




CTCGATGCAGCAAAGAAAGTCAGAG




AATCAATGTGTGCCGGGAAGGTTCT




TGACTACAATGCCATTCGATTAGTC




TTGTCTTTTTACCATACATTATTGA




TCAATGGATATCGGAAGAAACACAA




GGGACGCTGGCCAAATGTGAATCAA




CATTCACTACTCAACCCAATAGTGA




GGCAGCTTTACTTTGATCAAGAAGA




GATCCCACATTCTGTCGCCCTCGAA




CATTACTTAGACATCTCAATGATAG




AATTTGAGAAAACTTTTGAGGTTGA




ACTATCTGACAGCCTAAGCATCTTT




TTGAAAGACAAGTCGATTGCCTTGG




ACAAACAAGAGTGGTACAGCGGTTT




TGTTTCAGAAGTGACCCCAAAGCAC




TTGCGGATGTCTCGTCATGACCGCA




AGTCCACCAACAGGCTCCTGCTGGC




CTTTATCAACTCCCCTGAATTCGAT




GTTAAAGAAGAGCTAAAATACTTGA




CTACAGGTGAGTATGCTACTGATCC




AAATTTCAACGTTTCTTACTCACTT




AAAGAGAAGGAAGTAAAGAAAGAAG




GACGAATCTTTGCAAAAATGTCACA




AAAGATGAGAGCGTGCCAGGTTATT




TGTGAAGAGTTGCTAGCACATCATG




TAGCCCCTTTGTTTAAAGAGAATGG




TGTCACACAGTCGGAACTATCTCTG




ACAAAAAATCTGCTAGCTATCAGTC




AGTTGAGTTATAACTCAATGGCTGC




TAAGGTGCGGTTGCTGAGACCAGGG




GACAAATTCACTGCCGCACACTATA




TGACCACAGACCTGAAAAAGTACTG




CCTTAATTGGCGTCACCAGTCAGTC




AAACTGTTTGCCAGAAGCCTAGATC




GACTGTTCGGGCTAGATCATGCTTT




TTCTTGGATACATGTCCGCCTCACC




AACAGCACCATGTATGTGGCTGATC




CATTCAATCCACCAGACTCAGATGC




ATGCCCAAACTTAGACGACAACAAA




AACACGGGAATTTTCATCATAAGTG




CACGAGGTGGGATAGAAGGCCTCCA




ACAAAAACTGTGGACCGGCATATCA




ATCGCAATCGCGCAAGCAGCTGCAG




CCCTCGAAGGCTTGAGAATTGCTGC




TACTTTGCAGGGGGACAACCAGGTT




CTAGCGATCACGAAGGAATTTGTAA




CCCCAGTCCCGGAAGGTGTCCTCCA




TGAGCAATTATCTGAGGCGATGTCC




CGATATAAAAAGACTTTCACATACC




TTAATTACTTAATGGGGCATCAACT




GAAAGATAAAGAGACAATCCAATCC




AGTGATTTCTTTGTTTACTCTAAAA




GGATATTCTTTAATGGGTCCATTCT




GAGTCAATGTCTCAAAAACTTCAGT




AAGCTCACCACTAATGCCACCACCC




TTGCCGAGAACACTGTAGCCGGCTG




CAGTGACATCTCATCATGCATCGCT




CGTTGTGTAGAAAACGGGTTGCCAA




AGGATGCTGCATACATCCAGAACAT




AGTCATGACTCGACTTCAACTGTTG




CTAGATCACTACTATTCCATGCATG




GTGGCATAAACTCAGAATTAGAACA




GCCGACCCTAAGTATTTCTGTTCGG




AATGCAACCTATTTACCATCTCAGT




TGGGCGGTTACAATCATCTAAATAT




GACCCGACTATTTTGCCGCAACATC




GGTGACCCGCTCACTAGTTCCTGGG




CAGAAGCAAAGAGACTAATGGAAGT




TGGCCTGCTCAATCGTAAATTCCTG




GAGGGAATATTGTGGCGACCTCCGG




GAAGTGGGACATTCTCAACACTTAT




GCTTGACCCGTTTGCGCTGAACATT




GATTACCTCAGACCACCAGAGACAA




TAATCCGAAAGCATACCCAGAAGGT




CTTGCTGCAAGATTGCCCTAATCCC




CTATTAGCCGGTGTGGTTGATCCGA




ACTACAACCAGGAACTGGAACTATT




AGCGCAGTTCTTGCTCGACCGAGAG




ACCGTTATTCCCAGGGCAGCTCATG




CTATCTTTGAGCTGTCTGTCTTGGG




GAGGAAAAAACATATACAAGGGTTG




GTGGACACTACAAAAACGATTATCC




AGTGTTCGCTGGAAAGACAACCATT




GTCCTGGAGGAAAGTTGAGAACATT




ATCACCTATAATGCGCAGTATTTCC




TTGGAGCCACTCAGCAGATTGATAC




AGATTCCCCTGAAAAGCAGTGGGTG




ATGCCAAGCAACTTCAAGAAGCTCG




TGTCTCTTGACGATTGTTCAGTCAC




ATTGTCTACTGTTTCCCGGCGTATA




TCTTGGGCCAACCTACTTAATTGGA




GGGCAATAGATGGCTTGGAAACCCC




AGATGTGATAGAAAGTATTGATGGG




CGCCTTGTGCAATCATCCAATCAGT




GTGGCCTATGTAATCAAGGATTAAG




TTCCTACTCCTGGTTCTTCCTCCCC




TCCGGATGTGTGTTTGATCGTCCAC




AAGACTCCAGGGTAGTACCGAAAAT




GCCGTATGTGGGATCCAAGACAGAT




GAGAGGCAGACTGCGTCGGTACAAG




CTATACAGGGATCCACATGTCACCT




TAGAGCAGCATTGAGACTTGTATCA




CTCTACCTTTGGGCTTATGGGGATT




CTGATATATCATGGCTGGAAGCCGC




GACACTAGCCCAAACACGGTGCAAT




ATTTCCCTTGATGATCTGCGAATCC




TGAGCCCTCTACCTTCCTCGGCAAA




TTTACACCACAGATTAAATGACGGG




GTAACACAAGTGAAATTCATGCCTG




CTACATCAAGCCGAGTATCAAAGTT




TGTCCAGATTTGCAATGACAACCAG




AATCTTATCCGTGATGATGGGAGTG




TGGATTCCAATATGATTTATCAGCA




AGTCATGATATTAGGACTTGGGGAA




TTTGAGTGCTTGTTGGCCGACCCAA




TCGATACTAACCCAGAGCAATTGAT




TCTTCATCTACACTCTGACAATTCT




TGCTGCCTCCGGGAGATGCCAACAA




CCGGCTTTGTGCCTGCTTTGGGATT




AACCCCATGCTTAACTGTACCAAAG




CAAAATCCATATATTTATGACGAGA




GTCCAATACCTGGTGACCTGGATCA




ACGGCTCATCCAAACAAAGTTTTTC




ATGGGTTCTGATAATCTAGACAACC




TTGATATCTATCAGCAACGAGCGTT




ACTAAGTCGGTGTGTGGCTTATGAT




GTTATCCAATCAGTATTTGCTTGTG




ATGCACCAGTTTCTCAGAAGAATGA




TGCAATCCTCCATACTGACTATCAT




GAGAATTGGATCTCAGAGTTCCGAT




GGGGTGACCCTCGGATAATTCAAGT




GACAGCAGGTTATGAATTGATCTTG




TTTCTTGCTTACCAGCTTTATTACC




TTAGAGTGAGGGGTGACCGTGCAAT




CCTGTGCTATATTGATAGGATACTG




AATAGGATGGTGTCATCAAATCTAG




GCAGCCTTATCCAGACACTCTCCCA




TCCGGAGATTAGGAGGAGGTTTTCA




TTAAGTGATCAAGGATTCCTTGTTG




AAAGGGAACTAGAGCCAGGCAAACC




TTTGGTAAAACAAGCAGTCATGTTC




CTAAGGGACTCAGTCCGATGTGCTT




TAGCAACTATCAAGGCAGGAGTCGA




GCCGGAGATCTCCCGAGGTGGCTGT




ACCCAAGATGAGTTGAGTTTCACCC




TCAAGCACTTGCTATGTCGACGTCT




CTGTATAATTGCTCTCATGCATTCA




GAAGCAAAGAACTTGGTCAAGGTCA




GAAATCTCCCAGTAGAGGAAAAATC




TGCTTTACTATACCAGATGTTGGTC




ACCGAAGCTAATGCCCGGAAATCAG




GATCTGCTAGCATCATCATAGGCTT




AATTTCGGCACCTCAGTGGGATATC




CATACCCCAGCACTGTACTTTGTAT




CAAAGAAGATGCTAGGAATGCTCAA




AAGGTCAACTACACCATTGGATGTA




AATGATCTGTCTGAGAGCCAGGACC




TTATGCCAACAGAGTTGAGTGATGG




TCCTGGTCACATGGCAGAGGGATTT




CCCTGTCTATTTAGTAGTTTTAACG




CTACATATGAAGACACAATTGTTTA




TAATCCGATGACTGAAAAGCCTGCA




GTACATTTGGACAATGGATCCACCC




CATCCAGGGCGCTAGGTCGCCACTA




CATCTTGCGGCCCCTCGGGCTTTAC




TCGTCTGCATGGTACCGGTCTGCAG




CACTCTTAGCATCAGGTGCTCTCAA




TGGGTTACCGGAGGGATCAAGCCTA




TACTTGGGAGAAGGGTATGGGACCA




CCATGACTCTGCTCGAACCCGTCGT




CAAGTCCTCAACTGTTTATTACCAC




ACATTGTTTGACCCGACCCGGAATC




CCTCACAGCGGAATTACAAACCAGA




GCCGCGAGTCTTCACTGATTCCATC




TGGTACAAGGATGACTTCACACGAC




CGCCTGGTGGCATTGTAAATCTATG




GGGTGAAGATGTGCGTCAGAGTGAC




GTCACACAGAAAGACACAGTTAATT




TCATATTATCCCGGATCCCACCCAA




ATCACTCAAACTGATCCATGTTGAC




ATTGAATTCTCACCAGACTCCAATG




TACGGACACTACTATCTGGTTACTC




CCATTGCGCATTATTGGCCTACTGG




CTATTGCAACCTGGAGGGCGATTTG




CGGTTAGGGTCTTCCTGAGTGACCA




TCTCTTAGTAAACTTGGTCACTGCT




ATTCTGTCTGCTTTCGACTCTAATC




TACTGTGTATTGCATCTGGATTGAC




ACACAAAGATGATGGGGCAGGTTAC




ATTTGTGCTAAGAAGCTTGCCAATG




TTGAGGCATCAAGGATTGAGCACTA




CTTAAGGATGGTCCATGGTTGCGTT




GATTCATTAAAGATCCCCCACCAAC




TAGGGATCATTAAGTGGGCTGAAGG




TGAGGTGTCTCGGCTCACAAAAAAG




GCAGATGAAGAAATAAATTGGCGAT




TAGGTGACCCGGTTACTAGATCATT




TGATCCAGTTTCCGAGTTAATAATC




GCACGGACAGGGGGGTCTGTATTAA




TGGAATATGGGACTTTCATTAATCT




CAGGTGTTCAAACCTGGCAGATACA




TATAAACTTTTGGCTTCAATCGTGG




AGACCACCTTGATGGAGATAAGGGT




TGAACAAGATCAATTGGAAGACAAC




TCAAGAAGACAAATTCAGGTGGTCC




CCGCCTTTAATACGAGATCCGGGGG




GAGGATCCGTACATTGATTGAGTGT




GCCCAGCTGCAGGTTATAGATGTCA




TATGTGTAAACATAGATCACCTCTT




CCCCAAACATCGACATGTTCTTGTT




ACACAACTCACTTACCAGTCAGTGT




GCCTTGGAGACTTGATCGAGGGGCC




CCAAATTAAGATGTATCTAAGGGCC




AGGAAGTGGATCCAACGTAGAGGAC




TCAATGAGACAATTAACCATATCAT




CACTGGACAGATATCACGAAATAAG




GCAAGGGATTTCTTCAAGAGGCGCC




TGAAGTTGGTTGGCTTCTCGCTTTG




CGGCGGTTGGAGTTACCTCTCACTT




TAGTTACTTAGGTTGTTGATCATTG




TGAAAAATCGGAGTCGGAATCGCAA




ATAAAAACATACAAAATTGCAAATT




TACAATAATCGCATTAATATTTAAT




AAAAAATATGTCTTTTATTTCGT






Avian
ACCAAACAAGGAAACCATATGCTTG
SEQ ID


paramyxovir
GGGACTTTACGAGAGCGCTTGTAAA
No: 9


us 6 strain
ACCGTGAGGGGGAAGCTGGTGGACT



APMV-
CCGGGTCCGGAGTCGGTGGACCTGA



6/duck/
GTCTAGTAGCTTCCCTGCTGTGTCA



HongKong/
AGATGTCGTCAGTGTTCACTGATTA



18/199/77,
CGCTAAGCTGCAAGATGCCCTTGTG



complete
GCCCCTTCGAAGAGGAAGGTAGATA



genome
GTGCACCAAGCGGATTGTTAAGGGT



Genbank:
TGGGATCCCTGTGTGTGTCCTACTC



EU622637.2
TCCGAAGATCCCGAAGAGCGATGGA




GCTTCGTTTGCTTTTGCATGAGATG




GGTGGTGAGCGATTCAGCCACAGAA




GCGATGCGTGTTGGTGCAATGCTAT




CCATTCTCAGCGCACACGCCAGCAA




TATGCGGAGCCACGTTGCACTTGCA




GCGAGGTGTGGTGACGCCGACATCA




ACATACTTGAGGTTGAGGCAATTGA




CCACCAGAACCAGACCATTCGCTTC




ACTGGGCGCAGCAATGTGACTGACG




GGAGAGCACGCCAGATGTACGCAAT




TGCCCAAGATTTGCCTCCTTCCTAT




AACAATGGCAGCCCTTTTGTAAATA




GAGACATTGAGGACAATTATCCAAC




TGACATGTCTGAGCTGCTCAATATG




GTTTACAGTGTCGCAACTCAAATCT




GGGTGGCAGCTATGAAGAGCATGAC




TGCTCCAGACACATCCTCGGAGTCT




GAGGGGAGGCGGCTGGCCAAATACA




TCCAGCAAAACAGAGTAATTCGGAG




CACGATTCTAGCTCCCGCAACCCGC




GGTGAATGCACCCGAATAATACGGA




GCTCCCTAGTCATCCGCCACTTCCT




AATAACTGAGATCAAGCGTGCCACA




TCAATGGGTTCCAACACGACACGAT




ATTATGCCACAGTTGGGGATGCCGC




AGCTTACTTCAAGAATGCGGGTATG




GCTGCATTCTTCTTAACTCTGAGGT




TTGGAATTGGGACCAAGTACTCCAC




ACTTGCAGTTTCGGCGCTGTCTGCT




GACATGAAGAAACTCCAGAGCTTGA




TCCGAGTATACCAGAGCAAAGGTGA




GGATGGACCCTACATGGCATTTCTG




GAAGACTCCGACCTTATGAGCTTCG




CCCCTGGAAACTATCCACTCATGTA




TTCATATGCAATGGGAGTAGGGTCC




ATTCTTGAGGCAAGTATTGCTAGAT




ATCAGTTTGCGCGATCATTCATGAA




TGACACATTCTATCGATTGGGTGTT




GAAACTGCACAACGAAACCAAGGTT




CACTTGATGAGAATTTAGCAAAGGA




GCTGCAACTATCCGGGGCTGAACGA




AGGGCTGTGCAGGAACTTGTGACCA




GCCTGGATCTAGCAGGAGAGGCCCC




AGTGCCCCAGCGCCAACCAACATTC




CTCAATGACCAGGAGTATGAGGATG




ATCCCCCTGCTAGGAGACAGAGAAT




CGAGGATACTCCAGACGATGATGGA




GCCAGTCAAGCTCCACCCACACCAG




GAGCAGGTCTCACCCCATACTCTGA




TAATGCCAGTGGCCTGGACATCTAA




ATGACCACTACTCAATATGACAAGT




AATCAAGGTTGATCCAAAGCATGCA




AATCCAACACTACAATCGACAACAA




AATCACATGTAGACTTTAAGAAAAA




ACAAGGGTGAGGGGGAAGTTCCTGG




TGCGCGGGTTGGGCCCCTAGTGACT




CAGCCAGCACCATGGACTTCTCCAA




TGACCAAGAGATTGCAGAATTACTC




GAGCTGAGTTCAGATGTGATAAAGA




GCATCCAACACGCCGAGACCCAGCC




AGCGCACACTGTCGGCAAATCTGCC




ATTCGGAAAGGAAACACATCCGAGC




TGCGAGCAGCCTGGGAAGCCGAGAC




ACAACCAGCCCGAGCAGAAAACAAG




CCCGAGGAACACCCAGAGCAAGCCG




CCCGGGATCTCGACAGCAAGGGCAA




CACGGAAAGCCCACAACTACGATCC




AATGCAGATGAGACACCCCAACCAG




AAAGCCACGACAGGCAAGCCACTGC




CCCATCCCCAGACACCACAATAGGG




GTCAACGGGACTAATGGACTTGAAG




CTGCTCTAAAAAAGCTAGAAAAACA




AGGGAAAGGTCCTGGGAAAGGCCAA




GTGGATCGCAACACTCCTCAGAGAG




ATCCAACCACTGCTTCGGGTTCAAA




AAAGGGGAAAGGGGGCGAGCCAAGG




AACAATGCCCTTCATCAGGGCCACC




CACAGGGGACCAACCTGATCCTGCC




CACTCAGAAGCCCTCTCATGCCAGA




CTGGCGCAGCAAGCATCACAGGAGA




TAACTCGCCATGCACTGCAACCCCA




GGATTCCGGCGGCATAGAAGGGAAT




TCTCCATTTCTTGGAGACACGGCCA




GTGCATCTTGGCTGAGTGGTGCAAC




CCAGTCTGCGCACCCGTCACACCTG




AACCCAGAACATTCAAATGCATTTG




CGGGAGATGCCCTCGGGTATGCATC




AACTGTCGCAATGATAGTGGAGACT




CTGAAATTTGTAGTTAGCAGGTTAG




AAGCACTTGAGAATAGGGTGGCGGA




GCTTACCAAGTTTGTCTCTCCCATT




CAGCAAATCAAAGCAGACATGCAGA




TTGTAAAGACATCCTGCGCTGTCAT




TGAGGGCCAACTTGCCACAGTGCAA




ATATTGGAGCCGGGCCACTCATCGA




TCCGCTCACTTGAAGAAATGAAGCA




ATATACCAAGCCAGGGGTTGTCGTC




CAAACAGGGACGACTCAAGACATGG




GCGCCGTCATGAGGGACGGCACGAT




CGTGAAAGATGCTCTTGCCCGCCCA




GTCAATCCGGACAGGTGGTCAGCAA




CAATCAACGCTCAATCAACAACAAC




AAAGGTGACTCAAGAGGATATAAAG




ACAGTGTATACACTATTGGACAATT




TTGGCATCACCGGCCCGAAAAGAGC




GAAAATCGAGGCAGAACTGGCTAAT




GTCAGTGACCGGGACGCACTAGTAA




GGATAAAGAAACGTGTTATGAATGC




ATAAACAGCAAGAAGATCACAACAA




TCAGTACAGATGACATCCCAATATC




AGATCATGATTCTATTGCCAAATCA




CAGCATTTTTTTCTCCTGATCACAC




CTAACAATTTGCTTCAGACACCCTT




GACACTGATTAATAAAAAAGTGAGG




GGGAACTGGTGGTGTCCGGACTGGG




CCATCCAGAGTCACCCAGTCCGAAC




CAAACACCCGCCAGTTCCTCCGCCG




GCACAGCGCGCCACCAACTGCCCCA




ACTCCAACCATGGCCACATCAGAAC




TCAACCTCTACATCGACAAAGACTC




ACCCCAGGTGAGATTGCTAGCATTC




CCCATCATCATGAAACCCAAAGAAA




GTGGGGTTAGAGAGCTGCAACCGCA




ATTGAGGACCCAGTACCTCGGTGAC




GTTACCGGAGGAAAGAAAAGCGCGA




TATTTGTGAATTGCTATGGGTTCGT




GGAAGATCACGGGGGGCGAGACAGC




GGATTCTCACCCATCAGCGAGGAAT




CCAAAGGATCGACAGTCACTGCAGC




TTGCATCACTCTCGGCAGCATCGAG




TATGATAGTGACATCAAGGAGGTGG




CAAAGGCCTGCTATAATCTTCAGGT




GTCAGTCAGGATGTCCGCTGATTCA




ACTCAGAAGGTAGTTTACACAATCA




ATGCCAAACCTGCACTGTTGTTCTC




CTCCCGTGTTGTCAGGGCTGGGGGT




TGTGTGGTTGCAGCAGAAGGTGCAA




TCAAGTGCCCCGAGAAAATGACATC




TGATCGCCTCTACAAATTCCGCGTA




ATGTTTGTGTCATTGACCTTCCTAC




ATCGCAGCAGCCTTTTTAAAGTTAG




CCGTACAGTGCTGTCAATGAGGAAT




TCTGCTCTAATAGCAGTACAGGCCG




AAGTGAAGCTGGGGTTCGATCTGCC




ACTGGACCATCCGATGGCAAAATAT




TTGAGCAAAGAGGATGGACAGCTAT




TTGCAACTGTGTGGGTACACTTGTG




CAACTTTAAGCGCACAGACAGACGC




GGAGTAGACCGATCGGTGGAGAACA




TCAGGAACAAAGTACGAGCCATGGG




GCTGAAGCTCACCTTGTGTGATCTA




TGGGGTCCCACACTTGTTTGTGAAG




CCACGGGGAAGATGAGCAAGTACGC




GCTAGGTTTCTTCTCGGAGACTAAG




GTTGGCTGTCACCCAATCTGGAAAT




GCAACTCGACTGTCGCAAAGATCAT




GTGGTCATGCACAACTTGGATCGCA




TCAGCAAAGGCCATCATACAGGCCT




CCTCTGCTCGTACCTTGTTGACATC




AGAGGACATAGAAGCCAAGGGGGCC




ATCTCCACTGACAAGAAGAAAACAG




ATGGATTCAATCCCTTCATCAAGAC




AGCAAAGTAGTCATCTGGATTTCAT




CAATGAACCCACTGGCCTATGTTCA




GCTGTACCTTCCTTGATAATCACTA




AATCAATACACAGAGTGCCATTTGA




TTAAGATATTGATTGTGCCAGTATG




TGGATCACTTATACTTTGAAGATTG




ACCTTCCTAGCTGTTCCTCCCTTAG




AAGTCCTGTCATATTAATCAAAAAA




ATCAGTTTGCTGGTAAAATAGTATG




CTGCAGGATCCAATACCTCCCACCA




ATGAGCAGCCGAGGGGGAAGGCATG




GGAGCCCGACTGGGGCCCTTTACAA




TGGCACCCGGCCGGTATGTGATTAT




TTTCAACCTCATCCTTCTCCACAAG




GTTGTGTCACTAGACAATTCAAGAT




TACTACAGCAGGGGATTATGAGTGC




AACCGAAAGAGAAATCAAAGTGTAC




ACAAACTCCATAACTGGAAGCATTG




CTGTGAGATTGATTCCCAACCTACC




TCAAGAAGTGCTTAAATGTTCTGCT




GGGCAGATCAAATCATACAATGACA




CCCTTAATCGAATTTTCACACCTAT




CAAGGCGAATCTTGAGAGGTTACTG




GCTACACCGAGTATGCTTGAACACA




ACCAGAACCCTGCCCCAGAACCTCG




CCTGATTGGAGCAATTATAGGCACA




GCAGCACTGGGGCTGGCAACAGCAG




CTCAGGTTACAGCTGCACTCGCCCT




TAACCAGGCCCAGGATAATGCTAAG




GCCATCTTAAACCTCAAAGAGTCCA




TAACAAAAACAAATGAAGCTGTGCT




TGAGCTTAAGGATGCAACAGGGCAA




ATTGCGATAGCGCTAGATAAGACTC




AAAGATTCATAAATGACAATATCTT




ACCGGCAATCAATAATCTGACATGT




GAAGTAGCAGGTGCTAAAGTAGGTG




TGGAACTATCATTATACTTGACCGA




GTTAAGCACTGTGTTTGGGTCGCAG




ATAACCAATCCAGCACTCTCCACTC




TATCCATTCAAGCCCTCATGTCACT




CTGCGGTAATGATTTTAATTACCTC




CTGAACCTAATGGGGGCCAAACACT




CCGATCTGGGTGCACTTTATGAGGC




AAACTTAATCAATGGCAGAATCATT




CAATATGACCAAGCAAGCCAAATCA




TGGTTATCCAGGTCTCCGTGCCTAG




CATATCATCGATTTCGGGGTTGCGA




CTGACAGAATTGTTTACTCTGAGCA




TTGAAACACCTGTCGGTGAGGGCAA




GGCAGTGGTACCTCAGTTTGTTGTA




GAATCTGGCCAGCTTCTTGAAGAGA




TCGACACCCAGGCATGCACACTCAC




TGACACCACCGCTTACTGTACTATA




GTTAGAACAAAACCATTGCCAGAAC




TAGTCGCACAATGTCTCCGAGGGGA




TGAGTCTAGATGCCAATATACGACT




GGAATCGGTATGCTTGAATCTCGAT




TTGGGGTATTTGATGGACTTGTTAT




TGCTAATTGTAAGGCCACCATCTGC




CGATGTCTAGCCCCTGAGATGATAA




TAACTCAAAACAAGGGACTCCCCCT




TACAGTCATATCACAAGAAACTTGC




AAGAGAATCCTGATAGATGGGGTTA




CTCTGCAGATAGAAGCTCAAGTTAG




CGGATCGTATTCCAGGAATATAACG




GTCGGGAACAGCCAAATTGCCCCAT




CTGGACCCCTTGACATCTCAAGCGA




ACTCGGAAAGGTCAACCAGAGTCTA




TCTAATGTCGAGGATCTTATTGACC




AGAGCAATCAGCTCTTGAATAGGGT




GAATCCAAACATAGTAAACAACACC




GCAATTATAGTCACAATAGTATTGC




TAGTTATCCTGGTATTATGGTGTTT




GGCCCTAACGATTAGTATCTTGTAT




GTATCAAAACATGCTGTGCGAATGA




TAAAGACAGTTCCGAATCCGTATGT




AATGCAAGCAAAGTCGCCGGGAAGT




GCCACACAGTTCTAACAGTATAGCT




AGTCCTAATGATTAAACCATATACT




TGATTACATAATAACACTATGTCAA




GGGATGACATTAATGAGACTCCTTA




TTCTCTCTCAAACCGAGACAGTGAT




CCATCAAGAATGCAACGATCCTACC




TTCTCTGCTTTAATCAAAAAATGCA




GAATAATCTAACAGCCCAACCAAAC




CACCCAGGAGAGAACGCCTGAGGGG




GGAAGGAGGTTGACTACAACCTCTA




CTGATCAGAGGTTGTAGTATCAATT




CTTAACAACCCCCAAGATGAGACCA




CAAGTGGCAATTTGGGGCTTGCGCT




TATTGGCTACCGGCCTAGCTATGGT




CTCCTTAGTGTTCTGCCTAAACCAG




GTAATCATGCAGGTGCTAATTAGGG




ACATTAGAGGCTTGTTGACATCCTC




GGACATCAAGACTACACATGAGGCG




CTGCGTGAGCATCTCTCATCTATTA




CTCTTTTCATGTCGTTTGCGTTGAC




TTGCTCAATAAGTGGGTGTGTTCTT




AGCCTGGTCGCCTTATATCCAAGCA




AGAATACTAGCGGCACTAATCCTCA




GCCGCAAGTAGAGGAGGCTAGATCG




GAAAACCTGTCTCACTCTTCCATGC




ACACGATCAATAGGCCAGCAACCCC




TCCCCCACCGTATTATGTTGCAATA




CAGCTCAGCGCTGAGATGCAACCTG




GGTACCATTCAAGTGATTGATCCCC




TTGACGCACTGGCAGAGTCTACCCC




ACCAAGATCCGTTCTTGTCCTACTT




GTTTGATTTAAGAAAAAATTGTAAT




TTATACAGAAAGATAATAGCTGAGG




GGGAAGCCTGGTGTCACCGCTGGTG




ACCATTCCCCAGCCGGTGGCAATGG




CTTCCTCAGGCGATATGAGACAGAG




TCAGGCAACTCTATATGAGGGTGAC




CCTAACAGCAAAAGGACATGGAGGA




CTGTGTACCGGGTTGTCACCATATT




GCTAGATATAACCGTCCTTTGTGTT




GGCATAGTGGCAATAGTTAGGATGT




CAACCATTACAACAAAAGATATTGA




TAACAGTATCTCATCATCTATTACA




TCCCTGAGTGCCGATTACCAGCCAA




TATGGTCAGATACCCATCAGAAAGT




TAACAGTATTTTCAAGGAAGTTGGA




ATCACTATCCCTGTCACACTCGACA




AGATGCAAGTAGAAATGGGAACAGC




GGTTAACATAATCACTGATGCTGTA




AGACAACTACAAGGAGTCAATGGGT




CAGCAGGATTTAGCATTACCAATTC




CCCAGAGTATAGTGGAGGGATAGAC




ACACTGATATACCCTCTTAATTCAC




TTAATGGAAAGGCTCTAGCTGTATC




AGACTTACTAGAACACCCGAGCTTC




ATACCGACGCCTACCACCTCTCACG




GTTGTACCCGCATTCCTACATTCCA




CCTAGGGTACCGTCATTGGTGTTAT




AGTCACAACACGATAGAGTCTGGTT




GTCACGATGCAGGAGAAAGCATTAT




GTACGTATCCATGGGTGCGGTAGGG




GTCGGCCATCGCGGGAAACCTGTGT




TTACGACAAGTGCAGCGACAATCCT




AGATGATGGAAGGAACAGGAAAAGT




TGTAGCATCATAGCAAACCCTAATG




GGTGTGATGTCTTATGCAGCTTGGT




TAAGCAGACAGAAAATGAAGGCTAC




GCTGACCCTACACCGACCCCAATGA




TCCACGGTAGGCTCCACTTCAATGG




CACATACACTGAGTCTGAACTTGAC




CCTGGCCTATTTAATAACCATTGGG




TCGCTCAATATCCAGCAGTTGGTAG




CGGTGTCGTCAGCCACAGAAAACTA




TTTTTCCCGCTCTACGGAGGGATAT




CACCGAAGTCAAAACTGTTCAATGA




GCTCAAGTCATTTGCTTACTTTACT




CATAATGCTGAATTGAAATGTGAGA




ACCTGACAGAGAGACAGAAGGAAGA




CCTTTATAACGCATATAGGCCTGGG




AAAATAGCAGGATCTCTCTGGGCTC




AAGGGGTTGTAACATGTAATCTGAC




CAATTTAGCTGATTGCAAAGTTGCA




ATTGCGAACACGAGCACCATGATGA




TGGCTGCCGAGGGGAGGTTACAGCT




TGTGCAAGATAAGATTGTCTTCTAC




CAAAGATCCTCATCATGGTGGCCAG




TCCTAATATATTATGATATCCCTAT




TAGTGACCTTATCAGTGCCGATCAT




TTAGGGATAGTGAACTGGACTCCGT




ATCCACAGTCTAAGTTTCCGAGGCC




CACCTGGACAAAGGGCGTATGTGAG




AAACCGGCGATATGCCCCGCTGTAT




GTGTAACGGGTGTTTACCAAGATGT




TTGGGTAGTTAGTATAGGGTCACAG




AGCAATGAGACTGTTGTGGTTGGCG




GGTACTTAGATGCTGCAGCAGCCCG




TCAGGATCCATGGATTGCAGCAGCT




AACCAGTACAACTGGCTGGTTAGGC




GTCGCCTCTTTACATCCCAAACTAA




AGCAGCATACTCATCAACCACTTGC




TTCAGAAACACGAAGCAGGATAGAG




TGTTCTGCCTGACTATAATGGAAGT




CACAGACAACCTACTCGGAGACTGG




AGGATCGCCCCGCTGTTGTATGAAG




TTACTGTGGCTGATAAGCAGCAGGG




CAATCGCAATTACGTGCCTATGGGG




AGGGTGGGGACAGATAAGTTCCAAT




ATTATACCCCAGGTGACAGATATAC




TCCTCAGCATTGATGACTCACTGCA




GCTTATACATAACAATTTTCTCATT




TCCTCTATTCGCAGAGTGAATCAGT




AGAATGACGGTCAGTGATTGACCAA




GCTCAATTAGATAATGAAGTGCAGC




CCGCAATTGTCTTGATTTAATAAAA




AATTGAGGGGCTGTTATAACATAGC




AGACTGACGGGGCAAGACCCGCTGA




GAAAAAAAATGCAGTGAGGGGGAAG




GCAGGCTGAGATCACGTCCCAGTTG




TAGCCTTCCCCGATTCAATTTACTT




AGTATTAACAAGTCAATTCTGCTCA




CAGAGGTCATCTCTAAGGGCCGCTG




TGATGGATCCACAAGTCCAAATACA




CCATATCATCAAGCCAGAGTGCCAT




CTCAACTCACCTGTTGTGGAAAAGA




AACTGACATTATTATGGAAGCTCAC




AGGTTTACCGTTGCCACCCGACCTT




AACGGTTGCGTCACACACAAAGACG




TGACGTGGGATGAAGTGCTCCGGTT




GGAGGCTAATTTGACGAAGGAGTTA




CGGCAATTAGTACGAAGCCTGACCA




ATAGAATGCATGAAAAGGGGGAGTT




CATTGACACATATAAACCTTTATGT




CATCCACGGACATTAAGTTGGTTGA




CCAATATCAACTTGATCAAGAGTGA




CAACATTCTAGCAAGCCACAAGAAA




ATGTTGATCCGAATCGGCAGTATGC




TGCATGAACCAACAGACCAATCGTT




TGTCACTCTTGGCAGGAAATTAGCA




GGCGACCCTTGCTTGTTCCATCAAC




TAGGCCATCTACCTGGATGCCCACC




TAATTCCAGATTTGAAGAACAGGTA




GGAGACTGCAGTTTGTGGTCACCCA




TAAGCGATCCAGCTCTAGTCACAGG




TGGTGAATACGCTAACTGTGTGTAT




GCGTGGTACTTAATACGTCAGACCA




TGCGGTACATGGCCCTCCAGAGAAA




GCAAACAAGAGTGCAATCACAGCAG




AATGTTCTAATTGGATCAGATACTA




TCGTGGGAATCCATCCAGAATTAGT




GATAATTACTGGAATTAGAGACAGG




GTATTCACCTGTTTGACTTTTGATA




TGGTGCTAATGTATGCAGATGTGGT




GGAAGGTCGTGCCATGACAAAGTTG




GTTGCACTCACTGAGCCAACAATGG




TAGAAGTCATTCAGAGAGTCGAAAA




ATTGTGGTTCTTAGTTGACAACATC




TTCGAGGAAATCGGTGGTGCAGGTT




ACAATATTGTTGCATCTCTGGAGAG




CTTGGCATATGGTACTGTTCAACTG




TGGGATAAATCACTGGAACATGCTG




GTGAGTTCTTTTCATTCAATCTTAC




CGAGATAAAGAGTGAGCTAGAGAAC




CATTTAGATCCTGGTATGGCATTTA




GAGTAGTCGAGCAGGTGCGGTTGCT




ATATACTGGACTAAGTGTGAACCAA




GCAGGTGAGATGTTATGCATTTTAC




GTCACTGGGGGCATCCCTTACTATG




CGCTGTGAAGGCGGCAAAGAAAGTC




AGAGAGTCAATGTGTGCACCAAAAT




TAACCTCTCTAGACACCACACTCAA




GGTGTTAGCATTCTTTATTGCAGAT




ATCATCAATGGACATAGACGATCAC




ATTCAGGGTTATGGCCAAGCGTCAG




ACAGGAGTCATTAGTGTCTCCATTG




CTCCAGAACCTCTATAGAGAATCTG




CCGAGCTTCAATACGCAGTTGTGCT




TAAGCACTATAGAGAAGTATCCCTT




ATAGAATTCCAAAAAAGTATTGATT




TTGACTTAGTTGAAGATCTAAGTGT




GTTCCTTAAGGATAAAGCCATTTGT




CGACCGAAGAGTAACTGGTTAGCTG




TATTCAGGAAATCCCTACTCCCTGG




ACATTTGAAAGATAAACTGCAATCT




GAGGGCCCTTCTAACCGGCTTCTGC




TTGACTTTTTGCAATCAAGCGAATT




TGACCCGGCTAAAGAATTCGAATAC




GTGACATCGCTGGAGTATCTTCAGG




ATCCAGAGTTCTGCGCATCTTATTC




CTTAAAAGAGCGGGAAGTCAAAACT




GATGGGCGCATATTTGCAAAAATGA




CTAGAAAAATGAGGAACTGCCAAGT




CTTGTTAGAGAGTCTGCTCGCATGC




CATGTATGCGATTACTTCAAGGAGA




ACGGAGTAGTACAAGAGCAAATCAG




TTTAACAAAATCACTGCTTGCAATG




TCGCAACTTGCTCCTCGTGTGTCTG




AGTATCAAGGGAGAGTTCTCCGCTC




GACTGATAGGTGCAGTAGAGCTACA




GCCACACCTAGTCAGGACACAGGCC




CAGGCGAGGGGGTCAGGCGACGGAA




AACAATTATAGCATCATTCTTGACT




ACTGACCTACAGAAGTATTGTCTCA




ATTGGAGGTACACCGTAATAAAACC




TTTTGCCCAGAGGCTTAACCAGTTA




TTTGGGATACCCCACGGCTTTGAGT




GGATTCACCTCCGCTTGATGAACAC




AACTATGTTTGTAGGAGACCCACAT




AATGTCCCTCAGTTTTCATCGACAC




ACGACTTAGAATCCCAAGAGAACGA




TGGAATATTTATTGTGTCACCTCGG




GGTGGTATAGAAGGGCTATGCCAAA




AAATGTGGACCATGATCTCCATTGC




GGCAATTCATCTAGCAGCCACAGAA




TCGGGTTGTCGGGTTGCATCCATGG




TCCAGGGGGACAACCAAGCAATTGC




AATTACTACGGAGATCGAAGAGGGT




GAGGACGCGTCTGTAGCATCAATAA




GGTTGAAAGAGATATCTGAGAGGTT




CTTTAGGGTGTTCAGAGAGATCAAC




AGGGGTATAGGACACAACTTAAAAG




TCCAAGAAACAATTCATAGTGAGTC




ATTCTTCGTGTACTCAAAACGGATC




TTCTTTGAGGGGAAGATCCTCAGCC




AGCTACTGAAAAATGCAAGCAGGTT




GGTGTTGGTATCCGAGACTGTGGGT




GAGAATTGTGTTGGCAATTGCTCAA




ATATCAGTTCCACAGTTGCTAGACT




CATTGAAAATGGATTAGATAAGAGA




GTCGCATGGGGGCTCAATATCCTGA




TGATCGTAAAACAAATTCTTTTTGA




CATTGATTTTTCCTTGGAGCCTGAA




CCATCTCAGGGCTTGAGTCATGCTA




TTCGCCAAGACCCAAACAACATGAA




AAACATCTCTATCACTCCTGCTCAG




TTAGGTGGATTAAATTTTCTGGCCC




TATCTCGGCTATTTACAAGGAACAT




AGGAGACCCCGTCTCATCAGCCATG




GCAGATATGAAGTTCTATATACAGG




TCGGATTATTATCCCCTCATCTGCT




GAGGAATGCAATTTTCAGAGAACCC




GGAGATGGAACATGGACAACACTGT




GTGCCGACCCGTACTCATTAAACCA




ACCATATGTGCAATTACCAACGTCA




TACTTAAAAAAGCACACACAACGTA




TGCTGCTCACTGCCTCAACAAACCC




TTTATTGCAAGGTACCCGGGTAGAG




AATCAATACACTGAGGAAGAAAGAC




TAGCAAAGTTCCTTCTGGACCGAGA




ATTGGTTATGCCACGTGTGGCACAT




ACAGTCTTTGAGACCACTGTTGCCG




GGAGACGAAAGCATCTGCAAGGGTT




AATTGACACTACACCGACTATTATT




AAATATGCCCTTCATCACCACCCTA




TTTCTTTCAAGAAAAGTATGCTGAT




ATCATCTTACTCAGCTGACTACATT




ATGTCGTTTATTGAGACTATCGCAA




CAGTGGAATACCCAAAGCGTGACAC




CATGCAGCTCTGGAACAGAGGACTA




ATTGGTGTCGACACTTGCGCGGTCA




CACTTGCGGATTACGCAAGAACATA




TTCGTGGTGGGAGATCCTGAAGGGT




AGGTCAATAAAGGGAGTTACCACAC




CTGATACATTAGAACTTTGCTCTGG




GAGCTTAATAGAGCAAGGCCATCCA




TGTTCTCAGTGCACAATGGGTGATG




AATCCTTTTCATGGTTCTTCCTCCC




AGGGAATATTGATATTGAAAGACCG




GACTTTTCTAGGGTGGCCCAGAGAA




TCGCTTATGTCGGCTCAAAAACGGA




AGAAAGGCGGGCAGCTTCGTTGACG




ACAATCAAAGGGATGTCAACTCACC




TTAGGGCGGCACTAAGAGGGGCGAG




TGTTTACATCTGGGCGTATGGAGAC




AGCGACAAAAATTGGGACGACGCTA




CAAAGCTTGCTAACACAAGATGTGT




AATATCTGAAGACCATCTGCGTGCC




CTTTGCCCAATCCCGAGTTCAGCAA




ACATACAGCATAGGCTGATGGATGG




GATAAGCGTAACGAAGTTCACTCCC




GCATCCCTAGCAAGAGTGTCATCGT




ATATTCATATTTCGAATGACCGGCA




TCAGAGTAGAATTGACGGTCAAGTG




ATCGAATCAAATGTGATTTTCCAAC




AAGTTATGCTTCTCGGTCTCGGTAT




TTTTGAGACATTTCACCCCTTGTCT




CACAGGTTTGTGACTAACCCCATGA




CACTCCACTTACACACAGGGTACTC




GTGTTGCATAAGGGAAGCTGATAAT




GGTGATTTCTTAGAATCCCCGGCTA




GTGTACCAGACATGACTATCACGAC




TGGTAATAAGTTCCTTTTTGACCCC




GTGCCCATTCAAGATGACGATGCTG




CAAAACTACAGGTATCTTCATTCAA




GTACTGTGAGATGGGCCTCGAAGTG




CTTGACCCACCAGGACTTGTAACCC




TACTATCTCTAGTGACTGCACGTAT




CTCTATTGATACATCTATAGGGGAG




AGTGCATACAACTCGATACACAATG




ATGCTATTGTCTCATTCGACAATTC




CATCAATTGGATATCTGAGTACACA




TACTGTGATCTTAGACTACTGGCAG




TAGCAATGGCTCGGGAGTTTTGTGA




CAACCTCTCTTATCAGCTTTACTAT




CTGAGGGTTAAAGGGCGACGGGCAA




TCCGGGATTATATCCGCCAAGCCCT




CTCGAGGATACCAGGGTTACAACTT




GCTAATATAGCCTTGACTATATCTC




ATCCGGGAATTTGGGCAAGACTGAG




GCTAATTGGGGCAGTAAGTGCTGGA




AATAGTCCCATCAGTGCAACCGTAA




ATTATCCTGCTGCTGTGTGTGAGCT




CATATTATGGGGTTACGAACAATAT




ACTGCACAACTACTAGATGGTTACG




AGTTAGAAATTATAGTCCCGAATTA




TAAGGATGATGACCTGAACAGGAAG




GTTGAACATATACTAGCAAGACGGG




CTTGCCTGCTGAGTCTGCTGTGTGA




GTATCCAGGAAAATACCCGAATATT




AAAGACCTTGAACCTATTGAGAAAT




GCACTGCTCTGTCTGACCTGAATAA




ATTGTGGATGGCGACAGATCACAGA




ACTCGGGAATGTTTTTCCGGGATAT




CTCAGATATTTGATTCCCCCAAATT




AAATCCGTTCATCACTAATCTTTAC




TTCTTGAGTAGAAAGCTGCTCAACG




CGATTATAAGCAGCACGGACTGTAG




GGCCTACGTTGAGAACCTTTATGAA




GATATCGACATTGAACTAACATCTC




TCACTGAGGTTTTGCCCTTAGGAGA




GGATGATCAAATGATCACTGGGCCT




CTGCGCTTTGACCTTGAACTAAAAG




AACTCACCCCGGATTTTACTATCAC




TTGGTGTTGTTTTGACTCTACAGCA




GCACTGATGTCACGGTGCATTAATC




ATGCCACAGAAGGCGCAGAGCGCTA




CATCCGAAGAACGGTTGGGACAGCT




TCAACATCTTGGTATAAAGCAGCAG




GAATATTAACTACACCTGGCTTTCT




CAACCTCCCTAAAGGCAATGGCTTA




TATCTAGCTGAGTCATCAGGGGCCA




TCATGACTGTGATGGAGCATCTTGT




CTGCTCTAATAAAATATGGTATAAC




ACCTTGTTTAGCAATGAGCTCAACC




CACCTCAGAGGAATTTTGGTCCCAA




CCCAATTCAATTTGAAGAAAGTATC




GTGGGTAAACATATTGCAGCCGGGA




TTCCTTGCAAGGCAGGACATGTGCA




AGAGTTTGAGGTACTTTGGAGAGAG




GTAGATGAAGAGACAGATCTGACCT




CCATGAGATGTGTGAATTTTATCAT




GTCGAAAGTTGAACAGCACTCGTGT




CATATTGTATGCTGTGACTTAGAAT




TGGCTATGGGGACTCCCTTAGAAGT




GGCCCAATCTGCATATACGCATATT




GTAACCCTCGCCTTGCATTGCCTAA




TGATTAGCGGAAAATTAGTACTAAA




GTTGTATTTCTCACAAAATGCCCTC




TTACACCATGTTCTCTCTTTATTGC




TTGTATTGCCATTCCATGTAACAAT




CCACACTAACGGTTATTGCTCTCAC




CGAGGCTCTGAAGGGTATATCATTG




CCACGAGAACAGGAGTTGCTCTGGG




TTCAAATGTGTCCCAAGTACTAGGT




GGTGTGACTGAGATGGTACGGAAAG




GTCAGACCCTTGTCCCTGTAAAGGT




ACTTACAGCGATCTCCAATGGGTTC




AGAACTGTGTCAAGCTCTTTAGGCA




GACTAAGGGGTGAGCTCTATTCGCC




ATCGTGTAGCATTCCGCAGTCAGCT




ACCGACATGTTCCTCATTCAACTTG




GAGGGAAGGTGCAGTCAGATTGGAA




TACGAACTCTCGAGGCTATAGAGTG




GGTGAGACTGATCTCGTATTACAGG




ACATTATATCAATATTGAGCACACT




ACTTAAAGAAATAATACACGTAAGG




GAATCCAGGGAGTCAGTGGACAGGG




TTCTGTTGCTCGGGGCATACAACCT




ACAGGTGTCTGGAAAAGTAAGAACA




ATGGCCGCGGCTGCAACAAGGAACA




TATTGCATCTACATATAGTTAGACT




TATTGGAGACTCAATGTCCAATGTA




AGGAGACTAGTACCTCTGCTAGATA




AGGGCTTTATAGTAATATCAGACAT




GTATAGTGTGAAAGATTTCTTGAGA




AAAACTGAGTCCCCTAAGTACTTCT




TAAACAAGCTAGGCAAGAGCGAGAT




TGCACAGCTATTTGAGATAGAGTCC




AAGATTATTCTGAGCAGGGCAGAGA




TCAAGAATATTTTGAAGACAATAGG




GATTGTGGCTAAACAGCACTCAGAG




TGATCTCTCCAACCTTGCACCATTT




GAATTCTGGACTGTGGACGCGCATG




CCTAAGCGCACCAACTTGCCGTGAC




GATTGATGTAATCCTTGATATGAAC




TACTAATCATTTGGAATTTATTTAC




TTCCCGAAATCACCCATAGACCGGA




ATCGATACCGGAGATTATTTTTTAA




TAAAAAACCTGGAAAGTCGACAAGG




ATCATAGTCAAAAAGCTTATGATTT




CCTTGTTTGGT






Avian
ACCAAACAAGGACTGCATAAGCAGT
SEQ ID


paramyxovir
GTAAAACTTTTAATAAAAAATAACT
NO: 10


us 7
TTCGTGAGGGTGAATCGATCATCGC



strain
TCGAAGCCGATATCGACTCACCCAA



APMV-7/dove/
ATTAGCTGCTTGTATAAGGATCCGA



Tennessee/
ATATCAATTGGAATCATGTCATCGA



4/75,
TTTTTACTGATTATACCAATTTGCA



complete
AGAGCAATTAGTCAGACCGGTAGGC



genome
CGGAAGGTTGATAATGCTTCAAGTG



Genbank:
GCTTGTTGAAAGTTGAGATACCAGT



FJ231524.1
CTGCGTCCTGAATTCACAGGACCCA




GTTGAGAGACACCAGTTCGCAGTAT




TATGTACAAGGTGGATCTCAAGTTC




AATTGCCACAACTCCTGTCAAGCAA




GGTGCCCTGCTTTCTCTTCTCAGTT




TGCACACAGAAAACATGCGAGCGCA




TGTTCTATTAGCAGCCCGGTCAGGA




GATGCTAATATAACAATTCTAGAAG




TTGATCATGTAGATGTTGAAAAGGG




AGAATTACAATTTAATGCAAGGAGT




GGTGTCTCATCTGATAAAGCTGATC




GGCTGCTGGCTGTCGCAATGAATCT




TATTGCAGGTTGTCAGAATAACTCA




CCATTTGTCGACCCATCGATTGAGG




GTGATGAACCAACTGATATGACTGA




ATTTTTAGAGCTGGCTTATGGGTTA




GCGGTTCAAGCATGGGTAGCTGCAA




TAAAGAGTATGACGGCACCAGATAC




TGCTGCGGAGAGTGAGGGGCGGCGA




TTAGCAAAATACCAGCAGCAAGGTC




GTTTAACACGACGTGCTGCTCTTCA




AGCAACCGTGAGGGGGGAGTTGCAG




CGGATAATCAGGGGTTCTCTGGTAG




TTCGACACTTCCTTATAGGAGAAAT




CAGAAGAGCAGGAAGTATGGGAGAA




CAGACAACAGCCTATTATGCCATGG




TGGGAGATGTCAGCCAATACATAAA




GAATTCAGGAATGACTGCATTCTTC




CTGACATTACGATTTGGGGTGGGTA




CCAAGTATCCTCCCCTTGCAATGGC




TGCATTTTCAGGAGATCTCACTAAA




CTCCAGAGCCTGATCAGACTATATC




GAAATAAAGGTGACATAGGGCCTTA




TATGGCCCTACTCGAAGATCCTGAC




ATGGGCAACTTTGCTCCTGCAAATT




ACACCTTGCTCTATTCATATGCAAT




GGGCATTGGTTCTGTATTGGAGGCT




AGTATCGGTAGATACCAGTATGCGA




GAACATTCCTGAATGAATCATTCTT




TAGGTTGGGGGCCTCAACTGCTCAA




CAGCAACAAGGAGCACTGGATGAGA




AATTGGCTAACGAGATGGGGCTATC




AGACCAGGCAAGGGCAGCAGTTTCC




AGATTAGTTAATGAGATGGATATGG




ATCAGCAAGTAGCCCCCACACCAGT




TAATCCAGTCTTTGCAGGAGATCAA




GCAGCCCCACAGGCAAATCCTCCAG




CCCAACCAAGACAGAATGACACACC




ACAGCAGCCTGCTCCTCTTCAGCAG




CCAATTCGAATTGCCATGCCTCAAA




ATTATGATGATATGCCAGACTTAGA




GATGTAGACAGAACCCCAATCAAGC




AACAATTGGCATTAAGATCTAAGCT




GAATGTATGAGCACACGAGTACCCA




AGTATATTTGTTAGCAGTTGCATGA




AATCATTATCCATATTATTGATTTG




CAATATAGAAAATTACTGATAAACA




ATTAAGAATCATTTAATAAAAAAAT




TCCACAAAAATTAAAAAAATTGTGA




GGGGGAACACCTTTCAGTCGGTCAA




CTGCTGCTAATAACCTGCAATTATC




ACGTGGATTGAATATGGAATTCAGT




AATGATGCCGAGGTTGCCGCGCTCC




TGGATCTTGGAGATAGCATCATTCA




GGGCATTCAGCATGCAACAATGGCT




GATCCGGGAACACTAGGGAAGTCAG




CTATTCCTGCAGGTAATACCAAACG




CTTAGAGAAATTATGGGAGAAAGAA




TCTGTTCCTAATCATGATAATATGA




TTCACTCTTCCATGAGTGCAGAACC




TATAAGCGGGGAACTACCTGAGGAA




AACGCTAAAACTGAACCAACAGGGA




CTCAAGAAATGCCAGAACAAATTCA




AAAGAATGACAATCTCCAACCTGCA




TCCATCGATAACATATTGAGCAGCA




TTAATGCATTAGAGTCAAAACAGGT




TAAAAAAGGGTTAGTGCTATCGCCC




CAATCACTGAAAGGTGTGTCCCCCT




TAATCAAGAACCAGGATCTGAAGAA




CACCATGCAGGACCTGGAAACCAAA




CCCAAGGCTGTAACGACTGTAAATC




CATTAGCAAACCGACAAGTGTCACC




TGGAAGCCTGGTCATAGACGAGAGT




ATTCCTTTGCTTGGAGTGCAGGAAC




AAACAAATTTATTGTCTCCTCGTGG




TGTAACCCAACTTGCGCCCCAATCA




GACCCTATCCTACAGTCGAACGATG




CAGGTGCGGGAATTGCCCAAAATTC




TGCCCTGGATGTCAATCAGCTCTGG




GATGTAATCAATCAGCAACACAAGA




TGCTGATAAACCTACAAAATCAAGT




AACAAAGATCACTGAGCTGGTTGCT




TTAATTCCAATTCTTCGAAGTGATA




TTCAGGCTGTAAAGGGAAGTTGCGC




ATTATTAGAAGCACAGCTAGCATCT




ATAAGAATACTAGATCCTGGGAACA




TCGGGGTATCTTCATTAGATGATCT




TAAAACAGCAGGGAAACAAAGTGTA




GTTATTAATCAAGGGAGCTATACTG




ATGCAAAGGATCTGATGGTTGGGGG




AGGATTGATTCTTGATGAACTTGCT




AGACCTACTAAATTAGTCAATCCAA




AGCCACAACAATCTTCCAAAATATT




GGATCAGGCAGAAATTGAAAGTGTC




AAGGCCCTAATCCATACCTACACTC




ACGATGATAAGAAGCGGAACAAATT




CTTAACTGCACTTGACAAGGTGACA




ACCCAGGATCAGCTAACTCGCATCA




AGCAGCAAGTATTAAATCAATAGAT




AGACAATTAGCATTCATTCAAGCTA




TACTCATTTAAGTGCTTTGATTGTG




TTGCGGAAACTATATTGAGATAATT




TAGTCTTACATGCAAAATAACATTA




AAAATTAATTATGAGCAATCTTGAT




TTTTCTAACTCATAATCAACCTCCT




TCTCTATAAAGGCATACTTAGTATT




GCAAAAAGAGAAAATTAAGAAAAAA




AGAAAAAGAAAATTGAGGGAGACCG




CTTGATAGATCTGTGATCGGTCTCA




TAACCTCAAATTAAAATGGAATCTA




TATCTCTGGGGTTATATGTTGATGA




AAGTGATCCAGCATGCTCATTACTT




GCATTCCCCATAATCATGCAGACTA




CAAGTGAAGGAAAGAAGGTCTTACA




ACCGCAAGTCAGAATAAACCGTCTA




GGGAGTATATCGATAGAAGGAGTTC




GGGCAATGTTCATAAATACATATGG




CTTCATTGAGGAGAGGCCTACGGAA




AGGACAGGTTTCTTTCAGCCAGGCG




AAAAAAATCAGCAGCAAGTTGTGAC




AGCTGGTATGCTGACATTGGGCCAA




ATAAGGACCAATATAGACCCGGACG




AAATTGGAGAGGCATGCTTGAGACT




CAAAGTGAATGCTAAAAAATCAGCA




GCAAGTGAGGAGAAGATAGTATTTA




GCATTCTTGAAAAGCCTCCCGCCCT




GATGACTGCACCTGTAGTACAAGAT




GGGGGCTTAATTGCTAAAGCAGAAG




GATCAATCAAATGCCCAGGTAAGAT




GATGAGTGAAATTCACTACTCATTT




AGAGTAATGTTTGTGAGTATCACAA




TGCTGGATAATCAGAGCCTATACAG




AGTACCAACAGCCATCAGCTCGTTC




AAAAATAAAGCTCTATATTCTATTC




AGTTAGAGGTATTGCTGGAAGTTGA




TGTGAAGCCTGAGAGCCCCCAGTGT




AAATTTCTAGCAGACCAGAAAGGGA




AGAAAGTTGCTTCTGTATGGTTCCA




TCTCTGCAATTCTAAAAAGACGAAT




GCCAGCGGGAAACCGAGATCATTAG




AGGATATGAGAAAGAAGGTCCGAGA




TATGGGAATCAAAGTGTCTCTGGCC




GACCTTTGGGGCCCTACGATCATCG




TCAGGGCCACAGGGAAGATGAGTAA




ATATATGCTAGGATTTTTCTCTACC




TCAGGGACTTCATGTCATCCAGTAA




CAAAGAGTTCACCAGATTTGGCAAA




AATATTATGGTCATGCTCAAGCACA




ATCATCAAAGCAAATGCCATTGTTC




AAGGGTCAGTCAAAGTCGATGTCCT




GACCCTCGAAGATATCCAAGTTTCC




AGTGCTGCAAAAATCAACAAATCAG




GAATAGGGAAGTTTAATCCATTTAA




GAAATAAAGTCATATGCAGATTAAA




ATTTGATCAAGATTGGTCTTAGCAA




ATTAACTGAATGTAATTATAAAATA




CCTCAGTAAAATGCTAATGAATCAG




TGGATGATATTGAATTAGCAGATTG




AAAATTAAAGAAAACCTTATGAGGG




CGAATGAGCTTAGATGATTTAATAA




AGGAGACTAATCCAACATTTCCCTC




AAATTAACAAAATCAGAAAGTAAAA




AGAAAGGGAGCAATGAGAGTACGAC




CTTTAATAATAATCCTGGTGCTTTT




AGTGTTGCTGTGGTTAAATATTCTA




CCCGTAATTGGCTTAGACAATTCAA




AGATTGCACAAGCAGGTATTATCAG




TGCACAAGAATATGCAGTTAATGTG




TATTCACAGAGTAATGAGGCTTACA




TTGCACTGCGCACTGTGCCATATAT




ACCTCCACACAATCTCTCTTGTTTC




CAGGATTTAATCAACACATACAATA




CAACGATTCAAAACATATTCTCACC




AATTCAGGATCAAATCACATCTATA




ACATCGGCGTCAACGCTCCCCTCAT




CAAGATTTGCAGGATTAGTAGTCGG




TGCAATCGCTCTCGGAGTAGCGACA




TCTGCACAAATAACTGCAGCCGTGG




CACTCACAAAGGCACAGCAGAACGC




TCAAGAAATAATACGATTACGTGAT




TCTATCCAAAATACTATCAATGCTG




TGAATGACATAACAGTAGGGTTAAG




TTCAATAGGAGTAGCACTAAGCAAG




GTCCAAAACTACTTGAATGATGTGA




TAAACCCTGCTCTGCAGAACCTGAG




CTGCCAGGTTTCTGCATTAAACTTA




GGGATCCAATTAAATCTTTATTTAA




CCGAAATTACAACTATCTTTGGACC




GCAAATTACAAATCCATCATTGACC




CCATTGTCAATTCAGGCATTATACA




CCCTAGCAGGAGATAACCTGATGCA




ATTTCTTACCAGGTATGGCTATGGA




GAGACAAGTGTTAGCAGTATTCTCG




AGTCAGGACTAATATCAGCACAAAT




TGTATCTTTTGATAAACAGACAGGC




ATTGCAATATTGTATGTCACATTAC




CATCAATTGCGACTCTTTCCGGTTC




TAGAGTTACCAAATTGATGTCAGTT




AGTGTCCAAACTGGAGTTGGAGAGG




GTTCTGCTATTGTACCATCATACGT




TATTCAGCAGGGAACAGTAATAGAA




GAATTTATTCCTGACAGTTGCATCT




TCACAAGATCAGATGTTTATTGTAC




TCAATTGTACAGTAAATTATTGCCT




GATAGCATATTGCAATGCCTCCAGG




GATCAATGGCAGATTGCCAATTTAC




TCGCTCATTGGGTTCATTTGCAAAC




AGATTCATGACCGTTGCAGGTGGGG




TGATAGCAAATTGTCAGACAGTCCT




GTGCCGATGCTATAATCCAGTTATG




ATTATTCCCCAGAACAATGGAATTG




CTGTCACTCTGATAGATGGTAGTTT




ATGTAAAGAACTTGAATTGGAGGGG




ATAAGACTAACAATGGCAGACCCAG




TATTTGCTTCATACTCTCGTGATCT




GATTATAAATGGGAATCAATTTGCT




CCGTCTGATGCTTTAGACATTAGTA




GCGAATTAGGTCAACTGAATAACTC




AATTAGCTCAGCAACTGATAATTTA




CAGAAGGCACAGGAATCATTGAATA




AGAGTATCATTCCAGCTGCGACTTC




CAGCTGGTTAATTATATTACTATTT




GTATTAGTATCAATCTCATTAGTGA




TAGGATGTATCTCCATTTATTTTAT




ATATAAACATTCAACCACAAATAGA




TCACGAAATCTCTCAAGTGACATCA




TCAGTAATCCTTATATACAGAAAGC




TAATTGATGAATTAATTTCTAAAAA




ATAATTTGATGTTCTAATAGGAGAA




TGCAATATCAATATGTCCATTATAA




TATACTTGATTGATTGAAAGATCTG




ATAATAATAGTTTATAAGACACTAA




GTAAGAGTTAAATGCTAAAGCAAGT




TGATTCCTAAATTTCTGCACAATAG




GACCATACTATATCATATTAGATAA




TTAATAAAAAACGCCCTATCCTGAG




GGCGAAAGGCCGATCATTAGTGACT




TTAACCGTTGCTCTCCCAATTTAAA




ATATATTTCACATGGAGTCAATCGG




GAAAGGAACCTGGAGAACTGTGTAT




AGAGTCCTTACGATTCTATTAGATG




TAGTGATCATTATTCTCTCTGTGAT




TGCTCTGATTTCATTGGGTCTGAAG




CCAGGTGAGAGGATCATCAATGAAG




TCAATGGATCTATCCATAATCAACT




TGTTCCCTTATCGGGGATTACTTCC




GATATTCAGGCAAAAGTCAGCAGCA




TATATCGGAGCAACTTGCTAAGTAT




CCCACTACAACTTGATCAAATCAAC




CAGGCAATATCATCATCTGCTAGGC




AAATTGCTGATACAATCAACTCGTT




TCTCGCTCTGAATGGCAGTGGAACT




TTTATTTATACAAATTCACCTGAGT




TTGCAAATGGTTTCAATAGAGCAAT




GTTCCCAACCCTAAATCAAAGCTTA




AATATGCTAACACCTGGTAATCTAA




TTGAATTTACTAATTTTATTCCAAC




TCCAACAACAAAATCAGGATGTATC




AGAATACCATCATTTTCAATGTCAT




CAAGTCACTGGTGTTATACCCATAA




TATCATTGCTAGTGGATGTCAGGAT




CATTCAACCAGTAGTGAATACATAT




CGATGGGGGTTGTTGAAGTGACTGA




TCAGGCTTACCCGAACTTTCGGACA




ACTCTTTCTATTACATTAGCTGATA




ATCTAAACAGAAAGTCATGTAGCAT




TGCAGCAACTGGGTTCGGGTGTGAT




ATATTATGTAGTGTTGTCACTGAGA




CAGAAAATGATGATTATCAATCACC




AGAACCGACTCAGATGATCTATGGA




AGATTATTTTTTAATGGCACATATT




CAGAGATGTCATTGAATGTGAACCA




AATGTTCGCAGATTGGGTTGCAAAT




TATCCAGCAGTTGGATCAGGAGTAG




AGTTAGCAGATTTTGTCATTTTCCC




ACTCTATGGAGGTGTTAAAATCACT




TCAACCCTAGGAGCATCTTTAAGCC




AGTATTACTATATTCCCAAGGTGCC




CACAGTCAATTGCTCTGAGACAGAT




GCACAACAAATAGAGAAGGCAAAAG




CATCCTATTCACCACCTAAAGTGGC




TCCAAATATCTGGGCTCAGGCAGTC




GTTAGGTGCAATAAATCTGTTAATC




TTGCAAATTCATGTGAAATTCTGAC




ATTTAACACTAGCACTATGATGATG




GGTGCTGAGGGAAGACTCTTGATGA




TAGGAAAGAATGTATACTTTTATCA




ACGATCTAGTTCGTATTGGCCAGTG




GGAATTATATATAAATTAGATCTAC




AAGAATTGACAACATTTTCATCAAA




TCAATTGCTGTCAACAATACCAATT




CCATTTGAGAAATTCCCTAGACCTG




CATCTACTGCTGGTGTATGTTCAAA




ACCAAATGTGTGTCCTGCAGTATGC




CAGACTGGTGTTTATCAAGATCTCT




GGGTACTATATGATCTTGGCAAATT




AGAAAATACCACAGCAGTAGGATTG




TATCTAAACTCAGCAGTAGGCCGAA




TGAACCCTTTTATTGGGATTGCAAA




TACGCTATCTTGGTATAATACAACT




AGATTATTCGCACAGGGTACTCCAG




CATCATATTCAACAACGACCTGCTT




CAAAAATACTAAGATTGACACGGCA




TACTGCTTATCAATATTAGAATTAA




GTGATTCTTTGTTAGGATCATGGAG




AATTACACCATTATTGTACAATATC




ACTTTAAGTATTATGAGCTAGATCC




TGTTTTAACATTGAATCGTATGAAC




TTATAAGACTGAAGGATGTCTGTTG




GTATTAAGCATCATAAAACACGGTT




GTTTTTGATTTGACACCTAATCGTA




CTCAATACTCTCCATAGATTTAATC




TAACAGATTTAGATACTATTGATCA




TATAGGCATAGATGGTATATGGGCA




ATTAGATTGAACTGAGTTAAATCCG




ATTGATACTTATCAAATTAAGATCT




AGATTATTTAATAAAAAATCTAAGT




TAGAAAATGAGGGGGACCTCATTAT




GGAGTTCAGACAATCTGATCAAATA




ATACATCCTGAAGTGCATCTAGATT




CACCTATTATTGGGAATAAAATACT




CTATTTATGGCGAATTACAGGCTTA




CCTACTCCGCCTGTTCTTGAGCTTA




ACTCTACTATATCGCCTGAAGTCTG




GACAAACTTGAAAGCCAATGATCCT




AGAGTAGCCTTTAAATGGGACAAAC




TAAGACCACGGTTGCTAACATGGGC




AGCACATCAAGGGATATCACTATCG




GATCTGATCCCTATTACACATCCTG




AGTCATTGCAGTGGTTAACAACAAT




ATCCTGTCCTAAAATTGATGAAAAT




TTTGCGTTAATTAAGAAGTGCCTTC




TTAGAACAAGGGACTATACAGCATC




AGGATTTAAGAATTTATTCCAAATG




ATCTCACAGAAATTGACGTCGACGA




ATATTCTATTTTGCGCAGAAAATCC




GACAACTCCCCCCATCTCCGACGAA




GCATCCTGGGCATTAAAGAATCCTG




AGCACTGGTTTAATACACCTTGGTC




ATCTTGTTGTATGTTTTGGTTACAT




GTGAAACAGACTATGAGGAACTTAA




TTAGAATACAACGATCTCAACCAGA




ATCACAAAGCATATACAGTATCACG




GTTGATAACTTGTTTGTTGGATTGA




CTCCTGACTTGTGTGTCATAGCTGA




TTCTCAAAGACAATCAATTACAGTA




CTGTCATTTGAGTGTGTATTGATGT




ATTGTGACTTAATTGAAGGTCGTAA




CAATGTTTATGACCTCTGTCAATTG




TCTCCTGTGCTAAGTCCTCTTCAAG




ATAGAATTTTACTTTTACTGAGATT




AATTGATTCTTTAGCATATGACATC




GGAGCGCCAATTTTTGATGTAATTG




CTTCTCTTGAATCTTTAGCATATGG




AGCTATTCAGCTATATGATTACGAC




ACAGAGGCAGCCGGTGATTTTTTCT




CATTTAATTTAAGAGAAATTTCCCA




GGTCATAGAAGAGAGCAAATGTAGG




AATCAAACCCATACTATAATCAGTG




CAATTAGTAAGATTTACACAGGGAT




CAATCCTGATCAAGCAGCTGAAATG




CTGTGTATCATGAGACTGTGGGGTC




ACCCATTGCTTTATGCATCCAAGGC




TGCATCTAAGGTTCGCGAGTCAATG




TGTGCACCTAAAGTTATCCAATTTG




ATGCAATGCTGCTTGTATTAGCATT




CTTTAAGAGAAGCATCATAAATGGA




TATAGACGAAAGCATGGTGGGCTAT




GGCCGAACATCATAGTTGAGTCACT




TCTTTCTGCAGAACTTGTCGCGGCA




CATCATGATGCAGTTGAATTGACAG




ACACTTTTGTTATTAAACACTATAG




AGAAGTAGCCATGATTGACTTCAAA




AAATCATTCGACTACGATATAGGGG




ATGACTTAAGTTTATACCTCAAGGA




TAAAGCAATTTGTCGACAGAAATCA




GAGTGGCTTAATATCTTCAAGGGTC




AATTGCTTGAGCCCGCTGTACGATC




GAAGCGAATTCGTGGAATAGGTGAA




AACCGATTACTGTTACATTTCTTGA




ATTCAGTCGATTTTGATCCTGAACA




AGAATTCAAATACGTCACTGATATG




GAGTACCTCTACGATGAAACATTCT




GTGCATCCTATTCACTGAAGGAAAA




AGAAGTGAAAAGAGATGGAAGAATA




TTCGCAAAAATGACACCAAAAATGA




GAAGCTGTCAAGTTTTATTAGAGGC




ATTGTTAGCAAAACATGTAAGCGAA




CTTTTCAAGGAGAATGGAGTCTCAA




TGGAGCAGATATCCCTCACAAAGTC




ATTGGTAGCCATGTCACAATTAGCT




CCCCGAGTGAATATGAGAGGTGGGA




GAGCAGCTAGATCAACAGACGTTAA




AATCAATCAACGAAGGGTCAAGTCA




ATCAAAGAGCATGTTAAATCGAGAA




ATGATTCGAATCAAGAGAAAATTGT




AATTGCAGGTTATCTGACTACTGAT




TTACAAAAATACTGCCTCAATTGGA




GATATGAATCAATAAAATTATTTGC




AAGAGCACTTAACCAATTATTTGGA




ATACCCCATGGATTTGAATGGATAC




ACTTAAGGCTCATAAGAAGTACAAT




GTTTGTTGGGGATCCTTACAATCCT




CCTGCATCAATCCAATCTTTGGATC




TCGATGAACAGCCTAATGATGATAT




TTTTATTGTCTCGCCACGTGGTGGG




ATTGAAGGATTATGTCAGAAGATGT




GGACACTCATCTCAATTGCATTAAT




TCAAGCTGCAGCTGCAAAAATAGGA




TGTCGGGTTACAAGTATGGTACAGG




GAGATAATCAGGTTATTGCTATCAC




CAGAGAAGTGCGAGTGGGGGAACCT




GTGAGGGAGGCGTCACGAGAACTCA




GATTATTGTGTGATGAGTTCTTCAC




TGAATTCAAACAATTAAACTACGGA




ATAGGGCACAATCTTAAAGCAAAAG




AAACTATCAAGAGTCAATCGTTTTT




TGTATATAGCAAGAGAGTTTTCTTT




GAGGGAAGAGTGTTAAGTCAGATAT




TGAAGAATGCCTCAAAATTGAATCT




AATTTCTGACTGTCTGGCTGAAAAT




ACAGTTGCTTCATGTAGCAATATTT




CTTCTACTGTAGCAAGGCTAATAGA




GAATGGCCTTGGGAAAGACGTAGCC




TTCATTTTAAACTTTCAGACTATTA




TAAGGCAACTGATTTTTGATGAAGT




ATATACGATTTCATTGAACTATAGT




ACAGCAAGACGGCAGGTGGGAAGCG




AGAATCCTCACGCATTGGCTATAGC




CGCTTTGATTCCTGGTCAACTTGGG




GGATTCAATTTCCTAAACGTTGCTA




GGTTATTTACACGGAATATCGGGGA




TCCAATCACTTGCTCATTGAGTGAT




ATCAAATGGTTTGCAAAAGTTGGAT




TGATGCCTGAGTACATCCTTAAAAA




CATTGTTTTGAGGGCACCAGGTTCA




GGAACATGGACAACTTTAGTCGCTG




ATCCCTACTCCTTAAACATTACGTA




CACAAAATTGCCTACGTCGTACCTA




AAGAAACATACACAGAGGACATTAG




TTGCTGATTCCCCTAATCCGTTGCT




TCAGGGGGTGTTTCTATTAAATCAG




CAGCAGGAGGATGAAGCATTATGTA




AATTTCTTCTTGACCGAGAACAAGT




GATGCCACGAGCTGCCCATGTAATC




TATGATCAGTCAGTTCTCGGCCGGA




GGAAATATTTACAAGGGCTTGTTGA




TACTACACAGACAATCATAAGGTAT




GCACTCCAAAAAATGCCGGTATCAT




ACAAAAAGAGTGAAAAAATCCAAAA




TTACAATCTCCTCTACATACAATCA




CTTTTTGATGAGGTCTTGACACAGA




ATGTCATTCATAGTGGATTGGATAC




TATATGGAAAAGAGATCTAATTAGC




ATTGAGACCTGTTCTGTCACACTTG




CCAATTTTACGAGGACTTGCTCGTG




GTCTAATATTCTACAGGGCAGGCAA




ATTGTTGGAGTTACAACTCCAGACA




CGATAGAATTGTGTACCGGTTCTTT




GATTTCTTGCAACAGTGCATGTGAG




TTTTGTAGAATTGGAGATAAAAGCT




ACTCTTGGTTTCATACACCAGGGGG




TATCTCATTTGATACAATGAGCCCT




GGCAATCTGATTCAAAGAGTGCCGT




ACCTAGGATCAAAGACTGATGAACA




GCGAGCTGCCTCTCTAACAACCATC




AAGGGGATGGATTACCATCTGAGAC




AAGCTCTTCGAGGAGCATCATTGTA




TGTGTGGGCATATGGAGAGACTGAT




CAGAATTGGTTAGATGCGCTGAAGT




TAGCAAACACCCGGTGCAATGTAAC




ATTACAAGCTTTGACTGCACTCTGC




CCAATACCGAGTACCGCAAATCTAC




AACACCGGCTTGCGGATGGAATAAG




TACAGTTAAATTCACACCTGCAAGT




TTGTCACGAATAGCAGCTTATATTC




ACATTTGTAATGACCAACAAAAGCA




TGATAACCTAGGGAATAGTTTTGAA




TCAAATCTGATTTACCAGCAAATAA




TGCTTCTTGGAACAGGAATATTTGA




AACAATTTTCCCACTATCAGTTCAA




TATATCCACGAGGAACAAACACTTC




ACTTGCACACTGGATTTTCCTGTTG




TGTCAGGGAAGCTGACACAATGATT




ATAGATGAGAGCAGAACTGGATTCC




CAGGATTGACAGTGACTAAGAGTAA




TAAGTTTTTATTCAACCCTGACCCT




ATTCCTGCAGTGTGGGCAGATAAAA




TATTCACGACTGAATTTAGATTCTT




CGAGTACAATATAGAGAATCAAGGA




ACTTATGAACTAATAAAATTTCTTT




CTTCTTGCTGCGCGAAAGTTGTTAC




AGAATCGCTAGTTCAGGATACTTTC




CATAGTTCTGTCAAAAATGATGCAA




TAATTGCGTATGACAATTCAATTAA




TTACATCAGTGAGCTACAACAATGT




GACATTGTTCTGTTTAGCAGTGAAC




TTGGAAAGGAATTACTTCTAGATTT




AGCTTACCAGCTGTACTACCTTCGA




ATTAGATCGAAACGAGGTATAATTA




GTTACTTGAAGGTACTGCTGACTCG




GCTTCCAATTATTCAGTTTGCACCG




CTTGCGTTGACAATATCACATCCTG




TAATCTACGAGCGATTACGCCAACG




GAGGTTGGTTATGGAACCGTTGCAA




CCTTATTTGGCTTCGATAGATTATG




TCAAAGCCGCAAGAGAGCTTGTTTT




GATTGGTGCTTCTTCTTACCTCTCA




ATGCTTGAGACAGGTTTAGATACCA




CTTACAACATATACAGTCATTTAGA




CGGGGATTCAGAGGGCAAGATTGAT




CAGGCGATGGCAAGGAGACTGTGCC




TAATCACATTATTAGTGAATCCTGG




ATATGCATTACCTGTGATCAAAGGA




CTAACTGCAATTGAGAAATGTAGAC




TATTAACAGATTTTTTACAATCAGA




TATCATTTCTGTTTCTTTATCTGAG




CAGATTGCAACACTTATTCTAACAC




CAAAGATTGAAGTGCACCCGACAAA




TTTATACTATATGATGCGGAAGACC




TTGAATCTAATCCGGTCACGAGATG




ATACAGTTGTGATCATGGCAGAATT




GTATAATATAGATCAAGAGTCTGCG




ATAATGAGGGTTGAATCAGAAGAGG




ACGGCCCTGTAGACAAAATGAATCT




TGCACCCATACTAAGGCTTGTGCCA




ATCACATTCAAATCAATGGACTTGC




ATGCCTTAACTGGGCTAGGTAGAAA




AGAGGTGGAACTGATGGGTAGCCCA




GTTTGCAAAATCACTCAGAGATTAG




ATAAGTACATCTATCGCACAATTGG




CACCATATCTACTGCATGGTATAAA




GCAAGTAGTTTAATCGCCAGTGACA




TACTTAAGGGGGGCCCATTGGGGGA




CAGCTTATATTTATGTGAGGGAAGT




GGTAGTAGTATGACATGTTTGGAAT




ATTGTTTCCCTTCGAAAACAATCTG




GTATAATTCATTCTTCTCAAATGAG




CTAAATCCACCTCAACGGAACATCG




GCCCATTACCAACACAATTTTGTTC




AAGCATTGTCTATCACAATTTGAAT




GCTGAAGTCCCGTGCTCTGCAGGGT




TTATCCAAGATTTCAAAGTACTCTG




GGCCGACAAATCAGTGGAGACTGAT




ATTTCTACAACTGAATGTGTGAATT




TCATCCTAAGCAAAGTTGAACTTGA




AACATGCAAATTGATACATGCAGAC




CTTGATCTACCTATTGAGACCCCAA




GATCTGTCTGGATGGCTTGTGTCAC




AAATACATTCATTTTGGGAAATGCC




TTATTGAAGTCAGGAGGGAAATTGG




TCATGAAATTATATGCAGTAGATGA




GCTCCTCTTTTCATCTTGCTTAGGA




TTCGCATGGTGCCTTATGGACGATA




TAAATATCCTCCGAAATGGCTACTT




CAATGACAAATCAAAGGAATGCTAC




CTCATTGGGACAAAAAAGGTGACAA




TCCCGCACCAGAAAATCCAGGATAT




CCAGCAGCAAATAAATAAGATTGCT




AGTCAAGGGTTAAGTGTCATACCTG




AAGCTGTAATTCATGACATTTACAA




CCAGCTTGAGGACAGTATTAGATGT




GAGAAAAAATTCAAAAATGATAATG




CACCGACTTGGTCCAATGGGATCCT




CAATTCGACAGATCTATTACTAATA




AGACTTGGAGGGAAACCAATTGGGG




AATCACTATTAGAGTTAACATCCAT




ACAAGGCATGGATTATGATGATTTA




ACAGGGGATATAATTCAAGTAATAG




ACACAGCGCTAAATGAGATTATTCA




CCTCAAGTCTGATACTTCGAGCTTA




GATCTTGTACTGCTAATGTCTCCTT




ACAATCTGGCACTTGGAGGGAAAAT




AAGCACAATTCTGAAATCTGTTGTT




CACCAGACTCTAATACTCAGGATTA




TCCAATCTAGGCAGAATAAGGATAT




ACCATTAAAAGGATGGTTGTCTCTG




TTGAATCAAGGAGTCATCTCACTAT




CTTCATTGATCCCGTTGCATGATTA




TCTGAGGAAGAGTAAGTTGAGAAAA




TTTATAGTTCAAAAATTAGGCCAAC




AGGAATTACAAGCATTTTGGCAGAG




CAGGTCTCAACAAATGCTGAGTAGA




AGTGAGACCAAGTTGCTAATAAAAG




TGCTGAGTGCTGCTTGGAAGGGATT




GTTGTAAAATTGTAAATATACACTG




CATGTATATAAATTGGTTGCTACCC




TTATCAGCTAACCACAGGTGTAAAT




TTTCATATGGAATGCATATCAATAA




AGATAGGCATTTAAATTATACAATG




ATAACATATTTTAGGTTGACAACAA




TCATTGATATAATCACCAATAGTAG




CTCTATTACTTATTTGTTAATAATA




AATGGTACACTTTGAATTTAAGAAA




AAATTAGAATTGCTATATTTTATCG




CTATAGTGGGCCTGTCGGCTGCGTT




AGCGGTAAGACAAAGAGGACTTGTC




TTTTAAAAATTTATTAAAAAATCAT




TAATTGATCATATTGCTTTCCTTGT




TTGGT






Avian
ACCAAACAAGGAATGCAAGACCAAC
SEQ ID


paramyxovir
GGGAACTTTAAATAAAACAATCGAA
NO: 11


us 8 isolate
TCATTGGGGGCGAAGCAAGTGGATC



APMV-
TCGGGCTCGAGGCCGAAACACTGGA



8/Goose/
TTTCGCTGGAGGTTTTGAATAGGTC



Delaware/
GCTATAAGACTCAATATGTCATCTG



1053/76,
TATTCAATGAATATCAGGCACTTCA



complete
AGAACAACTTGTAAAGCCGGCTGTC



genome
AGGAGACCTGATGTTGCCTCAACAG



Genbank:
GTTTACTCAGGGCGGAAATACCTGT



FJ619036.1
CTGTGTTACATTGTCTCAAGACCCC




GGTGAGAGATGGAGCCTTGCTTGCC




TTAATATCCGATGGCTTGTGAGTGA




TTCATCAACCACACCAATGAAGCAG




GGAGCAATATTGTCACTGCTGAGTC




TACATTCAGACAATATGCGAGCTCA




CGCAACATTAGCAGCAAGGTCTGCA




GATGCTTCACTCACCATACTTGAGG




TAGATGAAGTAGATATTGGCAACTC




CCTAATCAAATTCAACGCTAGAAGT




GGTGTATCTGATAAACGATCAAATC




AATTGCTTGCAATTGCGGATGACAT




CCCCAAAAGTTGCAGTAATGGGCAT




CCATTTCTTGACACAGACATTGAGA




CCAGAGACCCGCTCGATCTATCAGA




GACCATAGACCGCCTGCAGGGTATT




GCAGCTCAGATATGGGTGTCAGCCA




TAAAGAGCATGACAGCGCCTGACAC




CGCATCAGAGTCAGAAAGTAAGAGG




CTGGCCAAATACCAACAACAAGGCC




GACTGGTTAAGCAAGTACTTTTGCA




TTCTGTAGTCAGGACAGAATTTATG




AGAGTTATTCGGGGCAGCTTGGTAC




TGCGCCAGTTTATGGTTAGCGAGTG




CAAGAGGGCTTCAGCCATGGGCGGA




GACACATCTAGGTACTATGCTATGG




TGGGTGACATCAGTCTGTACATCAA




GAATGCAGGATTGACTGCATTTTTC




CTCACCCTGAAGTTCGGGGTTGGTA




CCCAGTATCCAACCTTAGCAATGAG




TGTTTTCTCCAGTGACCTTAAAAGA




CTTGCTGCACTCATCAGGCTGTACA




AAACCAAGGGAGACAATGCACCATA




CATGGCATTCCTGGAGGACTCCGAT




ATGGGAAATTTTGCTCCAGCAAATT




ATAGCACAATGTACTCTTATGCCAT




GGGCATTGGGACGATTCTGGAAGCA




TCTGTATCTCGATACCAGTATGCTA




GAGACTTTACCAGTGAGAATTATTT




CCGTCTTGGAGTTGAGACAGCCCAA




AGCCAGCAGGGAGCGTTTGACGAGA




GAACAGCCCGAGAGATGGGCTTGAC




TGAGGAATCCAAACAGCAGGTTAGA




TCACTGCTAATGTCAGTAGACATGG




GTCCCAGTTCAGTTCGCGAGCCATC




CCGCCCTGCATTCATCAGTCAAGAA




GAAAATAGGCAGCCTGCCCAGAATT




CTTCAGATACTCAGGGTCAGACCAA




GCCAGTCCCGAATCAACCCGCACCA




AGGGCCGACCCAGATGACATTGATC




CATACGAGAACGGGCTAGAATGGTA




ATTCAATCACCTCGACACATCCACC




TATACACCAATTCTGTGACATATTA




ACCTAATCAAACATTTCATAAACTA




TAGTAGTCATTGATTTAAGAAAAAA




TTGGGGGCGACCTCAACTGTGAAAC




ACGCCAGATCTGTCCACAACACCAC




TCAACAACCCACACAAGATGGACTT




CGCCAATGATGAAGAAATTGCAGAA




CTTCTGAACCTCAGCACCACTGTAA




TCAAGGAGATTCAGAAATCTGAACT




CAAGCCTCCCCAAACCACTGGGCGA




CCACCTGTCAGTCAAGGGAACACAA




GAAATCTAACTGATCTATGGGAAAA




GGAGACTGCAAGTCAGAACAAGACA




TCGGCTCAATCTCCACAAACCACAC




AAGTTCAGTCTGATGGAAATGAGGA




GGAAGAAATCAAATCAGAGTCAATT




GATGGCCACATCAGTGGAACTGTTA




ATCAATTAGAGCAAGTCCCAGAACA




AAACCAGAGCAGATCTTCACCAGGT




GATGATCTCGACAGAGCTCTCAACA




AGCTTGAAGGGAGAATCAACTCAAT




CAGCTCAATGGATAAAGAAATTAAA




AAGGGCCCTCGCATCCAGAATCTCC




CTGGGTCCCAAGCAGCAACTCAACA




GGCGACCCACCCATTGGCAGGGGAC




ACCCCGAACATGCAGGCACGGACAA




AACCCCTGACCAAGCCACATCAAGA




GGCAATCAATCCTGGCAACCAGGAC




ACAGGAGAGAATATTCATTTACCAC




CTTCCATGGCACCACCAGAGTCATT




AGTTGGTGCAATCCGCAATGTACCC




CAATTCGTGCCAGACCAATCTATGA




CGAATGTAGATGCGGGGAGTGTCCA




ACTACATGCATCATGTGCAGAGATG




ATAAGTAGAATGCTTGTAGAAGTTA




TATCTAAGCTTGATAAACTCGAGTC




GAGACTGAATGATATAGCAAAAGTT




GTAAACACCACCCCCCTTATCAGGA




ATGATATTAACCAACTTAAGGCCAC




AACTGCACTGATGTCCAACCAAATT




GCTTCCATACAAATTCTTGACCCAG




GGAATGCAGGGGTGAGGTCCCTCTC




TGAAATGAGATCTGTGACGAAGAAA




GCTGCTGTTGTAATTGCAGGATTTG




GAGACGACCCAACTCAAATTATTGA




AGAAGGTATCATGGCCAAAGATGCT




CTTGGAAAACCTGTGCCTCCAACAT




CTGTTATCGCAGCCAAAGCTCAGAC




TTCTTCCGGTGTGAGTAAGGGTGAA




ATAGAAGGATTGATTGCATTGGTGG




AAACATTAGTTGACAATGACAAGAA




GGCAGCGAAACTGATTAAAATGATT




GATCAAGTTAAATCCCACGCCGATT




ACGCCCGAGTCAAGCAGGCAATATA




TAATGCATAATATTGTAATTATACA




AACAATCAATACTGCTGTCGGTTGC




ACCCACCTTAGCAAATCAATAATCT




TTTAAAATTGATTGATTAAGAAAAA




ATTGACTACAATAAGGAAAGAACAC




CAAGTTGGGGGCGAAGTCACGATTG




ACCACAGTCGCTATCTGTAAGGCTC




CTCACCAAAAATGGCATATACAACA




CTAAAACTGTGGGTGGATGAGGGTG




ACATGTCGTCTTCGCTTCTATCATT




CCCGTTGGTACTAAAAGAGACAGAC




AGAGGCACAAAGAAGCTTCAACCAC




AGGTAAGGGTAGATTCAATTGGCGA




TGTGCAGAATGCCAAAGAGTCCTCG




ATATTCGTGACTCTATATGGTTTCA




TCCAAGCAATTAAGGAGAATTCAGA




TCGATCGAAATTCTTCCATCCAAAA




GATGACTTCAAACCTGAGACAGTCA




CTGCAGGACTGGTAGTAGTGGGTGC




AATCCGAATGATGGCTGATGTCAAT




ACCATCTCTAATGATGCACTAGCGC




TGGAGATCACTGTTAAGAAATCTGC




AACTTCTCAAGAGAAAATGACGGTG




ATGTTCCACAATAGCCCCCCTTCAT




TGAGAACTGCAATAACTATCCGAGC




AGGAGGTTTCATCTCGAATGCAGAC




GAAAATATAAAATGTGCCAGCAAGT




TGACTGCAGGAGTGCAGTACATATT




CCGTCCAATGTTTGTTTCAATCACT




AAATTACACAATGGCAAACTATATA




GGGTGCCCAAAAGTATCCACAGCAT




CTCGTCTACCCTACTGTATAGTGTG




ATGTTGGAGGTAGGATTCAAAGTGG




ACATCGGGAAGGATCATCCCCAGGC




AAAAATGCTGAAGAGGGTCACAATT




GGCGATGCAGACACATACTGGGGAT




TTGCATGGTTCCACCTGTGCAATTT




CAAAAAGACATCCTCTAAGGGAAAG




CCGAGAACGCTAGACGAACTGAGGA




CAAAAGTCAAAAATATGGGGTTGAA




ATTGGAGTTACATGACCTATGGGGT




CCGACTATTGTGGTCCAAATCACTG




GCAAGAGCAGCAAATATGCTCAAGG




ATTTTTTTCTTCCAATGGTACTTGT




TGCCTCCCAATCAGCAGATCTGCAC




CAGAGCTTGGGAAGCTTCTGTGGTC




CTGCTCAGCAACTATTGGTGACGCA




ACAGTTGTTATCCAATCAAGCGAGA




AGGGGGAACTCCTAAGGTCTGATGA




TCTCGAGATACGAGGTGCTGTGGCC




TCCAAGAAAGGTAGACTGAGCTCAT




TTCACCCCTTCAAAAAATGATGCAG




GACATAGTACAGAGAATGAAAGGGC




CATCAGACGTGCGAAAAAAACTAAA




TCTGAAAAAAACTGCCCAGACTCCA




CATTAATCTAGGTTGCAGGGAAATA




ATACCCGACATGCACAATACTATCA




CGGTCACCAGCAATCAGCAAAGTTG




ATCAATCACTATATAAGGAATCAAG




TGGGATAACAATTATTAATCCAATT




TCATAATTATAAAAAATTGCTTTAA




AGGTTACTGACGAGTCGGGGGCGAA




ACCTTGCCACTTAAGCTGCAGTCAA




TTTTAGAATCTACATATTGAATTAT




GGGTAAAATATCAATATATCTAATT




AATAGCGTGCTATTATTGCTGGTAT




ATCCTGTGAATTCGATTGACAATAC




ACTCGTTGCCCCAATCGGAGTCGCC




AGCGCAAATGAATGGCAGCTTGCTG




CATATACAACATCACTTTCAGGGAC




AATTGCCGTGCGATTCCTACCTGTG




CTCCCGGATAATATGACTACCTGTC




TTAGAGAAACAATAACTACATATAA




TAATACTGTCAACAACATCTTAGGC




CCACTCAAATCCAATCTGGATGCAC




TGCTCTCATCTGAGACTTATCCCCA




GACAAGATTAATTGGGGCAGTTATA




GGTTCAATTGCTCTTGGTGTTGCAA




CATCGGCTCAAATCACTGCTGCAGT




CGCTCTCAAGCAAGCACAAGATAAT




GCAAGAAACATACTGGCACTCAAAG




AGGCACTGTCCAAAACTAATGAGGC




GGTCAAGGAGCTTAGCAGTGGATTG




CAACAAACAGCTATTGCACTTGGTA




AGATACAGAGCTTTGTGAATGAGGA




AATTCTGCCATCTATCAACCAACTG




AGCTGCGAGGTGACAGCCAATAAAC




TTGGGGTGTATTTATCTCTGTATCT




CACAGAACTGACCACTATATTCGGT




GCACAGTTGACTAACCCTGCATTGA




CTTCATTATCATATCAAGCGCTGTA




CAACCTGTGTGGTGGCAACATGGCA




ATGCTTACTCAGAAGATTGGAATTA




AACAGCAAGACGTTAATTCGCTATA




TGAAGCCGGACTAATCACAGGACAA




GTCATTGGTTATGACTCTCAGTACC




AGCTGCTGGTCATCCAGGTCAATTA




TCCAAGCATTTCTGAGGTAACTGGT




GTGCGTGCGACAGAATTAGTCACTG




TTAGTGTAACAACAGACAAGGGTGA




AGGGAAAGCAATTGTACCCCAATTT




GTAGCTGAAAGTCGGGTGACTATTG




AGGAGCTTGATGTAGCATCTTGTAA




ATTCAGCAGCACAACCCTATACTGC




AGGCAGGTCAACACAAGGGCACTTC




CCCCGCTAGTGGCTAGCTGTCTCCG




AGGTAACTATGATGATTGTCAATAT




ACCACAGAGATTGGAGCATTATCAT




CCCGGTATATAACACTAGATGGAGG




GGTCTTAGTCAATTGTAAGTCAATT




GTTTGTAGGTGCCTTAATCCAAGTA




AGATCATCTCTCAAAATACAAATGC




TGCAGTAACATATGTTGATGCTACA




ATATGCAAAACAATTCAATTGGATG




ACATACAACTCCAGTTGGAAGGGTC




ACTATCATCAGTTTATGCAAGGAAC




ATCTCAATTGAGATCAGTCAGGTGA




CTACCTCCGGTTCTTTGGATATCAG




CAGTGAGATAGGGAACATCAATAAT




ACGGTGAATCGTGTGGAGGATTTAA




TCCACCAATCGGAGGAATGGCTGGC




AAAAGTTAACCCACACATTGTTAAT




AATACTACACTAATTGTACTCTGTG




TGTTAAGTGCGCTTGCTGTGATCTG




GCTGGCAGTATTAACGGCTATTATA




ATATACTTGAGAACAAAGTTGAAGA




CTATATCGGCATTGGCTGTAACCAA




TACAATACAGTCTAATCCCTATGTT




AACCAAACGAAACGTGAATCTAAGT




TTTGATCATTCAGGCCAAAACAGAG




GGTCTAGGCTCGGGTTAATAAAAGT




TCAATCAATGTTTGATTTATTAGGC




TTTCCCTACTAATTATTAATGTATT




TGTGATTATATGATAACGTTAAAAG




TCTTAAATATTTAATAAAAAATGTA




ACCTGGGGGCGACCTATTTACAGGC




TAGTATATATTAGGAAGTCCTCATA




TTGCACTATAATCTCAAACAATTAT




ATTACCTCGTATCCACCTTGTCTAA




AGACATCATGAGTAACATTGCATCC




AGTTTAGAAAATATTGTGGAGCAGG




ATAGTCGAAAAACAACTTGGAGGGC




CATCTTTAGATGGTCCGTTCTTCTT




ATTACAACAGGATGCTTAGCCTTAT




CCATTGTTAGCATAGTTCAAATTGG




GAATTTGAAAATTCCTTCTGTAGGG




GATCTGGCGGACGAGGTGGTAACAC




CTTTGAAAACCACTCTGTCTGATAC




ACTCAGGAATCCAATTAACCAGATA




AATGACATATTCAGGATTGTTGCCC




TTGATATTCCATTGCAAGTAACTAG




TATCCAAAAAGACCTCGCAAGTCAA




TTTAGCATGTTGATAGATAGTTTAA




ATGCTATCAAATTGGGCAACGGGAC




CAACCTTATCATACCTACATCAGAT




AAGGAGTATGCAGGAGGAATTGGAA




ACCCTGTCTTTACTGTCGATGCTGG




AGGTTCTATAGGATTCAAGCAATTT




AGCTTAATAGAACATCCGAGCTTTA




TTGCTGGACCTACAACGACCCGAGG




CTGTACAAGAATACCCACTTTTCAC




ATGTCAGAAAGTCATTGGTGCTACT




CACACAACATCATCGCTGCTGGCTG




TCAAGATGCCAGTGCATCTAGTATG




TATATCTCAATGGGGGTTCTCCATG




TGTCTTCATCTGGCACTCCTATCTT




TCTTACTACTGCAAGTGAACTGATA




GACGATGGAGTTAATCGTAAGTCAT




GCAGTATTGTAGCAACCCAATTCGG




CTGTGACATTTTGTGCAGTATTGTC




ATAGAGAAGGAGGGAGATGATTATT




GGTCTGATACTCCGACTCCAATGCG




CCACGGCCGTTTTTCATTCAATGGG




AGTTTTGTAGAAACCGAACTACCCG




TGTCCAGTATGTTCTCGTCATTCTC




TGCCAACTACCCTGCTGTGGGATCA




GGCGAAATTGTAAAAGATAGAATAT




TATTCCCAATTTACGGAGGTATAAA




GCAGACTTCACCAGAGTTTACCGAA




TTAGTGAAATATGGACTCTTTGTGT




CAACACCTACAACTGTATGTCAGAG




TAGCTGGACTTATGACCAGGTAAAA




GCAGCGTATAGGCCAGATTACATAT




CAGGCCGGTTCTGGGCACAAGTGAT




ACTCAGCTGCGCTCTTGATGCAGTC




GACTTATCAAGTTGTATTGTAAAGA




TTATGAATAGCAGCACAGTGATGAT




GGCAGCAGAAGGAAGGATAATAAAG




ATAGGGATTGATTACTTTTACTATC




AGCGGTCATCTTCTTGGTGGCCATT




GGCATTTGTTACAAAACTAGACCCG




CAAGAGTTAGCAGACACAAACTCGA




TATGGCTGACCAATTCCATACCAAT




CCCACAATCAAAGTTCCCTCGGCCT




TCATATTCAGAAAATTATTGCACAA




AGCCAGCAGTTTGCCCTGCTACTTG




TGTCACTGGTGTATACTCTGATATT




TGGCCCTTGACCTCATCTTCATCAC




TCCCGAGCATAATTTGGATCGGCCA




GTACCTTGATGCCCCTGTTGGAAGG




ACTTATCCCAGATTTGGAATTGCAA




ATCAATCACACTGGTACCTTCAAGA




AGATATTCTACCCACCTCCACTGCA




AGTGCGTATTCAACCACTACATGTT




TTAAGAATACTGCCAGGAATAGAGT




GTTCTGCGTCACCATTGCTGAATTT




GCAGATGGGTTGTTTGGAGAGTACA




GGATAACACCTCAGTTGTATGAATT




AGTGAGAAATAATTGAATCACGATA




ATTTTGGGACTCATTTAATTGCAGA




GTGAAATTGTCATCTTAGGAAATAA




TCAATTCCATGATTTTTATTGAACA




TGATCAAGCAATCATGTGGGAAATT




TATTATCACATAACTTCTAATAGTT




TTAAATGACGAATTAAGAAAAAATG




GAGGGCGACCTCTACACAAACATGG




ATGTAAAACAAGTTGACCTAATAAT




ACAACCCGAGGTTCATCTCGATTCA




CCCATCATATTGAATAAACTGGCAC




TATTATGGCGCTTGAGTGGTTTACC




CATGCCTGCAGACTTACGACAAAAA




TCCGTAGTGATGCACATCCCAGACC




ACATCTTAGAAAAATCAGAATATCG




GATCAAGCACCGTCTAGGGAAAATC




AAGAGTGACATAGCACATTACTGTC




AGTATTTTAATATTAATTTGGCAAA




TCTTGATCCGATAACCCACCCCAAA




AGTTTGTATTGGTTATCCAGACTAA




CAATAGCTAGTGCTGGAACCTTTAG




ACATATGAAAGATAGAATCTTATGT




ACAGTTGGCTCCGAATTCGGACACA




AAATTCAAGATTTATTTTCACTGCT




GAGCCATAAATTAGTAGGTAACGGT




GATTTATTTAATCAAAGTCTCTCAG




GTACACGTTTGACTGCGAGTCCGTT




ATCCCCTTTATGCAATCAATTTGTC




TCTGACATCAAGTCTGCAGTCACGA




CACCCTGGTCAGAAGCTCGTTGGTC




TTGGCTTCATATCAAACAAACAATG




AGATACCTGATAAAACAATCACGCA




CTACAAATTCAGCTCATTTAACAGA




AATTATAAAAGAGGAATGGGGTTTA




GTAGGTATTACTCCAGATCTTGTCA




TTCTTTTTGACAGAGTCAATAATAG




TCTAACTGCATTAACATTTGAGATG




GTTCTAATGTATTCAGATGTATTAG




AATCCCGTGACAATATTGTGCTAGT




GGGGCGATTATCTACTTTTCTGCAG




CCAGTAGTTAGTAGACTGGAGGTGT




TGTTTGATCTAGTAGATTCATTGGC




AAAAACCTTAGGTGACACAATATAC




GAAATTATTGCGGTGTTAGAGAGCT




TGTCTTATGGGTCCGTTCAACTACA




TGATGCAAGTCACTCTCATGCAGGG




TCTTTCTTTTCATTTAACATGAATG




AACTTGATAACACACTATCAAAGAG




GGTGGATCCGAAACACAAGAACACC




ATAATGAGCATTATAAGACAATGCT




TTTCTAATCTAGATGTTGATCAAGC




TGCAGAGATGCTATGCCTGATGAGA




TTATTTGGACACCCAATGTTAACTG




CACCGGATGCAGCAGCCAAAGTAAG




GAAAGCAATGTGTGCTCCAAAACTT




GTTGAACATGACACCATCTTGCAGA




CATTATCCTTCTTCAAGGGAATAAT




TATAAATGGGTACAGAAGATCACAC




TCTGGCCTGTGGCCCAATGTAGAGC




CGTCTTCAATCTATGATGATGATCT




CAGACAGCTGTACTTAGAGTCAGCA




GAGATTTCCCATCATTTCATGCTTA




AAAACTACAAGAGTTTGAGCATGAT




AGAATTCAAGAAGAGCATAGACTAC




GATCTTCACGACGACTTAAGTACTT




TCTTAAAGGATAGAGCAATTTGCCG




GCCAAAATCCCAGTGGGATGTTATA




TTCCGTAAGTCTTTACGCAGATCCC




ACACGCGGTCCCAGTATATGGACGA




AATTAAGAGCAACCGATTGCTAATT




GATTTTCTTGATTCTGCTGATTTTG




ACCCTGAAAAGGAATTTGCATATGT




AACCACAATGGATTATTTGCACGAT




AATGAATTTTGTGCTTCATATTCTC




TAAAGGAAAAGGAGATCAAAACTAC




CGGGAGGATATTTGCAAAAATGACA




CGCAATATGAGAAGTTGCCAAGTGA




TACTTGAATCTCTGTTATCAAAACA




TATATGCAAGTTCTTCAAAGAGAAC




GGCGTTTCGATGGAGCAATTGTCAT




TGACCAAGAGTCTACTTGCAATGTC




TCAACTCTCACCAAAAGTCTCGACT




CTGCAGGACACTGCATCACGTCATG




TAGGCAACTCAAAATCTCAGATCGC




AACCAGCAACCCATCTCGGCATCAC




TCAACAACCAATCAGATGTCACTCT




CAAATCGGAAAACGGTTGTAGCAAC




TTTCTTAACAACTGATTTGGAAAAA




TACTGCCTGCAGTGGCGATACTCGA




CTATTAAGTTGTTTGCACAAGCTCT




AAATCAACTCTTTGGGATTGATCAC




GGATTTGAATGGATACATTTAAGAC




TCATGAACAGCACCTTATTTGTCGG




TGATCCTTACTCGCCTCCTGAAGAT




CCAACACTAGAGGATATAGATAAAG




CACCAAATGACGATATCTTCATAGT




TTCTCCAAGGGGAGGCATAGAGGGT




TTATGTCAGAAGATGTGGACCATGA




TATCAATTAGTGCGATACACTGTGT




AGCAGAGAAAATTGGTGCACGAGTG




GCAGCAATGGTGCAGGGTGATAATC




AAGTAATAGCTATCACCAAAGAACT




ATTCAGAGGAGAGAAAGCCTGTGAT




GTCAGAGATGAGTTAGACGAGCTCG




GTCAGGTGTTTTTTGATGAGTTCAA




GAGGCACAATTATGCAATTGGACAC




AACCTTAAGCTAAATGAGACAATAC




AAAGCCAATCCTTTTTTGTATATTC




CAAACGAATATTCTTTGAAGGGCGA




TTGCTTAGTCAAGTCCTCAAAAATG




CTGCCAAGTTATGTATGGTTGCTGA




CCATCTAGGTGAAAACACAGTATCT




TCCTGTAGCAACCTGAGCTCTACAA




TTGCCCGGTTGGTGGAAAATGGGTT




TGAGAAGGACACTGCTTTTGTGTTG




AACCTAGTCTACATCATGACTCAAA




TTCTTTTTGATGAGCATTACTCGAT




TGTATGCGATCACAATAGTGTCAAA




AGCTTGATCGGATCAAAAAACTATC




GGAATCTATTGTACTCATCTCTAAT




ACCAGGTCAGCTCGGTGGTTTCAAC




TTCCTCAATATAAGTCGGTTGTTCA




CTAGGAATATAGGTGACCCAGTAAC




ATGTAGTCTGTCTGATCTCAAATGC




TTCATAGCCGCAGGTCTCCTTCCAC




CCTATGTACTTAAAAATGTGGTTCT




GCGTGAGCCTGGTCCTGGGACATGG




TTGACGTTGTGCTCTGATCCTTACA




CCCTTAACATACCATACACACAGCT




ACCAACCACATATCTCAAAAAGCAC




ACCCAGCGATCGTTGCTTTCACGTG




CAGTAAATCCTTTATTAGCAGGTGT




ACAAGTGCCAAATCAGCATGAGGAA




GAAGAGATGTTGGCTCGCTTTCTCC




TTGATCGTGAATATGTGATGCCCCG




CGTTGCTCATGTAACACTAGAAACA




TCGGTCCTTGGCAAACGGAAACAAA




TCCAAGGCTTAATTGATACAACTCC




AACTATCATTAGAACATCTCTAGTC




AATCTACCAGTGTCTAGGAAGAAAT




GCGAAAAAATAATCAATTATTCTCT




CAATTATATTGCTGAGTGTCATGAC




TCCTTACTTAGTCAGATCTGCTTCA




GTGATAATAAGGAATACTTGTGGTC




CACCTCCTTAATATCAGTTGAGACC




TGTAGTGTGACAATTGCGGACTATT




TGAGAGCTGTCAGCTGGTCTAATAT




ATTAGGGGGAAGAAGCATATCCGGG




GTGACTACACCTGATACTATTGAAT




TAATTCAAGGTTGTTTAATAGGTGA




AAATTCCAGTTGTACTCTTTGTGAA




TCGCATGACGACGCATTCACATGGA




TGCACTTGCCTGGCCCACTTTACAT




CCCTGAACCATCAGTTACTAACTCT




AAAATGCGTGTGCCATATCTGGGTT




CAAAAACAGAGGAGCGTAAAACAGC




TTCAATGGCAGCAATAAAAGGAATG




TCACATCACCTGCGTGCAGTCTTAA




GAGGTACATCCGTATTTATTTGGGC




ATCTGGGGACACAGATATTAATTGG




GATAATGCATTGCAGATTGCCCAAT




CACGGTGTAACATCACATTGGATCA




AATGAGATTACTTACACCAATTCCT




AGCAGTTCAAATATCCAACGTAGAC




TCGATGACGGAATCAGCACGCAGAA




ATTTACTCCTGCAAGCCTTGCTCGA




ATCACATCCTCTGTTCACATCTGTA




ATGACAGCCAAAGGTTAGAGAAGGA




TGGCTCCTCTGTCGACTCAAACTTG




ATTTACCAGCAAATTATGTTACTTG




GACTCAGCATCTTTGAAACAATGTA




CTCAATGGACCAAAAGTGGGTATTC




AATAACCATACCTTACATTTGCACA




CTGGACACTCCTGTTGTCCAAGGGA




ACTAGACATAAGTTTAGTGAACCCG




CCAAGACATCAGACCCCGGAGCTGA




CTAGCACAACAACCAACCCGTTCCT




ATATGATCAGCTCCCACTAAATCAG




GATAATCTGACAACACTTGAGATTA




AGACATTCAAATTTAATGAGCTCAA




CATTGATGGTTTAGATTTTGGTGAA




GGAATACAATTATTGAGTCGTTGTA




CTGCAAGATTAATGGCAGAATGTAT




TCTAGAGGAGGGAATAGGCTCGTCA




GTTAAAAATGAAGCAATTGTCAATT




TTGATAATTCAGTCAATTGGATTTC




AGAGTGCCTAATGTGTGATATTCGC




TCACTTTGTGTTAATTTAGGTCAAG




AGATACTATGTAGCCTGGCATACCA




AATGTATTACTTGCGAATCAGGGGT




AGAAGGGCCATTCTTAATTACTTGG




ACACAACTTTGCAAAGGATCCCTGT




GATACAGTTAGCCAACATTGCACTC




ACCATTTCACACCCTGAGATATTTC




GCAGAATTGTCAACACCGGGATCCA




TAACCAGATTAAGGGCCCATATGTG




GCAACAACAGATTTCATAGCTGCAA




GTAGAGATATCATATTATCAGGTGC




AAGGGAGTATCTATCTTATCTAAGC




AGTGGACAGGAAGACTGTTACACAT




TCTTCAACTGTCAAGATGGGGATCT




TACTCCAAAAATGGAACAGTATCTT




GCAAGGAGGGCATGCCTTTTAACAT




TACTGTATAATACTGGGCACCAGAT




CCCCATTATCCGATCACTGACACCA




ATAGAGAAGTGCAAGGTGCTCACAG




AATACAATCAACAAATTGAGTATGC




AGATCAAGAGTTTAGCTCTGTATTG




AAAGTGGTCAATGCACTACTACAAA




ATCCTAATATAGATGCATTGGTTTC




AAATCTCTACTTCACCACCAGACGT




GTTTTATCAAACCTCAGATCATGTG




ATAAGGCTATATCATATATTGAATA




TTTGTACACTGAGGACTTCGGAGAA




AAAGAAGATACAGTACAATATGACA




TCATGACAACAAACGATATCATACT




TACTCATGGTCTATTCACACAGATC




GAAATATCTTACCAAGGGAGTAGTC




TCCATAAATTCCTAACTCCGGATAA




CGCGCCTGGATCATTGATCCCATTC




TCTATTTCACCAAATTCGCTTGCAT




GTGATCCTCTTCACCACTTACTCAA




GTCGGTCGGTACATCAAGCACAAGC




TGGTACAAGTATGCAATCGCCTATG




CAGTGTCTGAAAAGAGGTCGGCTCG




ATTAGGAGGGAGCTTGTACATTGGT




GAAGGGAGCGGAAGTGTGATGACTT




TGCTAGAGTATCTTGAGCCATCTGT




TGACATATTTTACAATTCACTCTTC




TCAAATGGTATGAACCCACCACAAC




GAAATTATGGGCTTATGCCACTACA




ATTTGTGAATTCGGTGGTTTATAAG




AACTTAACGGCTAAATCAGAATGTA




AGCTAGGATTTGTCCAGCAATTTAA




ACCGTTGTGGAGAGACATAGACATT




GAGACTAATGTTACAGATCCATCAT




TTGTCAATTTTGCATTGAATGAAAT




CCCAATGCAATCATTAAAACGAGTA




AATTGTGATGTGGAATTTGACCGTG




GTATGCCGATTGAACGGGTTATTCA




GGGTTACACTCATATCTTACTTGTT




GCTACTTACGGATTGCAGCAAGATT




CAATACTGTGGGTGAAAGTATATAG




GACATCTGAAAAAGTATTTCAGTTC




TTACTGAGTGCCATGATCATGATCT




TTGGTTATGTCAAAATCCACAGGAA




TGGTTATATGTCGGCAAAGGATGAG




GAGTACATATTGATGTCTGACTGCA




AGGAACCTGTAAACTATACAGCTGT




CCCTAACATTCTTACACGTGTAAGT




GATTTAGTGTCGAAGAATCTGAGTC




TTATCCATCCAGAAGACCTCAGAAA




GGTAAGGTGTGAAACAGATTCCCTG




AATTTGAAGTGCAATCATATTTATG




AGAAAATAATTGCTAGAAAAATTCC




ATTACAGGTGTCATCAACTGATTCT




TTGCTCCTCCAGTTAGGCGGTGTCA




TCAACTCGGTGGGCTCAACTGATCC




TAGAGAGGTTGCAACGTTATCTTCC




ATTGAGTGTATGGACTATGTTGTCT




CATCAATTGATTTGGCTATATTAGA




GGCAAATATTGTGATCTCAGAGAGT




GCTGATCTTGACCTCGCTTTAATGT




TAGGCCCATTCAACTTGAATAAGCT




TAAGAAAATTGACACAATCCTTAAG




TCAAGCACCTATCAGCTAATCCCGT




ATTGGTTGCGCTATGAGTACTCTAT




TAATCCGAGATCTTTGTCATTTCTA




ATCACTAAATTACAACAATGCCGAA




TTTCATGGTCAGATATGATAACAAT




CTCTGAATTTTGCAAGAAATCCAAG




CGGCCTATATTTATTAAACGAGTAA




TAGGGAATCAACGGCTGAAATCATT




CTTTAATGAAAGCTCAAGTATTGTT




TTGACCCGGGCTGAAGTCAAAGTCT




GTATAAAGTTCCTCGGTGCGATCAT




CAAGTTGAAATAATTTCTGTGTTTT




TTAAGGGGTATAGTATTCTAAGTTG




CACTTGAAGTAATATAGCTTGTAAT




CATTCGCTAGGGGATAGAATAATTC




CTATAATCTCTGAATATATATCTCT




AGGTTATAACAAATATATACATAAT




AAAATTGATTTTAAGAAAAAATCCG




ACTTTCAAAGAAGATTGGTGCCTGT




AATATTCTTCTTGCCAGATGATTAT




GGAGGGTCTAGCCTAACTTAAAACA




ATCGTATTCGATAGGGAAGAATGAC




ATATAAAGTAACTAATAAAAAATTG




TATTAGTGAAAATTACCGTATTTCC




TGTATTCCATTTCTGGT






Avian
ACCAAACAAAGAAATTGTAAGATAC
SEQ ID


paramyxovir
GTTAAAGACCGAAGTAGCAACTGAC
NO: 12


us 9 strain
TTCGTACGGGTAGAAGGATTGAATC



duck/New
TCGAGTGCGAACACGACGCTGTGAT



York/22/
TCGAAGGTCCGTACTACCATCATGT



1978,
CCTCTATATTCAATGAGTATGAGAG



complete,
TCTGCTTGAAAGTCAACTCAAACCG



genome
ACGGGCTCGAACGTCTTAGGAGAGA



Genbank:
AAGGTGACACTCCAAAAGTCGAGAT



NC_025390.1
CCCTGTATTTGTGCTCAACAGTGAC




AACCCTGAAGATCGCTGGAACTTTA




CTACCTTCTGTCTCAGAGTCGCTGT




GAGCGAGGATGCTAATAGGCCTTTG




CGTCAGGGGGCACTCATCTCTCTAC




TTTGCGCTCATTCTCAGGTGATGAA




GAATCATGTGGCCATAGCAGGAAAG




CAGGATGAGGCTCTGATTGTAGTTC




TAGAGATTGATACTATTAATGATGG




TGTTCCAGCCTTCAACAATAGGAGC




GGTGTCACAGAGGAACGAGCTCAGC




GTTTCGCTATGATAGCTCAAGCATT




ACCCCGTGCTTGTGCAAATGGGACA




CCGTTCACCGTCCAAGATGCAGAAG




ATGATCCAGTCGAAGACATAACAGA




CGCCCTTGATCGCATATTGTCAATC




CAGGCGCAAGTATGGGTGACCGTCG




CAAAATCCATGACAGCGTACGAGAC




TGCAGATGAATCAGAACAGAAGCGA




TTGACCAAGTATGTTCAGCAAGGTC




GAGTGCAGAAGAAATGCATGATCTA




CCCTGTATGTCGGAGCATGCTGCAG




CAGATCATAAGGCAATCTTTAGCAG




TCCGACGGTTCATTGTCAGTGAGCT




GAAACGAGCTCGGAATACAGCAGGA




GGAACATCCACGTATTATAACTTCG




TTGCTGATGTAGATTCCTACATTAG




GAATGCTGGGTTAACTGCATTCTTC




TTGACCCTTAAGTATGGTGTGAATA




CAAAGACTTCTGTCCTTGCCCTTAG




CAGCTTGGCAGGCGATCTTCAAACT




GTCAAACAGTTGATGCGGCTGTATA




AAGCCAAAGGAGATGATGCACCATA




CATGACTATACTGGGAGACGGAGAC




CAGATGAGATTTGCACCTGCTGAAT




ACGCACAGCTATACTCATACGCTAT




GGGAATGGCATCAGTCATAGACAAA




GGGACCTCAAGGTATCAGTACGCTC




GTGACTTCCTAAACCCCAGCTTCTG




GAGGCTGGGAGTGGAGTATGCCCAG




ACTCAAGGAAGCAACATCAACGAAG




AGATGGCATCAGAACTGAAACTCAG




CCCAATAGCTAGAAGGATGCTGACC




ACTGCCGTCACAAAAGTAGCAACCG




GAGCGTCTGATTATTCGGTACCTCA




GCATACAGCAGGAGTCCTAACTGGC




TTGAATTCAACAGACGGCAACCTTG




GGTCTCAGAAGCTGCCCACCTCAAT




TCAGCAGGATCAGAATGATGATACT




GCCATGTTGAACTTCATGAGGGCCG




TAGCACAAGGAATGAAGGAGACACC




AATTCAGGCTCCTCCCACCCCTGGA




TTCGGATCTCAACAGGCCGCAGACG




ACGATGACTCGCGGGATCAAGCAGA




CTCCTGGGGGCTCTAATGAAATACG




GAGGTTGACTCCAGCCCAAACGAAC




CTCTAGCAACTCCTAATCCCTCATC




CACCTACAAACTCCACATCTACATG




ACCAATCCGCTCACACAACACGGCG




GAAGACACCATCCATCCCCAACTGT




CCCAACCCGAAGAACATCCTCAACT




TAGCCCGCTAATTTCACGAACCATT




ACAAAAAACTTATCAACAGAAAAAA




CTACGGGTAGAACTGTCTGCCACTG




CGAGAAAGCAAACGCATCAACGCAG




TCAGCACTCATCGCAGCTCTCCATC




ACACCAATTCTAGCTCAGGCACACG




CCTCCAGAGAGAACCATGGCATCCT




TCACAGACGACGAGATATCAGATCT




GATGGAACAAAGTGGTCTTGTAATA




GATGAGATCATGACATCCCAAGGGA




TGCCTAAAGAGACCCTAGGGCGAAG




TGCAATCCCACCAGGGAAAACTCAG




GCCCTAACTGATGCCTGGGAGAAAC




ACAACAAGTCACAGAGATCCAATGC




GGATCACAGCACCGGATCAAATAAC




AAAACTGATGTCAACACACCCCACA




ATGCTGAGCCGCCACAATCCACCGG




CGATCCCTCCGCATCTCCAGAAATG




GACGGCGACACAACCCCACTCCCAA




AGCAGGAAACCGCCGAAAAGCACCC




CTGCAAAGAAGGGGCCACTGGAGGG




CTGCTGGATATGCTTGACCGGATTG




CTGCCAAGCAGGATAGAGCTAAAAA




AGGGCTCAATCCGAGATCACAAGAC




ACGGGCACCCTGCACTCAGGCCAAT




TCCCTACGCAGACGCAAGACCCGAC




ATCCCGCCGATCAACCAACTCATCG




GGACACAGCATGGAGTCCAGAACGC




CCGCCCAGCTGCCAATCCCGAGGAG




AGACGACAGCCCGCATCAGGTAAGA




AGAGAGGAGGAGGGCATCGCAGAGA




ACACAGCATGGTCTGGAATGCAAAC




GGGATTGTCACCATCAGCTGGTGCA




ACCCAGTTTGCTCTCCAGTCACCTA




CGAACCAAGAGAATTCACATGTTCA




TGCGGGAGCTGCCCTACAGAATGCC




GACTTTGTGCAGGCTCTCATAGGGA




TATTAGAAAGCATTCAGCAGAGAGT




GAGTAAAATGGAATATCAGATGGAT




TTAGTCCTGCGTCACCTGTCTAGTA




TGCCAGCCATTCGAAATGACATTCA




ACAAGTTAAGACCGCTATGGCAGTG




CTTGAGGCCAACATTGGGATGATGA




AAATCCTTGACCCTGGATCAGCACA




TATTTCTTCGCTCAATGATCTTCGA




GCAGTTGCAAGGTATCATCCAGTCC




TTGTAGCAGGCCCCGGTGACCCCAA




TAAAACAATTGCTGATGATAAAACC




ATCACTGTCAATCGGCTCTCCCAGC




CGGTAACTGATCAGCGCAGCTTGGT




AAGAGAACTCACACCCCCTTCCGGT




GATTTCGAGGCAGAAAAATGCGCAA




TCAAGGCGTTATTAGCTGCGAGACC




ACTACATCCATCGGCTGCAAAACGA




ATGTCTGATAGGTTAGATGCAGCCA




AGACATGTGAAGAATTGAGGAAGGT




GAAGAGACAGATTCTGAATAACTGA




CCCAAATAGTGTGGTTTCCGCCAAT




GATCAAGCGTGATCCGCCTTGGACA




ACTTTTTTGCCGATCTTAAGGAGAG




ACAAATCAATTTACACCGATCTAAA




ATATCATCAGACACCCTCAAATCAA




GAAAACATAGATGACAGTCTGCTTG




ACTCATCTCTTGCATCTGATGCTAT




CAATTGCCCTAAAATACCACCTGAC




ATAAATACCAGATTATCTCTAGACC




TCCTTGGTTGTTAAGAAAAAAAAGT




AAGTACGGGTAGAAACAGGACTCAA




CCGACCTACCACCATGGATGCTTCT




AGGATGATCAGTCTATATGTAGACC




CCACTAGCAGTTCTAGTTCAATACT




CGCATTCCCAATAGTCATGGAAGCC




ACAGGAGACGGACGAAAGCAAATTT




CACCCCAATATCGCATTCAGAGATT




AGATCACTGGTCAGACAGCAGTCGA




GATGCAGTATTCATCACCACATATG




GGTTTATATTTGGATACCCTAAATC




ACGTGCTGATCGAGGCCAGCTTAAT




GAAGAAATTAGGCCTGTGCTGCTCT




CTGCTGCAACGCTATGTCTGGGCAG




TGTGGCGAATACTGGAGATCAGGTT




GCAATTGCTCGGGCATGCTTGTCAC




TACAAATATCTTGCAAAAAGAGTGC




TACTAGTGAGGAGAAAATGATATTT




GCAATCACCCAAGCTCCGCAGATTT




TACAATCATGTCGTGCTGTTTCGCA




AAAATTCGTCTCCGTTGGATCAAAT




AAATGTGTGAAAGCACCTGAAAGAA




TCGAGGGAGGCCAGCAGTATGACTA




TAAGGTCAACTTCGTGTCTCTCACT




ATAGTACCAAAAGATGACGTATATA




GGGTCCCAAAACCTGTCCTATCAGT




CAGCAGTCCCACTCTATTCCGCCTT




GCCCTGAGTGTTAACATCGCAATCG




ACATCAATGCCGACAATCCTTTGTC




TAAGACGCTTATTAAGACCGAAAGC




GGCTTTGAAGCAAATTTGTTCCTGC




ATGTGGGTATTCTCTCAAACATTGA




CAAGCGGGGAAAGAAGGTGACGTTC




GAGAAGTTAGAGAAGAAAATCCGGC




GGATGGAACTGACTGCAGGATTAAG




TGATATGTTTGGTCCGTCCATCATC




CTGAAGGCCAAAGGGCCGAGGACAA




AGTTGATGTCAGCATTCTTTTCTAA




TACGGGAACAGCGTGTTATCCGATC




GCACAAGCATCTCCTCCAGTATCGA




AGATCTTGTGGAGCCAAAGCGGACA




CCTCCAGGAGGTTAAGATACTTGTA




CAATCGGGAACCTCGAAAATGATTG




CATTAACAGCCGATCAAGAAATCAC




AACAACAAAGCTCGATCAGCACGCC




AAGATTCAATCATTTAACCCATTCA




AAAAGTAAGTTGCATGGCTCACGAA




TAGCTCAGGTCTTCTTGCCTTAAAA




TCAGCCAATGAATATGTGATAGGAT




ATTCAGTGTCTCGAATCATTACCGA




TCAAAAAACCCCATTAAATCATACA




CCTGATCATTAGACAAGAGGTAATC




CAAATAGCATTAAAAAAAATCCCCA




AAAGAATTAAAACTAAAACACAGCA




CGGGTAGAAAGTGAGCTGTATATCA




CTCAATCCACAATCTACCATAGTGA




CACAATGGGGTACTTCCACCTATTA




CTTATACTAACAGCGATTGCCATAT




CTGCGCACCTCTGCTATACCACGAC




ATTGGATGGTAGAAAACTGCTTGGT




GCAGGCATAGTGATAACAGAAGAGA




AGCAAGTTAGGGTGTACACAGCTGC




GCAATCAGGAACAATTGTCTTAAGG




TCTTTCCGTGTGGTCTCCTTAGACA




GATACTCGTGCATGGAATCCACTAT




TGAGTCATATAACAAGACTGTATAT




AACATACTTGCACCTCTGGGCGATG




CAATCCGCCGAATACAGGCAAGTGG




TGTATCGGTTGAGCGTATCCGAGAG




GGCCGCATATTTGGTGCCATCCTTG




GGGGAGTTGCCTTAGGTGTAGCCAC




CGCAGCACAGATAACAGCTGCAATT




GCTTTGATTCAGGCTAACGAGAACG




CAAAAAACATCCTGCGTATTAAAGA




CAGTATAACTAAGACCAACGAGGCA




GTGAGAGATGTAACTAATGGCGTGT




CGCAGTTAACTATCGCTGTAGGTAA




ATTACAGGACTTCGTCAATAAGGAA




TTCAATAAGACAACTGAGGCCATTA




ATTGTGTACAGGCAGCTCAACAATT




AGGTGTGGAGCTAAGCCTCTATCTG




ACCGAGATCACTACAGTCTTCGGAC




CTCAGATAACCTCTCCTGCTTTAAG




CAAATTGACTATCCAAGCGCTGTAT




AATTTGGCGGGCGTAAGCTTGGATG




TACTACTGGGAAGGCTCGGAGCAGA




CAATTCACAGTTATCATCTTTGGTT




AGTAGTGGTCTTATTACCGGACAGC




CCATTCTCTACGACTCGGAATCTCA




AATATTGGCACTGCAAGTGTCACTA




CCCTCCATTAGTGACTTAAGGGGAG




TGAGAGCGACATACTTAGACACGTT




GGCTGTCAACACTGCAGCAGGACTT




GCATCTGCTATGATTCCAAAGGTAG




TAATCCAATCTAATAATATAGTTGA




AGAATTAGATACTACAGCATGTATA




GCAGCAGAAGCTGACTTATACTGTA




CGAGGATTACTACATTCCCCATTGC




GTCGGCTGTATCAGCCTGCATTCTT




GGGGATGTATCGCAATGCCTTTATT




CAAAGACTAATGGCGTCTTAACCAC




TCCATATGTAGCAGTAAAGGGGAAA




ATTGTAGCCAATTGTAAGCATGTCA




CATGTAGGTGTGTAGATCCTACATC




CATCATATCTCAAAATTACGGTGAA




GCAGCGACTCTTATCGATGATCAGC




TATGCAAGGTAATCAACTTAGATGG




TGTGTCCATACAGCTGAGCGGCACA




TTTGAATCGACTTATGTGCGCAACG




TCTCGATAAGTGCAAACAAGGTCAT




TGTCTCAAGCAGTATAGATATATCT




AATGAGCTGGAGAATGTTAACAGCT




CTTTAAGTTCGGCTCTGGAAAAACT




GGATGAAAGTGACGCTGCGCTAAGC




AAAGTAAATGTTCACTTAACTAGCA




CCTCAGCTATGGCCACATACATTGT




TCTAACTGTAATTGCTCTTATCTTG




GGGTTTGTCGGCCTAGGATTGGGTT




GCTTTGCTATGATAAAAGTAAAGTC




TCAAGCAAAGACACTACTATGGCTT




GGTGCACATGCTGACCGATCATATA




TACTCCAGAGTAAGCCGGCTCAATC




GTCCACATAATACAACAACAATCAA




TCCTGACTATCATATAATACATGAA




TCATTTCTTCTTCCGATTATAAAAA




AATAAGAAACCTAATTAGGCCAATA




CGGGTAGAACAGGCTTCCACCCCGT




ATTTCTTCGGCTGTGATCCTGTACC




TGAGTTCTTCCCACCAACACCAGGA




CCTCTCCTAAATTGCATCACCATGG




AATCAGGAATCAGCCAGGCATCTCT




TGTCAATGACAACATAGAATTAAGG




AATACGTGGCGCACGGCCTTCCGTG




TGGTCTCCTTATTACTCGGCTTCAC




CAGCTTGGTGCTCACTGCTTGCGCT




TTACACTTCGCTTTGAATGCCGCTA




CCCCTGCGGATCTCTCTAGTATCCC




AGTCGCTGTTGACCAAAGTCATCAT




GAAATTCTACAAACCTTGAGTCTGA




TGAGCGACATTGGCAATAAGATTTA




CAAGCAGGTAGCACTAGATAGTCCA




GTGGCGCTGCTCAACACTGAATCAA




CCTTAATGAGCGCAATTACATCACT




ATCTTATCAGATTAACAATGCAGCG




AATAACTCAGGTTGTGGCGCCCCTG




TGCATGATAAGGATTTTATCAATGG




AGTGGCAAAGGAATTATTTGTAGGG




TCTCAATACAATGCCTCGAACTATC




GACCCTCCAGGTTCCTTGAGCATCT




AAATTTCATCCCCGCCCCTACTACG




GGAAAAGGTTGCACCAGAATTCCGT




CCTTTGATCTAGCTGCAACACATTG




GTGTTATACTCACAATGTGATTCTT




AATGGTTGTAATGATCATGCTCAAT




CTTATCAATACATATCCCTCGGGAT




ACTCAAGGTGTCAGCCACGGGAAAC




GTGTTCTTATCTACTCTCAGATCTA




TCAACCTGGATGATGATGAAAACCG




GAAATCATGTAGCATATCAGCAACG




CCACTAGGGTGTGACTTACTTTGTG




CTAAAGTCACTGAGAGAGAAGAGGC




AGATTACAATTCAGATGCAGCGACG




AGATTAGTTCATGGCAGGTTAGGTT




TTGATGGGGTATACCATGAGCAGGC




CCTGCCTGTAGAATCATTGTTCAGT




GACTGGGTTGCAAACTATCCGTCAG




TCGGCGGAGGCAGTTACTTTGATAA




TAGGGTATGGTTTGGCGTGTATGGG




GGGATCAGACCTGGCTCTCAGACTG




ATCTGCTCCAGTCTGAGAAGTACGC




GATATATCGTAGGTACAATAATACC




TGCCCTGATAATAATCCCACCCAGA




TTGAGCGGGCCAAATCATCTTATCG




TCCGCAGCGGTTTGGCCAGCGGCTT




GTACAACAAGCAATTCTATCAATTA




GAGTGGAGCCATCTTTGGGTAATGA




TCCTAAACTATCTGTGTTAGATAAT




ACAGTCGTGTTGATGGGGGCGGAAG




CAAGGATAATGACATTTGGCCACGT




GGCATTAATGTATCAAAGAGGGTCA




TCATATTTTCCTTCTGCACTATTAT




ACCCTCTCAGTTTAACAAATGGTAG




TGCAGCAGCATCCAAGCCTTTCATA




TTCGAGCAATATACAAGGCCAGGTA




GCCCACCTTGTCAGGCCACTGCAAG




ATGTCCAAATTCATGTGTTACTGGT




GTCTACACAGACGCATACCCGTTAT




TTTGGTCTGAAGATCATAAAGTGAA




TGGTGTATATGGTATGATGTTAGAT




GACATCACATCACGGTTAAACCCGG




TAGCAGCTATATTTGATAGGTATGG




TAGGAGTAGAGTGACTAGGGTTAGC




AGTAGCAGCACGAAGGCAGCTTACA




CTACAAATACATGCTTTAAGGTTGT




CAAAACAAAGAGAGTATACTGCTTG




AGCATTGCCGAGATAGAGAATACAC




TGTTTGGAGAATTCAGAATAACCCC




TTTACTCTCCGAGATAATATTTGAC




CCAAACCTTGAACCCTCAGACACGA




GCCGTAACTGAGGAAAATCCGTTCT




GGCAGACAGTGGTTGGATAGACCTT




GCGTCGATAGCCCTCACTGTTGGCA




CTGCGTCGTCCCTATATTCAAACAC




CACATTAGCGGAGTATACAGATAGT




CGGCCATGATGAATCAAATGTCATG




CGATTTGAGCATAACCGAAGCAGAA




TCAGGATATACCCGGCTCTACCATA




TCAGGGAGAACAGCTGGTAAGCTGT




AATCCTCAATAATCCTAAAAACTGC




AGGTAATACAAAAGGATCAGCCTAT




AGGGAGCTTCAACAATCGTTAGAAA




AAAACGGGTAGAACATGGATAATCC




AGGACAATCTCGCCCTGATCATCAA




GTGATTCTACCCGAAGCGCATCTTT




CCTCACCGATCGTAAGGCATAAGTT




ATATTATTTCTGGAGACTAACAGGA




GTACCACTACCCCACTCAGCAGAAT




TTGATACGCTAGTCCTATCCAGACC




ATGGAACAAAATATTGCAGAGCAAC




TCGCCAGAAGTACTGAGGATGAAGC




GGCTAGGTGCGAACGTCCACGCGAC




TCTAGATCACTCTCGACCAATAAAG




GCTTTGATCCACCCGGAGACTTTAG




CATGGCTAACTGATCTGTCTATAGG




GGTATCTATCTCTAGATTTAGAGGA




ATAGAAAAGAAAGTATCTCGCCTGC




TCCATGACAATAGAGAGAAATTTTG




TACACTTGTTTCTCAGATTCATGAA




GGATTGTTCGGTGGTGTAGGAGGGG




TTCGGAATAATCTGTCACCAGAGTT




TGAAAGTTTGCTCAATGGAACTAAC




TTCTGGTTTGGCGGGAAATATTCAA




ACACAAAATTCACTTGGCTTCACAT




TAAACAATTGCAGAGACATCTTATA




CTCACAGCGCGTATGAGATCTGGGC




AGCAACTTTACATCCAATTAAAGCA




TACAAGGGGTTATGTCCATATAACT




CCAGAGTTAACTATGATTACATGCA




ACGGAAAAAACCTTGTTACAGCACT




TACACCTGAGATGGTCTTAATGTAT




AGTGACATGCTAGAAGGAAGAGATA




TGGTCATAAGTGTTGCACAGCTTGT




GAATGGCCTGAATGTCCTAGCAGAT




AGGATTGAGTGTCTTCTTGACTTGA




TTGACCAATTGGCGTGCTTGATAAA




GGATGCTATATATGAAATAATTGGG




ATTTTGGAGGGTTTAGCTTATGCAG




CAGTCCAGCTGCTGGAGCCGTCCGG




AAAATTCGCAGGGGATTTCTTTGAA




TTCAATCTCAGAGAGATAGCTGCCA




TATTGCGAGAACACATAGACCCTGT




GTTAGCTAACAGGGTACTTGAGTCT




ATTACCTGGATTTACAGTGGTCTGA




CAGACAACCAAGCAGCAGAGATGCT




CTGTATCCTCCGCTTGTGGGGCCAC




CCTACATTAGAGTCCAGAACAGCTG




CAGCTGCAGTGCGAAAGCAAATGTG




CGCGCCAAAACTCATTGACTTCGAC




ATGATCCAACAAGTATTGGCTTTCT




TTAAAGGGACAATCATCAATGGATA




TAGAAGACAAAACTCAGGAGTCTGG




CCAAGAGTTAAAAAGGATACTATCT




ATGGATCAACACTCCAACAGTTGCA




TGCTGACTATGCAGAGATATCACAC




GAATTAATGCTGAAAGAATACAAGC




GTCTAGCAATGCTTGAGTTTGAGAA




GTGTATTGACATAGACCCAGTATCC




AATTTAAGCATGTTCTTGAAGGACA




AGGCTATAGCACACACGCGACCAAA




TTGGCTGGCATCTTTTAAAAGAACT




TTGTTATCCGATAGACAGCAGCTCT




TAGCAAAGGATGCAACTTCGACCAA




TCGTCTGCTGATAGAATTCCTAGAA




TCTAGCAACTTTGACCCATATCAGG




AGATGACCTATTTGACAAGTCTTGA




ATTTCTTAGAGATAATGACGTGGCA




GTATCATATTCGTTAAAGGAGAAAG




AAGTTAAGCCCAATGGTAGAATCTT




CGCAAAGCTTACCAAACGACTCAGA




AATTGTCAGGTGATGGCAGAGAATA




TCCTAGCAGACGAAATTGCACCTTT




TTTCCAAGGGAATGGAGTCATTCAA




AGCAGCATCTCTCTGACGAAAAGTA




TGTTAGCAATGAGTCAACTGTCATT




TAATTGCAACAGATTCTCGATCGGA




AACCGCAGAGAAGGGATCAAAGAGA




ATAGGACACGACACCGTGAACGAAA




GCGAAGAAGGCGAGTAGCTACATAT




ATCACAACTGACCTGCAGAAGTACT




GTCTCAATTGGAGGTATCAGACCAT




CAAGCCTTTTGCCCATGCGATTAAT




CAGCTGACAGGGCTTGATTTGTTTT




TTGAGTGGATCCACCTTCGTCTAAT




GGATACCACTATGTTCGTTGGAGAT




CCATACAACCCACCCTCTGATCCAA




CAATTGAAAACCTGGATGATGCACC




CAATGATGATATCTTTATTGTAAGC




GGAAGAGGAGGGATCGAGGGATTAT




GTCAAAAGCTTTGGACTACCATATC




AATATCCGCAATACAATTAGCAGCC




ACCCGGTCAAAGTGTAGGGTAGCCT




GTATGGTGCAAGGTGACAATCAGGT




GATCGCAGTGACCCGAGAAGTAAAT




CCAGATGACTCAGAAGATGCGGTCT




TAGATGAATTACATAAGGCCAGCGA




CAGATTCTTTGAGGAACTCACTCAC




GTGAATCATCTGATCGGACATAACC




TGAAAGATAGAGAGACCATACGCTC




AGATACTTGTTTTATCTATAGCAAG




CGAGTATTCAAGGATGGTAAGATAC




TTTCTCAGGCCCTCAAGAATGCTGC




AAAGCTCGTCTTAATATCTGGGGAG




ATTGGGGAGAACACTCCTATGTCAT




GCGGGAATATTGCTTCTACAGTGTC




TCGTCTGTGTGAAAATGGGCTGCCC




AAAGATGCCTGCTATATGATCAATT




ATATATTAACCTGTATACAATTTTT




CTTTGACAATGAGTTTTCCATTGTC




CCCGCTTCTCAGCGTGGATCCACAG




TTGAATGGGTGGATAACCTTTCATT




TGTACACGCGTATGCACTGTGGCCA




GGCCAATTTGGAGGATTGAACAACT




TACAATATTCTAGATTGTTTACTCG




CAATATCGGGGACCCATGCACTACT




GCACTTGCAGAGATTAAGAGATTAG




AGAGAGCTCAACTAATACCAGGGAA




GCTAATCAAGAACTTGCTTGCTAGG




AAGCCAAGCAATGGAACATGGGCGT




CTCTTTGTAATGATCCTTATTCACT




CAATATTGAAACAGCACCAAGCCCA




AATCTCATCCTCAAGAAACATACTC




AGAGAGTACTATTTGAATCCTGCAC




CAATCCCCTATTACAAGGGGTTTAT




AGTGAAGAAAATGATACGGAAGAAG




CAGAATTAGCAGAATTCTTGCTCAA




TCAAGAAGCTATACATCCGCGCGTG




GCACACGTTATAATGGAGGCCAGCG




CAGTCGGTAGAAAGAAGCAAATTCA




GGGACTAATCGATACAACTAACACC




ATCATAAAGATTGCACTTGGGCGGC




GTCCTCTTGGTGCAAGGAGGTTAAG




GAAGATAAACAGTTATTCTTCTATG




CACATGTTGATCTTCCTGGATGATA




TATTCCTACCTAACCATCCTCCATC




TCCCTTCGTCTCCTCAGTGATGTGT




TCTGTTGCCCTAGCGGATTACCTAC




GTCAGATTACCTGGTTGCCTCTGAC




AAATGGTAGGAAGATATTAGGTGTA




AATAATCCAGATACCCTTGAGTTAG




TATCAGGATCGATGCTGAATCTAAA




CGGATATTGTGACTTATGTAATAGT




GGAGATAACCAATTTACGTGGTTCC




ATCTCCCAGCAGATATAGAGCTAGC




GGACAGTTCATCATCCAACCCTCCA




ATGCGTATACCTTATGTGGGATCCA




AGACCCAGGAAAGGAGAAATGCATC




AATGGCCAAGATTAGCAACATGTCC




CCTCATATGAAGGCAGCATTGAGAT




TGGCGTCTGTGAAGGTAAGGGCTTA




CGGTGATAATGAGCATAATTGGCAA




GTTGCATGGCAGCTAGCAAATACTC




GATGTGCGATATCCCTTGAACATCT




AAAACTTCTAGCCCCTCTACCAACT




GCAGGGAACCTTCAGCATCGATTGG




ATGATAGCATAACCCAGATGACCTT




TACTCCCGCTTCTCTCTATCGGGTG




GCACCTTATATCCACATCTCCAATG




ACTCACAAAGAATGTTTTCTGATGA




GGGGGTTAAGGAGAGCAACATCATC




TATCAGCAGATAATGTTATTGGGTC




TATCAGCTATCGAATCATTGTTCCC




CTTGACCACTAATCATGTATATGAA




GAAGTGACACTACACCTTCATACTC




AATTCAGCTGCTGCCTGAGAGAGGC




GGCCCTTGCGGTCCCATTTGAGCTC




CAGGGCAAAGTACCTAGGATTCGTG




CTGCTGAGGGGAACCAATTCGTGTA




TGACTCATCCCCACTTTTGGAACCT




GAGGCTCTTCAACTCGATGTGGCTA




CTTTCAAGAACTATGAGTTGGACTT




AGACCATTATTCAACGATAGACTTG




ATGCATGTACTTGAGGTTACGTGTG




GAAAGCTAATAGGTCAGTCGGTGAT




TTCATACAATGAGGACACTTCTATA




AAGAATGATGCAATTATTGTATACG




ATAATACCCGGAATTGGATCAGTGA




GGCCCAAAATTGTGACCTGGTGAAG




TTATTTGAGTATGCTGCACTAGAAA




TCTTGCTGGACTGCGCATTCCAAAT




GTATTATCTAAGGGTTCGCGGATAC




AAGAACATCCTAATATACATGGCAG




ACCTAATTCGTAATATGCCCGGTAT




ATTGCTCTCTAATATTGCTGCCACA




ATCTCCCATCCCATTATCCATACTA




GACTATACAATGCAGGGTTGCTGGA




TCATGGGAGTGCGCACCAACTTGCA




AGCATTGATTTTATTGAATTATCAG




CTAATTTATTGGTAACATGTATAGC




TCGTGTATGTACTACACTTCTATCC




GGTGAAACCCTGATGCTTGCATTTC




CATCCGTTCTAGACGAGAATTTGAC




GGAGAAAATGTTTCTTCTAATCGCT




CGATACTGCTCTTTGTTAGCGTTGT




TGTACTCATCTAAGGTTCCTATACC




AAATATTAGGGGCCTGACTGCCGAA




GATAAGTGCCGGATGCTCACAAATC




ATCTCATGAACCTTCCATCTGAATT




TCGGCTGACCGAAAATCAGGTACGA




AATGTACTGCAACCAGCACTGACAA




CTTTCCCAGCAAACCTCTATTATAT




GTCAAGAAAGAGTCTTAATATCATC




AGAGAGAGGGAGATAAAGATGCTAT




TATTCAAATGTTGTTCCCTGCCGGG




GATGAAGCTACAAGCACGGTGGCAG




TTAATTTGGGATACGAAAGTAAATG




ACCCCATTGTTAAGTGGCGACGCAT




TGAATTCTTATGCGAGCTCGATCTC




TCTGGTCAGGCAAGGTTTGGAGTCA




TACTGGATGAATGCATCTCTGATGT




TGATAAAAACGGACAGGGCATCCTC




GACTTTGTCCCAATGACTCGATACC




TATTCAGGGGTGTAGGCCAGGCATC




CTCATCATGGTATAAAGCTGCCAAT




TTATTGTCACTTCCTGAAGTGCGCC




AGGCACGTTTCGGTAACTCATTGTA




CTTAGCAGAAGGTAGCGGTGCAATA




ATGAGTCTGTTAGAGCTCCACGTAC




CACATGAGAAGATTTACTACAATAC




TCTCTTTTATAACGAGATGAACCCC




CCGCAAAGACATTTCGGCCCAACGC




CAACTCAATTCCTTGCATCGGTCGT




TTACAAGAACCTTCAGGCAGGTATA




GTCTGCAAAGATGGGTATGTTCAGG




AGTTCTGCCCTTTATGGAGAGACGT




TGCCGATGAAAGTGATCTTGCTTCA




GATAGGTGTGTCTCATTCATTACAT




CAGAGGTGCCTGGAGGCACTGTATC




TCTACTCCATTGTGACATAGAAACA




ACCCTGGAACCAAGCTGGGCTTACT




TGGAGCAATTAGCCACTAATATCTC




TCTAATCGGGATGCACGTCCTGCGA




GAGAATGGAGTGTTCATCATCAAAG




TACTATACACCCAGAGTTTCTTTTT




TCATCTATTGCTGGCAATCTTAGCT




CCTTGTAGTAAAAGGATACGGATCA




TATCCAATGGATACTCAGTACGGGG




AGATTTTGAGTGCTACCTAGTCGCG




ACAATCAGTTATACAGGGGGGCATG




TCTTCATGCAAGAGGTGATCCGCTC




TGCCAAGGCGTTAGTTAGAGGGGGC




GGTAGTATCATGACAAAACAAGATG




AACAACAATTGAATCTTGCTTTCCA




GAGGCAGCTCAACAGGATTCGTGGG




ATACTGGGACAGAGGATATCGATAA




TGATACGCTACTTGCAGCATACTAT




TGATATGGCATTGATTGAAGCGGGA




GGCCAACCTGTAAGACCGAGCAATG




TTGGAATCAACAAGGCACTCGACTT




AGGAGATGAGACATATGAGGAAATC




ATGATACAGCATATTGACACAACAC




TTAAGACAGCAATCTTCCTAGAACA




AGAAGAAGAACTGGCAGACACAGTC




TTTGTGTTAACACCTTATAACCTAA




CGGCAAGAGGAAAATGTAATACAGT




ACTTATTGCATGCACTAAACATCTA




TTTGAAACAACTATATTACAGACTA




CACGAGACGACATGGATAAGATAGA




GAAATTGTTGTCCCTTATCTTACAA




GGTCATATCTCGCTTCAGGATCTCC




TGCCACTCAAGTCATATCTTAAACG




TAGCAATTGTCCCAAGTACCTCCTC




GATTCACTAGGACGTATCAGGCTAA




AAGAGGTATTTGAACACTCATCCCG




CATGGTACTAACCAGACCGATGCAA




AAGATGTATCTCAAATGTCTCGGAA




ATGCTATTAAGGGATACCTTGCAGT




GGATGCATCTCATTGCAATTGAATC




ATGACGCAATCTCTTTTATACATCA




TACTCGTAATCAATCATAGTTACCA




TCATTTTTAAGAAAAACAGTAACGA




TTTATGGTGTCACGTATGTTGCCAA




ATCTTTGTTTGGT






Newcastle
ACCAAACAGAGAATCCGTGAGTTAC
SEQ ID


disease
GATAAAAGGCGAAAGAGCAATTGAA
NO: 13


virus
GTCACACGGGTAGAAGGTGTGAATC



strain
TCGAGTGCGAGCCCGAAGCACAAAC



LaSota,
TCGAGAAAGCCTTCTGCCAACATGT



complete
CCTCCGTATTTGATGAGTACGAACA



genome
GCTCCTCGCGGCTCAGACTCGCCCC



with
AACGGAGCTCATGGAGGGGGAGAAA



modification
AAGGGAGTACCTTAAAAGTAGACGT



in 5408-
CCCGGTATTCACTCTTAACAGTGAT



5409-5410
GACCCAGAAGATAGATGGAGCTTTG



nucleotides
TGGTATTCTGCCTCCGGATTGCTGT



resulting in
TAGCGAAGATGCCAACAAACCACTC



L289A
AGGCAAGGTGCTCTCATATCTCTTT



substitution
TATGCTCCCACTCACAGGTAATGAG




GAACCATGTTGCCCTTGCAGGGAAA




CAGAATGAAGCCACATTGGCCGTGC




TTGAGATTGATGGCTTTGCCAACGG




CACGCCCCAGTTCAATAATAGGAGT




GGAGTGTCTGAAGAGAGAGCACAGA




GATTTGCGATGATAGCAGGATCTCT




CCCTCGGGCATGCAGCAACGGAACC




CCGTTCGTCACAGCCGGGGCCGAAG




ATGATGCACCAGAAGACATCACCGA




TACCCTGGAGAGGATCCTCTCTATC




CAGGCTCAAGTATGGGTCACAGTAG




CAAAAGCCATTACTGCGTATGAGAC




TGCAGATGAGTCGGAAACAAGGCGA




ATCAATAAGTATATGCAGCAAGGCA




GGGTCCAAAAGAAATACATCCTCTA




CCCCGTATGCAGGAGCACAATCCAA




CTCACGATCAGACAGTCTCTTGCAG




TCCGCATCTTTTTGGTTAGCGAGCT




CAAGAGAGGCCGCAACACGGCAGGT




GGTACCTCTACTTATTATAACCTGG




TAGGGGACGTAGACTCATACATCAG




GAATACCGGGCTTACTGCATTCTTC




TTGACACTCAAGTACGGAATCAACA




CCAAGACATCAGCCCTTGCACTTAG




TAGCCTCTCAGGCGACATCCAGAAG




ATGAAGCAGCTCATGCGTTTGTATC




GGATGAAAGGAGATAATGCGCCGTA




CATGACATTACTTGGTGATAGTGAC




CAGATGAGCTTTGCGCCTGCCGAGT




ATGCACAACTTTACTCCTTTGCCAT




GGGTATGGCATCAGTCCTAGATAAA




GGTACTGGGAAATACCAATTTGCCA




GGGACTTTATGAGCACATCATTCTG




GAGACTTGGAGTAGAGTACGCTCAG




GCTCAGGGAAGTAGCATTAACGAGG




ATATGGCTGCCGAGCTAAAGCTAAC




CCCAGCAGCAAGGAGGGGCCTGGCA




GCTGCTGCCCAACGGGTCTCCGAGG




AGACCAGCAGCATAGACATGCCTAC




TCAACAAGTCGGAGTCCTCACTGGG




CTTAGCGAGGGGGGGTCCCAAGCTC




TACAAGGCGGATCGAATAGATCGCA




AGGGCAACCAGAAGCCGGGGATGGG




GAGACCCAATTCCTGGATCGGATGA




GAGCGGTAGCAAATAGCATGAGGGA




GGCGCCAAACTCTGCACAGGGCACT




CCCCAATCGGGGCCTCCCCCAACTC




CTGGGCCATCCCAAGATAACGACAC




CGACTGGGGGTATTGATGGACAAAA




CCCAGCCTGCTTCCACAAAAACATC




CCAATGCCCTCACCCGTAGTCGACC




CCTCGATTTGCGGCTCTATATGACC




ACACCCTCAAACAAACATCCCCCTC




TTTCCTCCCTCCCCCTGCTGTACAA




CTCCGCACGCCCTAGATACCACAGG




CACAATGCGGCTCACTAACAATCAA




AACAGAGCCGAGGGAATTAGAAAAA




AGTACGGGTAGAAGAGGGATATTCA




GAGATCAGGGCAAGTCTCCCGAGTC




TCTGCTCTCTCCTCTACCTGATAGA




CCAGGACAAACATGGCCACCTTTAC




AGATGCAGAGATCGACGAGCTATTT




GAGACAAGTGGAACTGTCATTGACA




ACATAATTACAGCCCAGGGTAAACC




AGCAGAGACTGTTGGAAGGAGTGCA




ATCCCACAAGGCAAGACCAAGGTGC




TGAGCGCAGCATGGGAGAAGCATGG




GAGCATCCAGCCACCGGCCAGTCAA




GACAACCCCGATCGACAGGACAGAT




CTGACAAACAACCATCCACACCCGA




GCAAACGACCCCGCATGACAGCCCG




CCGGCCACATCCGCCGACCAGCCCC




CCACCCAGGCCACAGACGAAGCCGT




CGACACACAGCTCAGGACCGGAGCA




AGCAACTCTCTGCTGTTGATGCTTG




ACAAGCTCAGCAATAAATCGTCCAA




TGCTAAAAAGGGCCCATGGTCGAGC




CCCCAAGAGGGGAATCACCAACGTC




CGACTCAACAGCAGGGGAGTCAACC




CAGTCGCGGAAACAGTCAGGAAAGA




CCGCAGAACCAAGTCAAGGCCGCCC




CTGGAAACCAGGGCACAGACGTGAA




CACAGCATATCATGGACAATGGGAG




GAGTCACAACTATCAGCTGGTGCAA




CCCCTCATGCTCTCCGATCAAGGCA




GAGCCAAGACAATACCCTTGTATCT




GCGGATCATGTCCAGCCACCTGTAG




ACTTTGTGCAAGCGATGATGTCTAT




GATGGAGGCGATATCACAGAGAGTA




AGTAAGGTCGACTATCAGCTAGATC




TTGTCTTGAAACAGACATCCTCCAT




CCCTATGATGCGGTCCGAAATCCAA




CAGCTGAAAACATCTGTTGCAGTCA




TGGAAGCCAACTTGGGAATGATGAA




GATTCTGGATCCCGGTTGTGCCAAC




ATTTCATCTCTGAGTGATCTACGGG




CAGTTGCCCGATCTCACCCGGTTTT




AGTTTCAGGCCCTGGAGACCCCTCT




CCCTATGTGACACAAGGAGGCGAAA




TGGCACTTAATAAACTTTCGCAACC




AGTGCCACATCCATCTGAATTGATT




AAACCCGCCACTGCATGCGGGCCTG




ATATAGGAGTGGAAAAGGACACTGT




CCGTGCATTGATCATGTCACGCCCA




ATGCACCCGAGTTCTTCAGCCAAGC




TCCTAAGCAAGTTAGATGCAGCCGG




GTCGATCGAGGAAATCAGGAAAATC




AAGCGCCTTGCTCTAAATGGCTAAT




TACTACTGCCACACGTAGCGGGTCC




CTGTCCACTCGGCATCACACGGAAT




CTGCACCGAGTTCCCCCCCGCAGAC




CCAAGGTCCAACTCTCCAAGCGGCA




ATCCTCTCTCGCTTCCTCAGCCCCA




CTGAATGATCGCGTAACCGTAATTA




ATCTAGCTACATTTAAGATTAAGAA




AAAATACGGGTAGAATTGGAGTGCC




CCAATTGTGCCAAGATGGACTCATC




TAGGACAATTGGGCTGTACTTTGAT




TCTGCCCATTCTTCTAGCAACCTGT




TAGCATTTCCGATCGTCCTACAAGA




CACAGGAGATGGGAAGAAGCAAATC




GCCCCGCAATATAGGATCCAGCGCC




TTGACTTGTGGACTGATAGTAAGGA




GGACTCAGTATTCATCACCACCTAT




GGATTCATCTTTCAAGTTGGGAATG




AAGAAGCCACTGTCGGCATGATCGA




TGATAAACCCAAGCGCGAGTTACTT




TCCGCTGCGATGCTCTGCCTAGGAA




GCGTCCCAAATACCGGAGACCTTAT




TGAGCTGGCAAGGGCCTGTCTCACT




ATGATAGTCACATGCAAGAAGAGTG




CAACTAATACTGAGAGAATGGTTTT




CTCAGTAGTGCAGGCACCCCAAGTG




CTGCAAAGCTGTAGGGTTGTGGCAA




ACAAATACTCATCAGTGAATGCAGT




CAAGCACGTGAAAGCGCCAGAGAAG




ATTCCCGGGAGTGGAACCCTAGAAT




ACAAGGTGAACTTTGTCTCCTTGAC




TGTGGTACCGAAGAAGGATGTCTAC




AAGATCCCTGCTGCAGTATTGAAGG




TTTCTGGCTCGAGTCTGTACAATCT




TGCGCTCAATGTCACTATTAATGTG




GAGGTAGACCCGAGGAGTCCTTTGG




TTAAATCTCTGTCTAAGTCTGACAG




CGGATACTATGCTAACCTCTTCTTG




CATATTGGACTTATGACCACCGTAG




ATAGGAAGGGGAAGAAAGTGACATT




TGACAAGCTGGAAAAGAAAATAAGG




AGCCTTGATCTATCTGTCGGGCTCA




GTGATGTGCTCGGGCCTTCCGTGTT




GGTAAAAGCAAGAGGTGCACGGACT




AAGCTTTTGGCACCTTTCTTCTCTA




GCAGTGGGACAGCCTGCTATCCCAT




AGCAAATGCTTCTCCTCAGGTGGCC




AAGATACTCTGGAGTCAAACCGCGT




GCCTGCGGAGCGTTAAAATCATTAT




CCAAGCAGGTACCCAACGCGCTGTC




GCAGTGACCGCCGACCACGAGGTTA




CCTCTACTAAGCTGGAGAAGGGGCA




CACCCTTGCCAAATACAATCCTTTT




AAGAAATAAGCTGCGTCTCTGAGAT




TGCGCTCCGCCCACTCACCCAGATC




ATCATGACACAAAAAACTAATCTGT




CTTGATTATTTACAGTTAGTTTACC




TGTCTATCAAGTTAGAAAAAACACG




GGTAGAAGATTCTGGATCCCGGTTG




GCGCCCTCCAGGTGCAAGATGGGCT




CCAGACCTTCTACCAAGAACCCAGC




ACCTATGATGCTGACTATCCGGGTT




GCGCTGGTACTGAGTTGCATCTGTC




CGGCAAACTCCATTGATGGCAGGCC




TCTTGCAGCTGCAGGAATTGTGGTT




ACAGGAGACAAAGCCGTCAACATAT




ACACCTCATCCCAGACAGGATCAAT




CATAGTTAAGCTCCTCCCGAATCTG




CCCAAGGATAAGGAGGCATGTGCGA




AAGCCCCCTTGGATGCATACAACAG




GACATTGACCACTTTGCTCACCCCC




CTTGGTGACTCTATCCGTAGGATAC




AAGAGTCTGTGACTACATCTGGAGG




GGGGAGACAGGGGCGCCTTATAGGT




GCCATTATTGGCGGTGTGGCTCTTG




GGGTTGCAACTGCCGCACAAATAAC




AGCGGCCGCAGCTCTGATACAAGCC




AAACAAAATGCTGCCAACATCCTCC




GACTTAAAGAGAGCATTGCCGCAAC




CAATGAGGCTGTGCATGAGGTCACT




GACGGATTATCGCAACTAGCAGTGG




CAGTTGGGAAGATGCAGCAGTTTGT




TAATGACCAATTTAATAAAACAGCT




CAGGAATTAGACTGCATCAAAATTG




CACAGCAAGTTGGTGTAGAGCTCAA




CCTGTACCTAACCGAATTGACTACA




GTATTCGGACCACAAATCACTTCAC




CCGCTTTAAACAAGCTGACTATTCA




GGCACTTTACAATCTAGCTGGTGGA




AATATGGATTACTTATTGACTAAGT




TAGGTGTAGGGAACAATCAACTCAG




CTCATTAATCGGTAGCGGCTTAATC




ACCGGTAACCCTATTCTATACGACT




CACAGACTCAACTCTTGGGTATACA




GGTAACTGCCCCTTCAGTCGGGAAC




CTAAATAATATGCGTGCCACCTACT




TGGAAACCTTATCCGTAAGCACAAC




CAGGGGATTTGCCTCGGCACTTGTC




CCAAAAGTGGTGACACAGGTCGGTT




CTGTGATAGAAGAACTTGACACCTC




ATACTGTATAGAAACTGACTTAGAT




TTATATTGTACAAGAATAGTAACGT




TCCCTATGTCCCCTGGTATTTATTC




CTGCTTGAGCGGCAATACGTCGGCC




TGTATGTACTCAAAGACCGAAGGCG




CACTTACTACACCATACATGACTAT




CAAAGGTTCAGTCATCGCCAACTGC




AAGATGACAACATGTAGATGTGTAA




ACCCCCCGGGTATCATATCGCAAAA




CTATGGAGAAGCCGTGTCTCTAATA




GATAAACAATCATGCAATGTTTTAT




CCTTAGGCGGGATAACTTTAAGGCT




CAGTGGGGAATTCGATGTAACTTAT




CAGAAGAATATCTCAATACAAGATT




CTCAAGTAATAATAACAGGCAATCT




TGATATCTCAACTGAGCTTGGGAAT




GTCAACAACTCGATCAGTAATGCTT




TGAATAAGTTAGAGGAAAGCAACAG




AAAACTAGACAAAGTCAATGTCAAA




CTGACTAGCACATCTGCCCTCATTA




CCTATATCGTTTTGACTATCATATC




TCTTGTTTTTGGTATACTTAGCCTG




ATTCTAGCATGCTACCTAATGTACA




AGCAAAAGGCGCAACAAAAGACCTT




ATTATGGCTTGGGAATAATACTCTA




GATCAGATGAGAGCCACTACAAAAA




TGTGAACACAGATGAGGAACGAAGG




TTTCCCTAATAGTAATTTGTGTGAA




AGTTCTGGTAGTCTGTCAGTTCAGA




GAGTTAAGAAAAAACTACCGGTTGT




AGATGACCAAAGGACGATATACGGG




TAGAACGGTAAGAGAGGCCGCCCCT




CAATTGCGAGCCAGGCTTCACAACC




TCCGTTCTACCGCTTCACCGACAAC




AGTCCTCAATCATGGACCGCGCCGT




TAGCCAAGTTGCGTTAGAGAATGAT




GAAAGAGAGGCAAAAAATACATGGC




GCTTGATATTCCGGATTGCAATCTT




ATTCTTAACAGTAGTGACCTTGGCT




ATATCTGTAGCCTCCCTTTTATATA




GCATGGGGGCTAGCACACCTAGCGA




TCTTGTAGGCATACCGACTAGGATT




TCCAGGGCAGAAGAAAAGATTACAT




CTACACTTGGTTCCAATCAAGATGT




AGTAGATAGGATATATAAGCAAGTG




GCCCTTGAGTCTCCGTTGGCATTGT




TAAAAACTGAGACCACAATTATGAA




CGCAATAACATCTCTCTCTTATCAG




ATTAATGGAGCTGCAAACAACAGTG




GGTGGGGGGCACCTATCCATGACCC




AGATTATATAGGGGGGATAGGCAAA




GAACTCATTGTAGATGATGCTAGTG




ATGTCACATCATTCTATCCCTCTGC




ATTTCAAGAACATCTGAATTTTATC




CCGGCGCCTACTACAGGATCAGGTT




GCACTCGAATACCCTCATTTGACAT




GAGTGCTACCCATTACTGCTACACC




CATAATGTAATATTGTCTGGATGCA




GAGATCACTCACATTCATATCAGTA




TTTAGCACTTGGTGTGCTCCGGACA




TCTGCAACAGGGAGGGTATTCTTTT




CTACTCTGCGTTCCATCAACCTGGA




CGACACCCAAAATCGGAAGTCTTGC




AGTGTGAGTGCAACTCCCCTGGGTT




GTGATATGCTGTGCTCGAAAGTCAC




GGAGACAGAGGAAGAAGATTATAAC




TCAGCTGTCCCTACGCGGATGGTAC




ATGGGAGGTTAGGGTTCGACGGCCA




GTACCACGAAAAGGACCTAGATGTC




ACAACATTATTCGGGGACTGGGTGG




CCAACTACCCAGGAGTAGGGGGTGG




ATCTTTTATTGACAGCCGCGTATGG




TTCTCAGTCTACGGAGGGTTAAAAC




CCAATTCACCCAGTGACACTGTACA




GGAAGGGAAATATGTGATATACAAG




CGATACAATGACACATGCCCAGATG




AGCAAGACTACCAGATTCGAATGGC




CAAGTCTTCGTATAAGCCTGGACGG




TTTGGTGGGAAACGCATACAGCAGG




CTATCTTATCTATCAAGGTGTCAAC




ATCCTTAGGCGAAGACCCGGTACTG




ACTGTACCGCCCAACACAGTCACAC




TCATGGGGGCCGAAGGCAGAATTCT




CACAGTAGGGACATCTCATTTCTTG




TATCAACGAGGGTCATCATACTTCT




CTCCCGCGTTATTATATCCTATGAC




AGTCAGCAACAAAACAGCCACTCTT




CATAGTCCTTATACATTCAATGCCT




TCACTCGGCCAGGTAGTATCCCTTG




CCAGGCTTCAGCAAGATGCCCCAAC




CCGTGTGTTACTGGAGTCTATACAG




ATCCATATCCCCTAATCTTCTATAG




AAACCACACCTTGCGAGGGGTATTC




GGGACAATGCTTGATGGTGTACAAG




CAAGACTTAACCCTGCGTCTGCAGT




ATTCGATAGCACATCCCGCAGTCGC




ATTACTCGAGTGAGTTCAAGCAGTA




CCAAAGCAGCATACACAACATCAAC




TTGTTTTAAAGTGGTCAAGACTAAT




AAGACCTATTGTCTCAGCATTGCTG




AAATATCTAATACTCTCTTCGGAGA




ATTCAGAATCGTCCCGTTACTAGTT




GAGATCCTCAAAGATGACGGGGTTA




GAGAAGCCAGGTCTGGCTAGTTGAG




TCAATTATAAAGGAGTTGGAAAGAT




GGCATTGTATCACCTATCTTCCACG




ACATCAAGAATCAAACCGAATGCCG




GCGCGTGCTCGAATTCCATGTTGCC




AGTTGACCACAATCAGCCAGTGCTC




ATGCGATCAGATTAAGCCTTGTCAA




TAGTCTCTTGATTAAGAAAAAATGT




AAGTGGCAATGAGATACAAGGCAAA




ACAGCTCATGGTAAATAATACGGGT




AGGACATGGCGAGCTCCGGTCCTGA




AAGGGCAGAGCATCAGATTATCCTA




CCAGAGTCACACCTGTCTTCACCAT




TGGTCAAGCACAAACTACTCTATTA




CTGGAAATTAACTGGGCTACCGCTT




CCTGATGAATGTGACTTCGACCACC




TCATTCTCAGTCGACAATGGAAAAA




AATACTTGAATCGGCCTCTCCTGAT




ACTGAGAGAATGATAAAACTCGGAA




GGGCAGTACACCAAACTCTTAACCA




CAATTCCAGAATAACCGGAGTGCTC




CACCCCAGGTGTTTAGAAGAACTGG




CTAATATTGAGGTCCCAGATTCAAC




CAACAAATTTCGGAAGATTGAGAAG




AAGATCCAAATTCACAACACGAGAT




ATGGAGAACTGTTCACAAGGCTGTG




TACGCATATAGAGAAGAAACTGCTG




GGGTCATCTTGGTCTAACAATGTCC




CCCGGTCAGAGGAGTTCAGCAGCAT




TCGTACGGATCCGGCATTCTGGTTT




CACTCAAAATGGTCCACAGCCAAGT




TTGCATGGCTCCATATAAAACAGAT




CCAGAGGCATCTGATGGTGGCAGCT




AGGACAAGGTCTGCGGCCAACAAAT




TGGTGATGCTAACCCATAAGGTAGG




CCAAGTCTTTGTCACTCCTGAACTT




GTCGTTGTGACGCATACGAATGAGA




ACAAGTTCACATGTCTTACCCAGGA




ACTTGTATTGATGTATGCAGATATG




ATGGAGGGCAGAGATATGGTCAACA




TAATATCAACCACGGCGGTGCATCT




CAGAAGCTTATCAGAGAAAATTGAT




GACATTTTGCGGTTAATAGACGCTC




TGGCAAAAGACTTGGGTAATCAAGT




CTACGATGTTGTATCACTAATGGAG




GGATTTGCATACGGAGCTGTCCAGC




TACTCGAGCCGTCAGGTACATTTGC




AGGAGATTTCTTCGCATTCAACCTG




CAGGAGCTTAAAGACATTCTAATTG




GCCTCCTCCCCAATGATATAGCAGA




ATCCGTGACTCATGCAATCGCTACT




GTATTCTCTGGTTTAGAACAGAATC




AAGCAGCTGAGATGTTGTGTCTGTT




GCGTCTGTGGGGTCACCCACTGCTT




GAGTCCCGTATTGCAGCAAAGGCAG




TCAGGAGCCAAATGTGCGCACCGAA




AATGGTAGACTTTGATATGATCCTT




CAGGTACTGTCTTTCTTCAAGGGAA




CAATCATCAACGGGTACAGAAAGAA




GAATGCAGGTGTGTGGCCGCGAGTC




AAAGTGGATACAATATATGGGAAGG




TCATTGGGCAACTACATGCAGATTC




AGCAGAGATTTCACACGATATCATG




TTGAGAGAGTATAAGAGTTTATCTG




CACTTGAATTTGAGCCATGTATAGA




ATATGACCCTGTCACCAACCTGAGC




ATGTTCCTAAAAGACAAGGCAATCG




CACACCCCAACGATAATTGGCTTGC




CTCGTTTAGGCGGAACCTTCTCTCC




GAAGACCAGAAGAAACATGTAAAAG




AAGCAACTTCGACTAATCGCCTCTT




GATAGAGTTTTTAGAGTCAAATGAT




TTTGATCCATATAAAGAGATGGAAT




ATCTGACGACCCTTGAGTACCTTAG




AGATGACAATGTGGCAGTATCATAC




TCGCTCAAGGAGAAGGAAGTGAAAG




TTAATGGACGGATCTTCGCTAAGCT




GACAAAGAAGTTAAGGAACTGTCAG




GTGATGGCGGAAGGGATCCTAGCCG




ATCAGATTGCACCTTTCTTTCAGGG




AAATGGAGTCATTCAGGATAGCATA




TCCTTGACCAAGAGTATGCTAGCGA




TGAGTCAACTGTCTTTTAACAGCAA




TAAGAAACGTATCACTGACTGTAAA




GAAAGAGTATCTTCAAACCGCAATC




ATGATCCGAAAAGCAAGAACCGTCG




GAGAGTTGCAACCTTCATAACAACT




GACCTGCAAAAGTACTGTCTTAATT




GGAGATATCAGACAATCAAATTGTT




CGCTCATGCCATCAATCAGTTGATG




GGCCTACCTCACTTCTTCGAATGGA




TTCACCTAAGACTGATGGACACTAC




GATGTTCGTAGGAGACCCTTTCAAT




CCTCCAAGTGACCCTACTGACTGTG




ACCTCTCAAGAGTCCCTAATGATGA




CATATATATTGTCAGTGCCAGAGGG




GGTATCGAAGGATTATGCCAGAAGC




TATGGACAATGATCTCAATTGCTGC




AATCCAACTTGCTGCAGCTAGATCG




CATTGTCGTGTTGCCTGTATGGTAC




AGGGTGATAATCAAGTAATAGCAGT




AACGAGAGAGGTAAGATCAGACGAC




TCTCCGGAGATGGTGTTGACACAGT




TGCATCAAGCCAGTGATAATTTCTT




CAAGGAATTAATTCATGTCAATCAT




TTGATTGGCCATAATTTGAAGGATC




GTGAAACCATCAGGTCAGACACATT




CTTCATATACAGCAAACGAATCTTC




AAAGATGGAGCAATCCTCAGTCAAG




TCCTCAAAAATTCATCTAAATTAGT




GCTAGTGTCAGGTGATCTCAGTGAA




AACACCGTAATGTCCTGTGCCAACA




TTGCCTCTACTGTAGCACGGCTATG




CGAGAACGGGCTTCCCAAAGACTTC




TGTTACTATTTAAACTATATAATGA




GTTGTGTGCAGACATACTTTGACTC




TGAGTTCTCCATCACCAACAATTCG




CACCCCGATCTTAATCAGTCGTGGA




TTGAAGACATCTCTTTTGTGCACTC




ATATGTTCTGACTCCTGCCCAATTA




GGGGGACTGAGTAACCTTCAATACT




CAAGGCTCTACACTAGAAATATCGG




TGACCCGGGGACTACTGCTTTTGCA




GAGATCAAGCGACTAGAAGCAGTGG




GATTACTGAGTCCTAACATTATGAC




TAATATCTTAACTAGGCCGCCTGGG




AATGGAGATTGGGCCAGTCTGTGCA




ACGACCCATACTCTTTCAATTTTGA




GACTGTTGCAAGCCCAAATATTGTT




CTTAAGAAACATACGCAAAGAGTCC




TATTTGAAACTTGTTCAAATCCCTT




ATTGTCTGGAGTGCACACAGAGGAT




AATGAGGCAGAAGAGAAGGCATTGG




CTGAATTCTTGCTTAATCAAGAGGT




GATTCATCCCCGCGTTGCGCATGCC




ATCATGGAGGCAAGCTCTGTAGGTA




GGAGAAAGCAAATTCAAGGGCTTGT




TGACACAACAAACACCGTAATTAAG




ATTGCGCTTACTAGGAGGCCATTAG




GCATCAAGAGGCTGATGCGGATAGT




CAATTATTCTAGCATGCATGCAATG




CTGTTTAGAGACGATGTTTTTTCCT




CCAGTAGATCCAACCACCCCTTAGT




CTCTTCTAATATGTGTTCTCTGACA




CTGGCAGACTATGCACGGAATAGAA




GCTGGTCACCTTTGACGGGAGGCAG




GAAAATACTGGGTGTATCTAATCCT




GATACGATAGAACTCGTAGAGGGTG




AGATTCTTAGTGTAAGCGGAGGGTG




TACAAGATGTGACAGCGGAGATGAA




CAATTTACTTGGTTCCATCTTCCAA




GCAATATAGAATTGACCGATGACAC




CAGCAAGAATCCTCCGATGAGGGTA




CCATATCTCGGGTCAAAGACACAGG




AGAGGAGAGCTGCCTCACTTGCAAA




AATAGCTCATATGTCGCCACATGTA




AAGGCTGCCCTAAGGGCATCATCCG




TGTTGATCTGGGCTTATGGGGATAA




TGAAGTAAATTGGACTGCTGCTCTT




ACGATTGCAAAATCTCGGTGTAATG




TAAACTTAGAGTATCTTCGGTTACT




GTCCCCTTTACCCACGGCTGGGAAT




CTTCAACATAGACTAGATGATGGTA




TAACTCAGATGACATTCACCCCTGC




ATCTCTCTACAGGGTGTCACCTTAC




ATTCACATATCCAATGATTCTCAAA




GGCTGTTCACTGAAGAAGGAGTCAA




AGAGGGGAATGTGGTTTACCAACAG




ATCATGCTCTTGGGTTTATCTCTAA




TCGAATCGATCTTTCCAATGACAAC




AACCAGGACATATGATGAGATCACA




CTGCACCTACATAGTAAATTTAGTT




GCTGTATCAGAGAAGCACCTGTTGC




GGTTCCTTTCGAGCTACTTGGGGTG




GTACCGGAACTGAGGACAGTGACCT




CAAATAAGTTTATGTATGATCCTAG




CCCTGTATCGGAGGGAGACTTTGCG




AGACTTGACTTAGCTATCTTCAAGA




GTTATGAGCTCAATCTGGAGTCATA




TCCCACGATAGAGCTAATGAACATT




CTTTCAATATCCAGCGGGAAGTTGA




TTGGCCAGTCTGTGGTTTCTTATGA




TGAAGATACCTCCATAAAGAATGAC




GCCATAATAGTGTATGACAATACCC




GAAATTGGATCAGTGAAGCTCAGAA




TTCAGATGTGGTCCGCCTATTTGAA




TATGCAGCACTTGAAGTGCTCCTCG




ACTGTTCTTACCAACTCTATTACCT




GAGAGTAAGAGGCCTAGACAATATT




GTCTTATATATGGGTGATTTATACA




AGAATATGCCAGGAATTCTACTTTC




CAACATTGCAGCTACAATATCTCAT




CCCGTCATTCATTCAAGGTTACATG




CAGTGGGCCTGGTCAACCATGACGG




ATCACACCAACTTGCAGATACGGAT




TTTATCGAAATGTCTGCAAAACTAT




TAGTATCTTGCACCCGACGTGTGAT




CTCCGGCTTATATTCAGGAAATAAG




TATGATCTGCTGTTCCCATCTGTCT




TAGATGATAACCTGAATGAGAAGAT




GCTTCAGCTGATATCCCGGTTATGC




TGTCTGTACACGGTACTCTTTGCTA




CAACAAGAGAAATCCCGAAAATAAG




AGGCTTAACTGCAGAAGAGAAATGT




TCAATACTCACTGAGTATTTACTGT




CGGATGCTGTGAAACCATTACTTAG




CCCCGATCAAGTGAGCTCTATCATG




TCTCCTAACATAATTACATTCCCAG




CTAATCTGTACTACATGTCTCGGAA




GAGCCTCAATTTGATCAGGGAAAGG




GAGGACAGGGATACTATCCTGGCGT




TGTTGTTCCCCCAAGAGCCATTATT




AGAGTTCCCTTCTGTGCAAGATATT




GGTGCTCGAGTGAAAGATCCATTCA




CCCGACAACCTGCGGCATTTTTGCA




AGAGTTAGATTTGAGTGCTCCAGCA




AGGTATGACGCATTCACACTTAGTC




AGATTCATCCTGAACTCACATCTCC




AAATCCGGAGGAAGACCACTTAGTA




CGATACTTGTTCAGAGGGATAGGGA




CTGCATCTTCCTCTTGGTATAAGGC




ATCTCATCTCCTTTCTGTACCCGAG




GTAAGATGTGCAAGACACGGGAACT




CCTTATACTTAGCTGAAGGGAGCGG




AGCCATCATGAGTCTTCTCGAACTG




CATGTACCACATGAAACTATCTATT




ACAATACGCTCTTTTCAAATGAGAT




GAACCCCCCGCAACGACATTTCGGG




CCGACCCCAACTCAGTTTTTGAATT




CGGTTGTTTATAGGAATCTACAGGC




GGAGGTAACATGCAAAGATGGATTT




GTCCAAGAGTTCCGTCCATTATGGA




GAGAAAATACAGAGGAAAGTGACCT




GACCTCAGATAAAGCAGTGGGGTAT




ATTACATCTGCAGTGCCCTACAGAT




CTGTATCATTGCTGCATTGTGACAT




TGAAATTCCTCCAGGGTCCAATCAA




AGCTTACTAGATCAACTAGCTATCA




ATTTATCTCTGATTGCCATGCATTC




TGTAAGGGAGGGCGGGGTAGTAATC




ATCAAAGTGTTGTATGCAATGGGAT




ACTACTTTCATCTACTCATGAACTT




GTTTGCTCCGTGTTCCACAAAAGGA




TATATTCTCTCTAATGGTTATGCAT




GTCGAGGAGATATGGAGTGTTACCT




GGTATTTGTCATGGGTTACCTGGGC




GGGCCTACATTTGTACATGAGGTGG




TGAGGATGGCAAAAACTCTGGTGCA




GCGGCACGGTACGCTTTTGTCTAAA




TCAGATGAGATCACACTGACCAGGT




TATTCACCTCACAGCGGCAGCGTGT




GACAGACATCCTATCCAGTCCTTTA




CCAAGATTAATAAAGTACTTGAGGA




AGAAATTGACACTGCGCTGATTGAA




GCCGGGGGACAGCCCGTCCGTCCAT




TCTGTGCGGAGAGTCTGGTGAGCAC




GCTAGCGAACATAACTCAGATAACC




CAGATCATCGCTAGCCACATTGACA




CAGTTATCCGGTCTGTGATATATAT




GGAAGCTGAGGGTGATCTCGCTGAC




ACAGTATTTCTATTTACCCCTTACA




ATCTCTCTACTGACGGGAAAAAGAG




GACATCACTTAAACAGTGCACGAGA




CAGATCCTAGAGGTTACAATACTAG




GTCTTAGAGTCGAAAATCTCAATAA




AATAGGCGATATAATCAGCCTAGTG




CTTAAAGGCATGATCTCCATGGAGG




ACCTTATCCCACTAAGGACATACTT




GAAGCATAGTACCTGCCCTAAATAT




TTGAAGGCTGTCCTAGGTATTACCA




AACTCAAAGAAATGTTTACAGACAC




TTCTGTACTGTACTTGACTCGTGCT




CAACAAAAATTCTACATGAAAACTA




TAGGCAATGCAGTCAAAGGATATTA




CAGTAACTGTGACTCTTAACGAAAA




TCACATATTAATAGGCTCCTTTTTT




GGCCAATTGTATTCTTGTTGATTTA




ATCATATTATGTTAGAAAAAAGTTG




AACCCTGACTCCTTAGGACTCGAAT




TCGAACTCAAATAAATGTCTTAAAA




AAAGGTTGCGCACAATTATTCTTGA




GTGTAGTCTCGTCATTCACCAAATC




TTTGTTTGGT






APMV-
ACGAAAAAGAAGAATAAAAGGCAGA
SEQ ID


4_hIL12_ 
AGCCTTTTAAAAGGAACCCTGGGCT
NO: 14


SCC_AGS
GTCGTAGGTGTGGGAAGGTTGTATT




CCGAGTGCGCCTCCGAGGCATCTAC




TCTACACCTATCACAATGGCTGGTG




TCTTCTCCCAGTATGAGAGGTTTGT




GGACAATCAATCCCAAGTGTCAAGG




AAGGATCATCGGTCCTTAGCAGGAG




GATGCCTTAAAGTTAACATCCCTAT




GCTTGTCACTGCATCTGAAGACCCC




ACCACTCGTTGGCAACTAGCATGCT




TATCTCTAAGGCTCCTGATCTCCAA




CTCATCAACCAGTGCTATCCGTCAG




GGGGCAATACTGACTCTCATGTCAT




TACCATCACAAAACATGAGAGCAAC




AGCAGCTATTGCTGGTTCCACAAAT




GCAGCTGTTATCAACACCATGGAAG




TCTTAAGTGTCAACGACTGGACCCC




ATCCTTCGACCCTAGGAGCGGTCTT




TCTGAGGAAGATGCTCAAGTTTTCA




GAGACATGGCAAGAGATCTGCCCCC




TCAGTTCACCTCTGGATCACCCTTC




ACATCAGCATTGGCGGAGGGGTTCA




CTCCTGAAGATACTCATGACCTGAT




GGAGGCCTTGACCAGTGTGCTGATA




CAGATCTGGATCCTGGTGGCTAAGG




CCATGACCAACATTGACGGCTCTGG




GGAGGCCAATGAAAGACGTCTTGCA




AAGTACATCCAAAAAGGACAGCTTA




ATCGTCAGTTTGCAATTGGTAATCC




TGCCCGTCTGATAATCCAACAGACA




ATCAAAAGCTCCTTAACTGTCCGTA




GGTTCTTGGTCTCTGAGCTTCGTGC




GTCACGAGGTGCAGTAAAAGAAGGA




TCCCCTTACTATGCAGCTGTTGGGG




ATATCCACGCTTACATCTTTAATGC




GGGATTGACACCATTCTTGACCACC




TTAAGATACGGGATAGGCACCAAGT




ACGCCGCTGTTGCACTCAGTGTGTT




CGCTGCAGATATTGCAAAGTTGAAG




AGCCTACTTACCCTGTACCAGGACA




AGGGTGTAGAAGCTGGATACATGGC




ACTCCTTGAGGATCCAGACTCCATG




CACTTTGCACCTGGAAACTTCCCAC




ACATGTACTCCTATGCAATGGGGGT




AGCTTCTTACCATGATCCTAGCATG




CGCCAATACCAATACGCCAGGAGGT




TCCTCAGCCGTCCTTTCTACTTACT




AGGAAGGGACATGGCCGCCAAGAAC




ACAGGCACGCTGGATGAGCAACTGG




CGAAGGAACTGCAAGTATCAGAGAG




AGATCGCGCCGCATTATCCGCTGCG




ATTCAATCAGCGATGGAGGGGGGAG




AGTCCGACGACTTCCCACTGTCGGG




ATCCATGCCGGCTCTCTCTGAGAAT




GCGCAACCAGTTACCCCCAGACCTC




AACAGTCCCAGCTCTCTCCCCCCCA




ATCATCAAACATGCCCCAATCAGCA




CCCAGGACCCCAGACTATCAACCCG




ACTTTGAACTGTAGGCTTCATCACC




GCACCAACAACAGCCCAAGAAGACC




ACCCCTCCCCCCACACATCTCACCC




AGCCACCCATAAAGACTCAGTCCCA




CGCCCCAGCATCTCCTTCATTTAAT




TAAAAACCGACCAACAGGGTGGGGA




AGGAGAGTCATTGGCTACTGCCAAT




TGTGTGCAGCAATGGATTTTACTGA




CATTGATGCTGTCAACTCATTGATC




GAATCATCATCGGCAATCATAGACT




CCATACAGCATGGAGGGCTGCAACC




AGCGGGCACCGTCGGCCTATCGCAG




ATCCCAAAAGGGATAACCAGCGCAT




TAACCAAGGCCTGGGAGGCTGAGGC




GGCAACTGCCGGTAATGGGGACACC




CAACACAAATCTGACAGTCCGGAGG




ATCATCAGGCCAACGACACAGATTC




CCCTGAAGACACAGGTACTGACCAG




ACCACCCAGGAGGCCAACATCGTTG




AGACACCCCACCCCGAGGTGCTGTC




AGCAGCCAAAGCCAGACTCAAGAGG




CCCAAAGCAGGGAGGGACACCCGCG




ACAACTCCCCTGCGCAACCCGATCA




TCTTTTAAAGGGGGGCCTCCTGAGC




CCACAACCAGCAGCATCATGGGTGC




AAAATCCACCCAGTCATGGAGGTCC




CGGCACCGCCGATCCCCGCCCATCA




CAAACTCAGGATCATTCCCCCACCG




GAGAGAAATGGCGATTGTCACCGAC




AAAGCAACCGGAGACATTGAACTGG




TGGAGTGGTGCAACCCGGGGTGCAC




AGCAGTCCGAATTGAACCCACCAGA




CTCGACTGTGTATGCGGACACTGCC




CCACCATCTGTAGCCTCTGCATGTA




TGACGACTGATCAGGTACAACTACT




AATGAAGGAGGTTGCTGACATAAAA




TCACTCCTTCAGGCGTTAGTGAGGA




ACCTCGCTGTCTTGCCCCAATTGAG




GAATGAGGTTGCAGCAATCAGAACA




TCACAGGCCATGATAGAGGGGACAC




TCAATTCGATCAAGATTCTTGACCC




TGGGAATTATCAGGAATCATCACTA




AACAGTTGGTTCAAACCTCGCCAAG




ATCACACTGTTGTTGTGTCTGGACC




AGGGAATCCATTGGCCATGCCAACC




CCAGTCCAAGACAACACCATATTCC




TGGACGAGCTAGCCAGACCTCATCC




TAGTGTGGTCAATCCTTCCCCACCC




ATCACCAACACCAATGTTGACCTTG




GCCCACAGAAGCAGGCTGCAATAGC




CTATATCTCCGCTAAATGCAAGGAT




CCGGGGAAACGAGATCAGCTATCAA




GGCTCATTGAGCGAGCAACCACCCC




AAGTGAGATCAACAAAGTTAAAAGA




CAAGCCCTTGGGCTCTAGATCACTC




GATCACCCCTCATGGTGATCACAAC




AATAATCAGAACCCTTCCGAACCAC




ATGACCAACCCAGCCCACCGCCCAC




ACCGTCCATCacgcgtGTAGCTGAT




TTATTCAAAACCGCCACCATGTGCC




ATCAGCAGCTGGTCATCTCATGGTT




CTCCCTGGTGTTTCTGGCCTCACCT




CTGGTCGCAATCTGGGAACTGAAAA




AGGATGTGTACGTGGTGGAGCTGGA




CTGGTATCCCGATGCCCCTGGCGAG




ATGGTGGTGCTGACCTGCGACACAC




CCGAGGAGGATGGCATCACCTGGAC




ACTGGATCAGAGCTCCGAGGTGCTG




GGAAGCGGCAAGACCCTGACAATCC




AGGTGAAGGAGTTCGGCGACGCCGG




CCAGTACACCTGTCACAAGGGAGGA




GAGGTGCTGAGCCACTCCCTGCTGC




TGCTGCACAAGAAGGAGGATGGCAT




CTGGTCCACAGACATCCTGAAGGAT




CAGAAGGAGCCAAAGAACAAGACCT




TCCTGCGGTGCGAGGCCAAGAATTA




TAGCGGCCGGTTCACCTGTTGGTGG




CTGACCACAATCTCCACCGATCTGA




CATTTTCTGTGAAGTCTAGCAGGGG




ATCCTCTGACCCACAGGGAGTGACA




TGCGGAGCAGCCACCCTGAGCGCCG




AGAGGGTGCGCGGCGATAACAAGGA




GTACGAGTATTCCGTGGAGTGCCAG




GAGGACTCTGCCTGTCCAGCAGCAG




AGGAGTCCCTGCCTATCGAAGTGAT




GGTGGATGCCGTGCACAAGCTGAAG




TACGAGAATTATACCAGCTCCTTCT




TTATCCGGGACATCATCAAGCCCGA




TCCCCCTAAGAACCTGCAGCTGAAG




CCTCTGAAGAATAGCAGACAGGTGG




AGGTGTCCTGGGAGTACCCTGACAC




CTGGAGCACACCACACTCCTATTTC




TCTCTGACCTTTTGCGTGCAGGTGC




AGGGCAAGTCCAAGCGGGAGAAGAA




GGACAGAGTGTTCACCGATAAGACA




TCTGCCACCGTGATCTGTAGAAAGA




ACGCCTCTATCAGCGTGAGGGCCCA




GGACCGCTACTATTCTAGCTCCTGG




TCCGAGTGGGCCTCTGTGCCTTGCA




GCGGCGGAGGAGGAGGAGGATCTAG




GAATCTGCCAGTGGCAACCCCTGAC




CCAGGCATGTTCCCCTGCCTGCACC




ACAGCCAGAACCTGCTGAGGGCCGT




GTCCAATATGCTGCAGAAGGCCCGC




CAGACACTGGAGTTTTACCCTTGTA




CCAGCGAGGAGATCGACCACGAGGA




CATCACAAAGGATAAGACCTCCACA




GTGGAGGCCTGCCTGCCACTGGAGC




TGACCAAGAACGAGTCCTGTCTGAA




CAGCCGGGAGACAAGCTTCATCACC




AACGGCTCCTGCCTGGCCTCTAGAA




AGACAAGCTTTATGATGGCCCTGTG




CCTGTCTAGCATCTACGAGGACCTG




AAGATGTATCAGGTGGAGTTCAAGA




CCATGAACGCCAAGCTGCTGATGGA




CCCCAAGAGGCAGATCTTTCTGGAT




CAGAATATGCTGGCCGTGATCGACG




AGCTGATGCAGGCCCTGAACTTCAA




TAGCGAGACAGTGCCTCAGAAGTCC




TCTCTGGAGGAGCCAGATTTCTACA




AGACCAAGATCAAGCTGTGCATCCT




GCTGCACGCCTTTCGGATCAGAGCC




GTGACAATCGACCGCGTGATGTCCT




ATCTGAATGCTTCCTAATGACCCac




gcgtCATCCCTTGCCAAACATCCTG




CCGTAGCTGATTTATTCAAAAGAGC




TCATTTGATATGACCTGGTAATCAT




AAAATAGGGTGGGGAAGGTGCTTTG




CCTGTAAGGGGGCTCCCTCATCTTC




AGACACGTGCCCGCCATCTCACCAA




CAGTGCAATGGCAGACATGGACACG




GTGTATATCAATCTGATGGCAGATG




ACCCAACCCACCAAAAAGAACTGCT




GTCCTTTCCTCTCATCCCTGTGACC




GGTCCTGACGGGAAGAAGGAACTCC




AACACCAGATCCGGACCCAATCCTT




GCTCGCCTCAGACAAACAAACTGAA




CGGTTCATCTTCCTCAACACTTACG




GATTCATCTATGACACCACACCGGA




CAAGACAACTTTTTCCACCCCAGAG




CATATTAATCAGCCTAAGAGGACGA




CGGTGAGTGCCGCGATGATGACCAT




TGGCCTGGTTCCCGCCAATATACCC




CTGAACGAACTAACGGCTACTGTGT




TCAGCCTTAAAGTAAGAGTGAGGAA




AAGTGCGAGGTATCGGGAAGTGGTC




TGGTATCAATGCAATCCAGTACCGG




CCCTGCTTGCAGCCACCAGGTTTGG




TCGCCAAGGAGGTCTCGAGTCGAGC




ACTGGAGTCAGTGTAAAGGCTCCCG




AGAAGATAGATTGTGAGAAGGATTA




TACCTACTACCCTTATTTCTTATCT




GTGTGCTACATCGCCACCTCCAACC




TGTTCAAGGTACCGAGGATGGTTGC




TAATGCAACCAACAGTCAATTATAC




CACCTTACCATGCAGGTCACATTTG




CCTTTCCAAAAAACATCCCTCCAGC




CAACCAGAAACTCCTGACACAGGTG




GATGAGGGATTCGAGGGCACTGTGG




ATTGCCATTTTGGGAACATGCTGAA




AAAGGATCGGAAAGGGAACATGAGG




ACACTGTCCCAGGCGGCAGATAAGG




TCAGACGAATGAATATTCTTGTTGG




TATCTTTGACTTGCATGGGCCAACG




CTCTTCCTGGAGTATACCGGGAAAC




TGACAAAGGCTCTGCTAGGGTTCAT




GTCCACCAGCCGAACAGCAATCATC




CCCATATCTCAGCTCAATCCCATGC




TGAGTCAACTCATGTGGAGCAGTGA




TGCCCAGATAGTAAAGTTAAGGGTT




GTCATAACTACATCCAAACGCGGCC




CGTGCGGGGGTGAGCAGGAGTATGT




GCTGGATCCCAAATTCACAGTTAAG




AAAGAAAAGGCTCGACTCAACCCTT




TCGAGAAGGCAGCCTAATGATTTAA




TCCGCAAGATCCCAGAAATCAGACC




ACTCTATACTATCCACTGATCACTG




GAAATGTAATTGTACAGTTGATGAA




TCTGTGAAGAATCAATTAAAAAACC




GGATCCTTATTAGGGTGGGGAAGTA




GTTGATTGGGTGTCTAAACAAAAGC




ATTTCTTCACACCTCCCCGCCACGA




AACAACCACAATGAGGCTATCAAAC




ACAATCTTGACCTTGATTCTCATCA




TACTTACCGGCTATTTGATAGGTGT




CCACTCCACCGATGTGAATGAGAAA




CCAAAGTCCGAAGGGATTAGGGGTG




ATCTTACACCAGGTGCGGGTATTTT




CGTAACTCAAGTCCGACAGCTCCAG




ATCTACCAACAGTCTGGGTACCATG




ATCTTGTCATCAGATTGTTACCTCT




TCTACCAACAGAGCTTAATGATTGT




CAAAGGGAAGTTGTCACAGAGTACA




ATAACACTGTATCACAGCTGTTGCA




GCCTATCAAAACCAACCTGGATACT




TTGTTGGCAGATGGTAGCACAAGGG




ATGTTGATATACAGCCGCGATTCAT




TGGGGCAATAATAGCCACAGGTGCC




CTGGCTGTAGCAACGGTAGCTGAGG




TAACTGCAGCTCAAGCACTATCTCA




GTCAAAAACGAATGCTCAAAATATT




CTCAAGTTGAGAGATAGTATTCAGG




CCACCAACCAAGCAGTTTTTGAAAT




TTCACAGGGACTCGAAGCAACTGCA




ACCGTGCTATCAAAACTGCAAACTG




AGCTCAATGAGAATATCATCCCAAG




TCTGAACAACTTGTCCTGTGCTGCC




ATGGGGAATCGCCTTGGTGTATCAC




TCTCACTCTATTTGACCTTAATGAC




CACTCTATTTGGGGACCAGATCACA




AACCCAGTGCTGACGCCAATCTCTT




ACAGCACCCTATCGGCAATGGCGGG




TGGTCACATTGGTCCAGTGATGAGT




AAGATATTAGCCGGATCTGTCACAA




GTCAGTTGGGGGCAGAACAACTGAT




TGCTAGTGGCTTAATACAGTCACAG




GTAGTAGGTTATGATTCCCAGTATC




AGCTGTTGGTTATCAGGGTCAACCT




TGTACGGATTCAGGAAGTCCAGAAT




ACTAGGGTTGTATCACTAAGAACAC




TAGCAGTCAATAGGGATGGTGGACT




TTACAGAGCCCAGGTGCCACCCGAG




GTAGTTGAGCGATCTGGCATTGCAG




AGCGGTTTTATGCAGATGATTGTGT




TCTAACTACAACTGATTACATCTGC




TCATCGATCCGATCTTCTCGGCTTA




ATCCAGAGTTAGTCAAGTGTCTCAG




TGGGGCACTTGATTCATGCACATTT




GAGAGGGAAAGTGCATTACTGTCAA




CTCCCTTCTTTGTATACAACAAGGC




AGTCGTCGCAAATTGTAAAGCAGCG




ACATGTAGATGTAATAAACCGCCAT




CTATCATTGCCCAATACTCTGCATC




AGCTCTAGTAACCATCACCACCGAC




ACTTGTGCTGACCTTGAAATTGAGG




GTTATCGTTTCAACATACAGACTGA




ATCCAACTCATGGGTTGCACCAAAC




TTCACGGTCTCAACCTCACAAATAG




TATCGGTTGATCCAATAGACATATC




CTCTGACATTGCCAAAATTAACAAT




TCTATCGAGGCTGCGCGAGAGCAGC




TGGAACTGAGCAACCAGATCCTTTC




CCGAATCAACCCACGGATTGTGAAC




GACGAATCACTAATAGCTATTATCG




TGACAATTGTTGTGCTTAGTCTCCT




TGTAATTGGTCTTATTATTGTTCTC




GGTGTGATGTACAAGAATCTTAAGA




AAGTCCAACGAGCTCAAGCTGCTAT




GATGATGCAGCAAATGAGCTCATCA




CAGCCTGTGACCACCAAATTGGGGA




CACCCTTCTAGGTGAATAATCATAT




CAATCCATTCAATAATGAGCGGGAC




ATACCAATCACCAACGACTGTGTCA




CAAGGCCGGTTAGGAATGCACCGGA




TCTCTCTCCTTCCTTTTTAATTAAA




AACGGTTGAACTGAGGGTGAGGGGG




GGGGTGTGCATGGTAGGGTGGGGAA




GGTAGCCAATTCCTGCCCATTGGGC




CGACCGTACCAAGAGAAGTCAACAG




AAGTATAGATGCAGGGCGACATGGA




GGGTAGCCGTGATAACCTCACAGTA




GATGATGAATTAAAGACAACATGGA




GGTTAGCTTATAGAGTTGTATCCCT




CCTATTGATGGTGAGTGCCTTGATA




ATCTCTATAGTAATCCTGACGAGAG




ATAACAGCCAAAGCATAATCACGGC




GATCAACCAGTCGTATGACGCAGAC




TCAAAGTGGCAAACAGGGATAGAAG




GGAAAATCACCTCAATCATGACTGA




TACGCTCGATACCAGGAATGCAGCT




CTTCTCCACATTCCACTCCAGCTCA




ATACACTTGAGGCAAACCTGTTGTC




CGCCCTCGGAGGTTACACGGGAATT




GGCCCCGGAGATCTAGAGCACTGTC




GTTATCCGGTTCATGACTCCGCTTA




CCTGCATGGAGTCAATCGATTACTC




ATCAATCAAACAGCTGACTACACAG




CAGAAGGCCCCCTGGATCATGTGAA




CTTCATTCCGGCACCAGTTACGACT




ACTGGATGCACAAGGATCCCATCCT




TTTCTGTATCATCATCCATTTGGTG




CTATACACACAATGTGATTGAAACA




GGTTGCAATGACCACTCAGGTAGTA




ATCAATATATCAGTATGGGGGTGAT




TAAGAGGGCTGGCAACGGCTTACCT




TACTTCTCAACAGTCGTGAGTAAGT




ATCTGACCGATGGGTTGAATAGAAA




AAGCTGTTCCGTAGCTGCGGGATCC




GGGCATTGTTACCTCCTTTGTAGCC




TAGTGTCAGAGCCCGAACCTGATGA




CTATGTGTCACCAGATCCCACACCG




ATGAGGTTAGGGGTGCTAACAAGGG




ATGGGTCTTACACTGAACAGGTGGT




ACCCGAAAGAATATTTAAGAACATA




TGGAGCGCAAACTACCCTGGGGTAG




GGTCAGGTGCTATAGCAGGAAATAA




GGTGTTATTCCCATTTTACGGCGGA




GTGAAGAATGGATCAACCCCTGAGG




TGATGAATAGGGGAAGATATTACTA




CATCCAGGATCCAAATGACTATTGC




CCTGACCCGCTGCAAGATCAGATCT




TAAGGGCAGAACAATCGTATTATCC




TACTCGATTTGGTAGGAGGATGGTA




ATGCAGGGAGTCCTAACATGTCCAG




TATCCAACAATTCAACAATAGCCAG




CCAATGCCAATCTTACTATTTCAAC




AACTCATTAGGATTCATCGGGGCGG




AATCTAGGATCTATTACCTCAATGG




TAACATTTACCTTTATCAAAGAAGC




TCGAGCTGGTGGCCTCACCCCCAAA




TTTACCTACTTGATTCCAGGATTGC




AAGTCCGGGTACGCAGAACATTGAC




TCAGGCGTTAACCTCAAGATGTTAA




ATGTTACTGTCATTACACGACCATC




ATCTGGCTTTTGTAATAGTCAGTCA




AGATGCCCTAATGACTGCTTATTCG




GGGTTTATTCAGATGTCTGGCCTCT




TAGCCTTACCTCAGACAGCATATTT




GCATTTACAATGTACTTACAAGGGA




AGACGACACGTATTGACCCAGCTTG




GGCGCTATTCTCCAATCATGTAATT




GGGCATGAGGCTCGTTTGTTCAACA




AGGAGGTTAGTGCTGCTTATTCTAC




CACCACTTGTTTTTCGGACACCATC




CAAAACCAGGTGTATTGTCTGAGTA




TACTTGAAGTCAGAAGTGAGCTCTT




GGGGGCATTCAAGATAGTGCCATTC




CTCTATCGTGTCTTATAGGCACCTG




CTTGGTCAAGAACCCTGAGCAGCCA




TAAAATTAACACTTGATCTTCCTTA




AAAACACCTATCTAAATTACTGTCT




GAGATCCCTGATTAGTTACCCTTTC




AATCAATCAATTAATTTTTAATTAA




AAACGGAAAAATGGGCCTAGTTCCA




AGGAAAGGATGGGACCCATTAGGGT




GGGGAAGGATTACTTTGTTCCTTGA




CTCGCACCCACGTACACCCAATCCC




ATTCCTGTCAAGAAGGAACCCTTCC




CAAACTCACCTTGCAATGTCCAATC




AGGCAGCTGAGATTATACTACCCAC




CTTCCATCTTTTATCACCCTTGATC




GAGAATAAGTGCTTCTACTACATGC




AATTACTTGGTCTCGTGTTACCACA




TGATCACTGGAGATGGAGGGCATTC




GTCAATTTTACAGTGGATCAAGCAC




ACCTTAAAAATCGTAATCCCCGCTT




AATGGCCCACATCGATCACACTAAG




GATAGACTAAGGGCTCATGGTGTCT




TGGGTTTCCACCAGACTCAGACAAG




TGAGAGCCGTTTCCGTGTCTTGCTC




CATCCTGAAACTTTACCTTGGCTAT




CAGCAATGGGAGGATGCATCAACCA




GGTTCCCAAGGCATGGCGGAACACT




CTGAAATCTATCGAGCACAGTGTGA




AGCAGGAGGCGACTCAACTGAAGTT




ACTCATGGAAAAAACCTCACTAAAG




CTAACAGGAGTATCTTACTTATTCT




CCAATTGCAATCCCGGGAAAACTGC




AGCGGGAACTATGCCCGTACTAAGT




GAGATGGCATCAGAACTCTTGTCAA




ATCCCATCTCCCAATTCCAATCAAC




ATGGGGGTGTGCTGCTTCAGGGTGG




CACCATGTAGTCAGCATCATGAGGC




TCCAACAGTATCAAAGAAGGACAGG




TAAGGAAGAGAAAGCAATCACTGAA




GTTCAGTATGGCTCGGACACCTGTC




TCATTAATGCAGACTACACCGTCGT




TTTTTCCGCACAGGACCGTGTCATA




GCAGTCTTGCCTTTCGATGTTGTCC




TCATGATGCAAGACCTGCTTGAATC




CCGACGGAATGTCTTGTTCTGTGCC




CGCTTTATGTATCCCAGAAGCCAAC




TACATGAGAGGATAAGTACAATACT




GGCCCTTGGAGACCAACTCGGGAGA




AAAGCACCCCAAGTCCTGTATGATT




TCGTAGCTACCCTCGAATCATTTGC




ATACGCTGCTGTCCAACTTCATGAC




AACAACCCTATCTACGGTGGGGCTT




TCTTTGAGTTCAATATCCAAGAACT




GGAAGCTATTTTGTCCCCTGCACTT




AATAAGGATCAAGTCAACTTCTACA




TAAGTCAAGTTGTCTCAGCATACAG




TAACCTTCCCCCATCTGAATCAGCA




GAATTGCTATGCTTACTACGCCTGT




GGGGTCATCCCTTGCTAAACAGTCT




TGATGCAGCAAAGAAAGTCAGAGAA




TCTATGTGTGCTGGGAAGGTTCTTG




ATTATAATGCTATTCGACTAGTTTT




GTCTTTTTATCATACGTTATTAATC




AATGGGTATCGGAAGAAACATAAGG




GTCGCTGGCCAAATGTGAATCAACA




TTCACTACTCAACCCGATAGTGAAG




CAGCTTTACTTTGATCAGGAGGAGA




TCCCACACTCTGTTGCCCTTGAGCA




CTATTTAGATATCTCGATGATAGAA




TTTGAGAAGACTTTTGAAGTGGAAC




TATCTGATAGTCTAAGCATCTTTCT




GAAGGATAAGTCGATAGCTTTGGAT




AAACAAGAATGGCACAGTGGTTTTG




TCTCAGAAGTGACTCCAAAGCACCT




ACGAATGTCTCGTCATGATCGCAAG




TCTACCAATAGGCTATTGTTAGCCT




TTATTAACTCCCCTGAATTCGATGT




TAAGGAAGAGCTTAAATATTTGACT




ACAGGTGAGTATGCCACTGACCCAA




ATTTCAATGTCTCTTACTCACTGAA




AGAGAAGGAAGTTAAGAAAGAAGGG




CGCATTTTCGCAAAGATGTCACAGA




AAATGAGAGCATGCCAGGTTATTTG




TGAAGAGTTACTAGCACATCATGTG




GCTCCTTTGTTTAAAGAGAATGGTG




TTACACAATCGGAGCTATCCCTGAC




AAAGAATTTGTTGGCTATTAGCCAA




CTGAGTTACAACTCGATGGCCGCTA




AGGTGCGATTGCTGAGGCCAGGGGA




CAAGTTCACCGCTGCACACTATATG




ACCACAGACCTAAAAAAGTACTGCC




TTAACTGGCGGCACCAGTCAGTCAA




ATTGTTCGCCAGAAGCCTGGATCGA




CTATTTGGGTTAGACCATGCTTTTT




CTTGGATACACGTCCGTCTCACCAA




TAGCACTATGTACGTTGCTGACCCA




TTCAATCCACCAGACTCAGATGCAT




GCACAAATTTAGACGACAATAAGAA




CACTGGGATTTTTATTATAAGTGCT




CGAGGTGGTATAGAAGGCCTTCAAC




AGAAACTATGGACTGGCATATCAAT




TGCAATCGCCCAGGCGGCAGCAGCC




CTCGAGGGCTTACGAATTGCTGCCA




CTTTGCAGGGGGATAACCAGGTTTT




AGCGATTACGAAAGAATTCATGACC




CCAGTCTCGGAGGATGTAATCCACG




AGCAGCTATCTGAAGCGATGTCGCG




ATACAAGAGGACTTTCACATACCTT




AATTATTTAATGGGGCACCAATTGA




AGGATAAAGAAACCATCCAATCCAG




TGACTTCTTCGTTTACTCCAAAAGG




ATCTTCTTCAATGGGTCAATCCTAA




GTCAATGCCTCAAGAACTTCAGTAA




ACTCACTACCAATGCCACTACCCTT




GCTGAGAACACTGTAGCCGGCTGCA




GTGACATCTCCTCATGCATAGCCCG




TTGTGTGGAAAACGGGTTGCCTAAG




GATGCTGCATATGTTCAGAATATAA




TCATGACTCGGCTTCAACTGTTGCT




AGATCACTACTATTCTATGCATGGT




GGCATAAACTCAGAGTTAGAGCAGC




CAACTCTAAGTATCCCTGTCCGAAA




CGCAACCTATTTACCATCTCAATTA




GGCGGTTACAATCATTTGAATATGA




CCCGACTATTCTGTCGCAATATCGG




TGACCCGCTTACTAGTTCTTGGGCA




GAGTCAAAAAGACTAATGGATGTTG




GCCTTCTCAGTCGTAAGTTCTTAGA




GGGGATATTATGGAGACCCCCGGGA




AGTGGGACATTTTCAACACTCATGC




TTGATCCGTTCGCACTTAACATTGA




TTACTTAAGGCCACCAGAGACAATA




ATCCGAAAACACACCCAAAAAGTCT




TGTTGCAGGATTGTCCTAATCCTCT




ATTAGCAGGTGTAGTTGACCCGAAC




TACAACCAGGAATTAGAATTATTAG




CTCAGTTCCTGCTTGATCGGGAAAC




CGTTATTCCCAGGGCTGCCCATGCC




ATCTTTGAACTGTCTGTCTTGGGAA




GGAAAAAACATATACAAGGATTGGT




TGATACTACAAAAACAATTATTCAG




TGCTCATTAGAAAGACAGCCACTGT




CCTGGAGGAAAGTTGAGAACATTGT




AACCTACAATGCGCAGTATTTCCTC




GGGGCCACCCAGCAGGTTGACACCA




ATATCTCAGAAAGGCAGTGGGTGAT




GCCAGGTAATTTCAAGAAGCTTGTA




TCTCTTGACGATTGCTCAGTCACGT




TGTCCACTGTGTCACGGCGCATTTC




TTGGGCCAATCTACTTAACTGGAGG




GCTATAGATGGTTTGGAAACTCCAG




ATGTGATAGAGAGTATTGATGGCCG




CCTTGTGCAATCATCCAATCAATGC




GGCCTATGTAATCAAGGATTGGGCT




CCTACTCCTGGTTCTTCTTGCCCTC




CGGGTGTGTGTTCGACCGTCCACAA




GATTCTCGAGTGGTTCCAAAGATGC




CATACGTGGGATCCAAAACGGATGA




GAGACAGACTGCGTCAGTGCAGGCT




ATACAGGGATCCACATGTCACCTTA




GAGCAGCATTGAGACTTGTATCACT




CTACCTTTGGGCCTATGGAGATTCT




GACATATCATGGCTAGAAGCCGCGA




CATTGGCTCAAACACGGTGCAATAT




TTCTCTTGATGACCTGCGGATCCTG




AGCCCTCTTCCTTCCTCGGCAAATT




TACACCACAGATTGAATGACGGGGT




AACACAAGTGAAATTCATGCCCGCC




ACATCGAGCCGGGTGTCAAAGTTCG




TCCAAATTTGCAATGACAACCAGAA




TCTTATCCGTGATGATGGGAGTGTT




GATTCCAATATGATTTATCAGCAGG




TTATGATATTAGGGCTTGGAGAGAT




TGAATGTTTGTTAGCTGACCCAATC




GATACAAACCCAGAACAACTGATTC




TTCACCTACACTCTGATAATTCTTG




CTGTCTCCGGGAGATGCCAACGACC




GGTTTTGTACCTGCTTTAGGATTGA




CCCCATGCTTAACTGTCCCAAAGCA




CAATCCGTATATTTATGATGATAGC




CCAATACCCGGTGATTTGGATCAGA




GGCTCATTCAAACCAAATTCTTTAT




GGGTTCTGACAATCTAGATAATCTT




GATATCTACCAGCAGCGAGCTTTAC




TGAGTCGGTGTGTGGCTTATGACAT




TATCCAATCAGTATTCGCTTGCGAT




GCACCAGTATCTCAGAAGAATGATG




CAATCCTTCACACTGACTACCATGA




AAATTGGATCTCAGAGTTCCGATGG




GGTGACCCTCGCATAATCCAAGTAA




CAGCAGGTTACGAGTTAATTCTGTT




CCTTGCATACCAGCTTTATTATCTC




AGAGTGAGGGGTGACCGTGCAATCC




TGTGTTATATTGATAGGATACTCAA




CAGGATGGTATCTTCCAATCTAGGC




AGTCTCATCCAGACGCTCTCTCATC




CGGAGATTAGGAGGAGATTTTCATT




GAGTGATCAAGGGTTCCTTGTCGAA




AGGGAGCTAGAGCCAGGTAAGCCAC




TGGTAAAACAAGCGGTTATGTTCCT




AAGGGACTCAGTCCGCTGCGCTTTA




GCAACTATCAAGGCAGGAATTGAGC




CTGAGATCTCCCGAGGTGGCTGTAC




CCAGGATGAGCTGAGCTTTACCCTT




AAGCACTTACTATGTCGGCGTCTCT




GTATAATTGCTCTCATGCATTCGGA




AGCAAAGAACTTGGTCAAAGTTAGA




AACCTTCCAGTAGAGGAAAAAACCG




CCTTACTATACCAGATGTTGATCAC




TGAGGCCAATGCCAGGAGATCAGGG




TCTGCTAGTATCATCATAAGCTTAG




TTTCAGCACCCCAGTGGGACATTCA




TACACCAGCGTTGTATTTTGTATCA




AAGAAAATGCTGGGGATGCTCAAAA




GGTCAACCACACCCTTGGATATAAG




TGACCTTTCTGAGAGCCAGAACCTC




ACACCAACAGAATTGAATGATGTTC




CTGGTCACATGGCAGAGGAATTTCC




CTGTTTGTTTAGCAGTTATAACGCT




ACATATGAAGACACAATTACTTACA




ATCCAATGACTGAAAAACTCGCAGT




GCACTTGGACAATGGTTCCACCCCT




TCCAGAGCGCTTGGTCGTCACTACA




TCCTGCGACCCCTTGGGCTTTACTC




GTCTGCATGGTACCGGTCTGCAGCA




CTATTAGCGTCAGGGGCCCTCAGTG




GGTTGCCTGAGGGGTCAAGCCTGTA




CTTGGGAGAGGGGTATGGGACCACC




ATGACTCTACTTGAGCCCGTTGTCA




AGTCCTCAACTGTTTACTACCATAC




ATTGTTTGACCCAACCCGGAATCCT




TCACAGCGGAACTACAAACCAGAAC




CGCGGGTATTCACTGATTCCATTTG




GTACAAGGATGATTTCACACGACCA




CCTGGTGGCATTGTAAATCTATGGG




GTGAAGACGTACGTCAGAGTGATAT




TACACAGAAAGACACGGTTAATTTC




ATATTATCTCGGGTCCCGCCAAAAT




CACTCAAATTGATACACGTTGATAT




TGAGTTCTCCCCAGACTCTGATGTA




CGGACGCTACTATCTGGCTATTCCC




ATTGTGCACTATTGGCCTACTGGCT




ACTGCAACCTGGAGGGCGATTTGCG




GTTAGAGTTTTCTTAAGTGACCATA




TCATAGTCAACTTGGTCACTGCCAT




TCTGTCCGCTTTTGACTCTAATCTG




GTGTGCATTGCGTCAGGATTGACAC




ACAAGGATGATGGGGCAGGTTATAT




TTGTGCAAAGAAGCTTGCAAATGTT




GAGGCTTCAAGAATTGAGTATTACT




TGAGGATGGTCCACGGCTGTGTTGA




CTCATTAAAAATTCCTCATCAATTA




GGAATCATTAAATGGGCTGAGGGTG




AAGTGTCCCGACTTACCAAAAAGGC




GGATGATGAAATAAACTGGCGGTTA




GGTGATCCAGTTACCAGATCATTTG




ATCCGGTTTCTGAGCTAATAATTGC




GCGAACAGGGGGATCAGTATTAATG




GAATACGGGACTTTTACTAACCTCA




GGTGTGCGAACTTGGCAGATACATA




TAAACTTTTGGCTTCAATTGTAGAG




ACCACCTTAATGGAAATAAGGGTTG




AGCAAGATCAGTTGGAAGATGATTC




GAGGAGACAAATCCAGGTAGTCCCT




GCTTTTAATACAAGATCCGGGGGAA




GGATCCGTACATTGATTGAGTGTGC




TCAGCTGCAGGTCATAGATGTTATC




TGTGTGAACATAGATCACCTCTTTC




CCAAACACCGACATGCTCTTGTCAC




ACAACTTACTTACCAGTCAGTGTGC




CTTGGGGACTTGATTGAAGGCCCCC




AAATTAAGACATATCTAAGGGCCAG




GAAGTGGATCCAACGTAGGGGACTC




AATGAGACAATTAACCATATCATCA




CTGGACAAGTGTCGCGGAATAAGGC




AAGGGATTTTTTCAAGAGGCGCCTG




AAGTTGGTTGGCTTTTCGCTCTGTG




GCGGTTGGGGCTACCTCTCACTTTA




GCTGCTTAGATTGTTGATTATTATG




AATAATCGGAGTCGAAATCGTAAAT




AGAAAGACATAAAATTGCAAATAAG




CAATGATCGTATTAATATTTAATAA




AAAATATGTCTTTTATTTCGT
















TABLE 3







HETEROLOGOUS SEQUENCES











SEQ ID


Description
Sequence
NO.





Homo sapiens
AGTTCCCTATCACTCTCTTTAATCACTACTCACAGTAACCTCAACTC
SEQ ID


interleukin 2
CTGCCACAATGTACAGGATGCAACTCCTGTCTTGCATTGCACTAAG
NO: 15


(IL2)
TCTTGCACTTGTCACAAACAGTGCACCTACTTCAAGTTCTACAAAG



Genbank:
AAAACACAGCTACAACTGGAGCATTTACTGCTGGATTTACAGATGA



NG_016779.1
TTTTGAATGGAATTAATGTAAGTATATTTCCTTTCTTACTAAAATTA




TTACATTTAGTAATCTAGCTGGAGATCATTTCTTAATAACAATGCAT




TATACTTTCTTAGAATTACAAGAATCCCAAACTCACCAGGATGCTC




ACATTTAAGTTTTACATGCCCAAGAAGGTAAGTACAATATTTTATGT




TCAATTTCTGTTTTAATAAAATTCAAAGTAATATGAAAATTTGCACA




GATGGGACTAATAGCAGCTCATCTGAGGTAAAGAGTAACTTTAATT




TGTTTTTTTGAAAACCCAAGTTTGATAATGAAGCCTCTATTAAAACA




GTTTTACCTATATTTTTAATATATATTTGTGTGTTGGTGGGGGTGGG




AAGAAAACATAAAAATAATATTCTCACTTTATCGATAAGACAATTC




TAAACAAAAATGTTCATTTATGGTTTCATTTAAAAATGTAAAACTCT




AAAATATTTGATTATGTCATTTTAGTATGTAAAATACCAAAATCTAT




TTCCAAGGAGCCCACTTTTAAAAATCTTTTCTTGTTTTAGGAAAGGT




TTCTAAGTGAGAGGCAGCATAACACTAATAGCACAGAGTCTGGGGC




CAGATATCTGAAGTGAAATCTCAGCTCTGCCATGTCCTAGCTTTCAT




GATCTTTGGCAAATTACCTACTCTGTTTGTGATTCAGTTTCATGTCT




ACTTAAATGAATAACTGTATATACTTAATATGGCTTTGTGAGAATTA




GTAAGTAAATGTAAAGCACTCAGAACCGTGTCTGGCATAAGGTAAA




TACCATACAAGCATTAGCTATTATTAGTAGTATTAAAGATAAAATT




TTCACTGAGAAATACAAAGTAAAATTTTGGACTTTATCTTTTTACCA




ATAGAACTTGAGATTTATAATGCTATATGACTTATTTTCCAAGATTA




AAAGCTTCATTAGGTTGTTTTTGGATTCAGATAGAGCATAAGCATA




ATCATCCAAGCTCCTAGGCTACATTAGGTGTGTAAAGCTACCTAGT




AGCTGTGCCAGTTAAGAGAGAATGAACAAAATCTGGTGCCAGAAA




GAGCTTGTGCCAGGGTGAATCCAAGCCCAGAAAATAATAGGATTTA




AGGGGACACAGATGCAATCCCATTGACTCAAATTCTATTAATTCAA




GAGAAATCTGCTTCTAACTACCCTTCTGAAAGATGTAAAGGAGACA




GCTTACAGATGTTACTCTAGTTTAATCAGAGCCACATAATGCAACT




CCAGCAACATAAAGATACTAGATGCTGTTTTCTGAAGAAAATTTCT




CCACATTGTTCATGCCAAAAACTTAAACCCGAATTTGTAGAATTTGT




AGTGGTGAATTGAAAGCGCAATAGATGGACATATCAGGGGATTGG




TATTGTCTTGACCTACCTTTCCCACTAAAGAGTGTTAGAAAGATGA




GATTATGTGCATAATTTAGGGGGTGGTAGAATTCATGGAAATCTAA




GTTTGAAACCAAAAGTAATGATAAACTCTATTCATTTGTTCATTTAA




CCCTCATTGCACATTTACAAAAGATTTTAGAAACTAATAAAAATAT




TTGATTCCAAGGATGCTATGTTAATGCTATAATGAGAAAGAAATGA




AATCTAATTCTGGCTCTACCTACTTATGTGGTCAAATTCTGAGATTT




AGTGTGCTTATTTATAAAGTGGAGATGATACTTCACTGCCTACTTCA




AAAGATGACTGTGAGAAGTAAATGGGCCTATTTTGGAGAAAATTCT




TTTAAATTGTAATATACCATAGAAATATGAAATATTATATATAATAT




AGAATCAAGAGGCCTGTCCAAAAGTCCTCCCAAAGTATTATAATTT




TTTATTTCACTGGGACAAACATTTTTAAAATGCATCTTAATGTAGTG




ATTGTAGAAAAGTAAAAATTTAAGACATATTTAAAAATGTGTCTTG




CTCAAGGCTATATTGAGAGCCACTACTACATGATTATTGTTACCTAG




TGTAAAATGTTGGGATTGTGATAGATGGCATCCAAGAGTTCCTTCT




CTCTCAACATTCTGTGATTCTTAACTCTTAGACTATCAAATATTATA




ATCATAGAATGTGATTTTTATGCTTCCACATTCTAACTCATCTGGTT




CTAATGATTTTCTATGCAGATTGGAAAAGTAATCAGCCTACATCTGT




AATAGGCATTTAGATGCAGAAAGTCTAACATTTTGCAAAGCCAAAT




TAAGCTAAAACCAGTGAGTCAACTATCACTTAACGCTAGTCATAGG




TACTTGAGCCCTAGTTTTTCCAGTTTTATAATGTAAACTCTACTGGT




CCATCTTTACAGTGACATTGAGAACAGAGAGAATGGTAAAAACTAC




ATACTGCTACTCCAAATAAAATAAATTGGAAATTAATTTCTGATTCT




GACCTCTATGTAAACTGAGCTGATGATAATTATTATTCTAGGCCAC




AGAACTGAAACATCTTCAGTGTCTAGAAGAAGAACTCAAACCTCTG




GAGGAAGTGCTAAATTTAGCTCAAAGCAAAAACTTTCACTTAAGAC




CCAGGGACTTAATCAGCAATATCAACGTAATAGTTCTGGAACTAAA




GGTAAGGCATTACTTTATTTGCTCTCCTGGAAATAAAAAAAAAAAA




GTAGGGGGAAAAGTACCACATTTTAAAGTGACATAACATTTTTGGT




ATTTGTAAAGTACCCATGCATGTAATTAGCCTACATTTTAAGTACAC




TGTGAACATGAATCATTTCTAATGTTAAATGATTAACTGGGGAGTA




TAAGCTACTGAGTTTGCACCTACCATCTACTAATGGACAAGCCTCA




TCCCAAACTCCATCACCTTTCATATTAACACAAAACTGGGAGTGAG




AGAAGGTACTGAGTTGAGTTTCACAGAAAGCAGGCAGATTTTACTA




TATATTTTTCAATTCCTTCAGATCATTTACTGGAATAGCCAATACTG




ATTACCTGAAAGGCTTTTCAAATGGTGTTTCCTTATCATTTGATGGA




AGGACTACCCATAAGAGATTTGTCTTAAAAAAAAAAACTGGAGCC




ATTAAAATGGCCAGTGGACTAAACAAACAACAATCTTTTTAGAGGC




AATCCCCACTTTCAGAATCTTAAGTATTTTTAAATGCACAGGAAGC




ATAAAATATGCAAGGGACTCAGGTGATGTAAAAGAGATTCACTTTT




GTCTTTTTATATCCCGTCTCCTAAGGTATAAAATTCATGAGTTAATA




GGTATCCTAAATAAGCAGCATAAGTATAGTAGTAAAAGACATTCCT




AAAAGTAACTCCAGTTGTGTCCAAATGAATCACTTATTAGTGGACT




GTTTCAGTTGAATTAAAAAAATACATTGAGATCAATGTCATCTAGA




CATTGACAGATTCAGTTCCTTATCTATGGCAAGAGTTTTACTCTAAA




ATAATTAACATCAGAAAACTCATTCTTAACTCTTGATACAAATTTAA




GACAAAACCATGCAAAAATCTGAAAACTGTGTTTCAAAAGCCAAA




CACTTTTTAAAATAAAAAAATCCCAAGATATGACAATATTTAAACA




ATTATGCTTAAGAGGATACAGAACACTGCAACAGTTTTTTAAAAGA




GAATACTTATTTAAAGGGAACACTCTATCTCACCTGCTTTTGTTCCC




AGGGTAGGAATCACTTCAAATTTGAAAAGCTCTCTTTTAAATCTCA




CTATATATCAAAATATTTCCTCCTTAGCTTATCAACTAGAGGAAGCG




TTTAAATAGCTCCTTTCAGCAGAGAAGCCTAATTTCTAAAAAGCCA




GTCCACAGAACAAAATTTCTAATGTTTAAACTTTTAAAAGTTGGCA




AATTCACCTGCATTGATACTATGATGGGGTAGGGATAGGTGTAAGT




ATTTATGAAGATGTTCTTCACACAAATTTATCCCAAACAGAAGCAT




GTCCTAGCTTACTCTAGTGTAGTTCTGTTCTGCTTTGGGGAAAATAT




AAGGAGATTCACTTAAGTAGAAAAATAGGAGACTCTAATCAAGATT




TAGAAAAGAAGAAAGTATAATGTGCATATCAATTCATACATTTAAC




TTACACAAATATAGGTGTACATTCAGAGGAAAAGCGATCAAGTTTA




TTTCACATCCAGCATTTAATATTTGTCTAGATCTATTTTTATTTAAAT




CTTTATTTGCACCCAATTTAGGGAAAAAATTTTTGTGTTCATTGACT




GAATTAACAAATGAGGAAAATCTCAGCTTCTGTGTTACTATCATTT




GGTATCATAACAAAATATGTAATTTTGGCATTCATTTTGATCATTTC




AAGAAAATGTGAATAATTAATATGTTTGGTAAGCTTGAAAATAAAG




GCAACAGGCCTATAAGACTTCAATTGGGAATAACTGTATATAAGGT




AAACTACTCTGTACTTTAAAAAATTAACATTTTTCTTTTATAGGGAT




CTGAAACAACATTCATGTGTGAATATGCTGATGAGACAGCAACCAT




TGTAGAATTTCTGAACAGATGGATTACCTTTTGTCAAAGCATCATCT




CAACACTGACTTGATAATTAAGTGCTTCCCACTTAAAACATATCAG




GCCTTCTATTTATTTAAATATTTAAATTTTATATTTATTGTTGAATGT




ATGGTTTGCTACCTATTGTAACTATTATTCTTAATCTTAAAACTATA




AATATGGATCTTTTATGATTCTTTTTGTAAGCCCTAGGGGCTCTAAA




ATGGTTTCACTTATTTATCCCAAAATATTTATTATTATGTTGAATGTT




AAATATAGTATCTATGTAGATTGGTTAGTAAAACTATTTAATAAATT




TGATAAATATAAA






hIL-12V3
ATGGGTCACCAGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTT
SEQ ID



TTCTGGCATCTCCCCTCGTGGCCATATGGGAACTGAAGAAAG
NO: 16



ATGTTTATGTCGTAGAATTGGATTGGTATCCGGATGCCCCTG




GAGAAATGGTGGTCCTCACCTGTGACACCCCTGAAGAAGAT




GGTATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTTAGGC




TCTGGCAAAACCCTGACCATCCAAGTCAAAGAGTTTGGAGAT




GCTGGCCAGTACACCTGTCACAAAGGAGGCGAGGTTCTAAG




CCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAATTTG




GTCCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATA




AGACCTTTCTAAGATGCGAGGCCAAGAATTATTCTGGACGTT




TCACCTGCTGGTGGCTGACGACAATCAGTACTGATTTGACAT




TCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGG




GTGACGTGCGGAGCTGCTACACTCTCTGCAGAGAGAGTCAG




AGGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAGG




AGGACAGTGCCTGCCCAGCTGCTGAGGAGAGTCTGCCCATTG




AGGTCATGGTGGATGCCGTTCACAAGCTCAAGTATGAAAACT




ACACCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACC




CACCCAAGAACTTGCAGCTGAAGCCATTAAAGAATTCTCGGC




AGGTGGAGGTCAGCTGGGAGTACCCTGACACCTGGAGTACT




CCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGG




GCAAGAGCAAGAGAGAAAAGAAAGATAGAGTCTTCACGGAC




AAGACCTCAGCCACGGTCATCTGCCGCAAAAATGCCAGCATT




AGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGC




GAATGGGCATCTGTGCCCTGCAGTGGTGGCGGTGGCGGCG






GATCT
AGAAACCTCCCCGTGGCCACTCCAGACCCAGGAATG





TTCCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGTC




AGCAACATGCTCCAGAAGGCCAGACAAACTCTAGAATTTTAC




CCTTGCACTTCTGAAGAGATTGATCATGAAGATATCACAAAA




GATAAAACCAGCACAGTGGAGGCCTGTTTACCATTGGAATTA




ACCAAGAATGAGAGTTGCCTAAATTCCAGAGAGACCTCTTTC




ATAACTAATGGGAGTTGCCTGGCCTCCAGAAAGACCTCTTTT




ATGATGGCCCTGTGCCTTAGTAGTATTTATGAAGACTCGAAG




ATGTACCAGGTGGAGTTCAAGACCATGAATGCAAAGCTTCTG




ATGGATCCTAAGAGGCAGATCTTTCTAGATCAAAACATGCTG




GCAGTTATTGATGAGCTGATGCAGGCCCTGAATTTCAACAGT




GAGACTGTGCCACAAAAATCCTCCCTTGAAGAACCGGATTTT




TATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCTTTCA




GAATTCGGGCAGTGACTATTGATAGAGTGATGAGCTATCTGA




ATGCTTCCTAAT






OPT hIL 12
ATGTGCCATCAGCAGCTGGTCATCTCATGGTTCTCCCTGGTGTTTCT
SEQ ID



GGCCTCACCTCTGGTCGCAATCTGGGAACTGAAAAAGGATGTGTAC
NO: 17



GTGGTGGAGCTGGACTGGTATCCCGATGCCCCTGGCGAGATGGTGG




TGCTGACCTGCGACACACCCGAGGAGGATGGCATCACCTGGACACT




GGATCAGAGCTCCGAGGTGCTGGGAAGCGGCAAGACCCTGACAAT




CCAGGTGAAGGAGTTCGGCGACGCCGGCCAGTACACCTGTCACAA




GGGAGGAGAGGTGCTGAGCCACTCCCTGCTGCTGCTGCACAAGAA




GGAGGATGGCATCTGGTCCACAGACATCCTGAAGGATCAGAAGGA




GCCAAAGAACAAGACCTTCCTGCGGTGCGAGGCCAAGAATTATAG




CGGCCGGTTCACCTGTTGGTGGCTGACCACAATCTCCACCGATCTG




ACATTTTCTGTGAAGTCTAGCAGGGGATCCTCTGACCCACAGGGAG




TGACATGCGGAGCAGCCACCCTGAGCGCCGAGAGGGTGCGCGGCG




ATAACAAGGAGTACGAGTATTCCGTGGAGTGCCAGGAGGACTCTGC




CTGTCCAGCAGCAGAGGAGTCCCTGCCTATCGAAGTGATGGTGGAT




GCCGTGCACAAGCTGAAGTACGAGAATTATACCAGCTCCTTCTTTA




TCCGGGACATCATCAAGCCCGATCCCCCTAAGAACCTGCAGCTGAA




GCCTCTGAAGAATAGCAGACAGGTGGAGGTGTCCTGGGAGTACCCT




GACACCTGGAGCACACCACACTCCTATTTCTCTCTGACCTTTTGCGT




GCAGGTGCAGGGCAAGTCCAAGCGGGAGAAGAAGGACAGAGTGTT




CACCGATAAGACATCTGCCACCGTGATCTGTAGAAAGAACGCCTCT




ATCAGCGTGAGGGCCCAGGACCGCTACTATTCTAGCTCCTGGTCCG




AGTGGGCCTCTGTGCCTTGCAGCGGCGGAGGAGGAGGAGGATCTA




GGAATCTGCCAGTGGCAACCCCTGACCCAGGCATGTTCCCCTGCCT




GCACCACAGCCAGAACCTGCTGAGGGCCGTGTCCAATATGCTGCAG




AAGGCCCGCCAGACACTGGAGTTTTACCCTTGTACCAGCGAGGAGA




TCGACCACGAGGACATCACAAAGGATAAGACCTCCACAGTGGAGG




CCTGCCTGCCACTGGAGCTGACCAAGAACGAGTCCTGTCTGAACAG




CCGGGAGACAAGCTTCATCACCAACGGCTCCTGCCTGGCCTCTAGA




AAGACAAGCTTTATGATGGCCCTGTGCCTGTCTAGCATCTACGAGG




ACCTGAAGATGTATCAGGTGGAGTTCAAGACCATGAACGCCAAGCT




GCTGATGGACCCCAAGAGGCAGATCTTTCTGGATCAGAATATGCTG




GCCGTGATCGACGAGCTGATGCAGGCCCTGAACTTCAATAGCGAGA




CAGTGCCTCAGAAGTCCTCTCTGGAGGAGCCAGATTTCTACAAGAC




CAAGATCAAGCTGTGCATCCTGCTGCACGCCTTTCGGATCAGAGCC




GTGACAATCGACCGCGTGATGTC CTATCTGAATGCTTCCTAATGA






hIL-15Ra-IL15

ATGGCGCCGCGCCGCGCGCGCGGCTGCCGCACCCTGGG

SEQ ID


(signal sequence

CCTGCCGGCGCTGCTGCTGCTGCTGCTGCTGCGCCCGCC

NO: 18


underlined, flag-

GGCGACCCGCGGC
GATTATAAAGATGATGATGATAAA




tag in bold,

ATTGAAGGCCGCATTACCTGCCCGCCGCCGATGAGCGT




linker double
GGAACATGCGGATATTTGGGTGAAAAGCTATAGCCTGT



underlined and
ATAGCCGCGAACGCTATATTTGCAACAGCGGCTTTAAA



human IL-15 in
CGCAAAGCGGGCACCAGCAGCCTGACCGAATGCGTGCT



italics)
GAACAAAGCGACCAACGTGGCGCATTGGACCACCCCGA




GCCTGAAATGCATTCGCGATCCGGCGCTGGTGCATCAG






embedded image








embedded image







G
ATGCGCATTAGCAAACCGCATCTGCGCAGCATTAGCATTC






AGTGCTATCTGTGCCTGCTGCTGAACAGCCATTTTCTGACC






GAAGCGGGCATTCATGTGTTTATTCTGGGCTGCTTTAGCGC






GGGCCTGCCGAAAACCGAAGCGAACTGGGTGAACGTGATT






AGCGATCTGAAAAAAATTGAAGATCTGATTCAGAGCATGCAT






ATTGATGCGACCCTGTATACCGAAAGCGATGTGCATCCGAG






CTGCAAAGTGACCGCGATGAAATGCTTTCTGCTGGAACTGC






AGGTGATTAGCCTGGAAAGCGGCGATGCGAGCATTCATGA






TACCGTGGAAAACCTGATTATTCTGGCGAACAACAGCCTGA






GCAGCAACGGCAACGTGACCGAAAGCGGCTGCAAAGAATG






CGAAGAACTGGAAGAAAAAAACATTAAAGAATTTCTGCAGA






GCTTTGTGCATATTGTGCAGATGTTTATTAACACCAGC







HPV16 E6
ATGCACCAAAAGAGAACTGCAATGTTTCAGGACCCACAGGAGCGA
SEQ ID



CCCAGAAAGTTACCACAGTTATGCACAGAGCTGCAAACAACTATAC
NO: 19



ATGATATAATATTAGAATGTGTGTACTGCAAGCAACAGTTACTGCG




ACGTGAGGTATATGACTTTGCTTTTCGGGATTTATGCATAGTATATA




GAGATGGGAATCCATATGCTGTATGTGATAAATGTTTAAAGTTTTA




TTCTAAAATTAGTGAGTATAGACATTATTGTTATAGTTTGTATGGAA




CAACATTAGAACAGCAATACAACAAACCGTTGTGTGATTTGTTAAT




TAGGTGTATTAACTGTCAAAAGCCACTGTGTCCTGAAGAAAAGCAA




AGACATCTGGACAAAAAGCAAAGATTCCATAATATAAGGGGTCGG




TGGACCGGTCGATGTATGTCTTGTTGCAGATCATCAAGAACACGTA




GAGAAACCCAGCTGTAA






HPV16 E7
ATGCATGGAGATACACCTACATTGCATGAATATATGTTAGATTTGC
SEQ ID



AACCAGAGACAACTGATCTCTACTGTTATGAGCAATTAAATGACAG
NO: 20



CTCAGAGGAGGAGGATGAAATAGATGGTCCAGCTGGACAAGCAGA




ACCGGACAGAGCCCATTACAATATTGTAACCTTTTGTTGCAAGTGT




GACTCTACGCTTCGGTTGTGCGTACAAAGCACACACGTAGACATTC




GTACTTTGGAAGACCTGTTAATGGGCACACTAGGAATTGTGTGCCC




CATCTGTTCTCAGAAACCATAA






Human gene for
TTCTCAGAGTGGCTGCAGTCTCGCTGCTGGATGTGCACATGGTGGT
SEQ ID


granulocyte-
CATTCCCTCTGCTCACAGGGGCAGGGGTCCCCCCTTACTGGACTGA
NO: 21


macrophage
GGTTGCCCCCTGCTCCAGGTCCTGGGTGGGAGCCCATGTGAACTGT



colony
CAGTGGGGCAGGTCTGTGAGAGCTCCCCTCACACTCAAGTCTCTCT



stimulating
CACAGTGGCCAGAGAAGAGGAAGGCTGGAGTCAGAATGAGGCACC



factor (GM-CSF)
AGGGCGGGCATAGCCTGCCCAAAGGCCCCTGGGATTACAGGCAGG



GenBank:
ATGGGGAGCCCTATCTAAGTGTCTCCCACGCCCCACCCCAGCCATT



X03021.1
CCAGGCCAGGAAGTCCAAACTGTGCCCCTCAGAGGGAGGGGGCAG




CCTCAGGCCCATTCAGACTGCCCAGGGAGGGCTGGAGAGCCCTCAG




GAAGGCGGGTGGGTGGGCTGTCGGTTCTTGGAAAGGTTCATTAATG




AAAACCCCCAAGCCTGACCACCTAGGGAAAAGGCTCACCGTTCCCA




TGTGTGGCTGATAAGGGCCAGGAGATTCCACAGTTCAGGTAGTTCC




CCCGCCTCCCTGGCATTTTGTGGTCACCATTAATCATTTCCTCTGTG




TATTTAAGAGCTCTTTTGCCAGTGAGCCCAGCTACACAGAGAGAAA




GGCTAAAGTTCTCTGGAGGATGTGGCTGCAGAGCCTGCTGCTCTTG




GGCACTGTGGCCTGCAGCATCTCTGCACCCGCCCGCTCGCCCAGCC




CCAGCACGCAGCCCTGGGAGCATGTGAATGCCATCCAGGAGGCCC




GGCGTCTCCTGAACCTGAGTAGAGACACTGCTGCTGAGATGGTAAG




TGAGAGAATGTGGGCCTGTGCTAGGCACCAGTGGCCCTGACTGGCC




ACGCCTGTCAGCTTGATAACATGACATTTTCCTTTTCTACAGAATGA




AACAGTAGAAGTCATCTCAGAAATGTTTGACCTCCAGGTAAGATGC




TTCTCTCTGACATAGCTTTCCAGAAGCCCCTGCCCTGGGGTGGAGGT




GGGGACTCCATTTTAGATGGCACCACACAGGGTTGTCCACTTTCTCT




CCAGTCAGCTGGCTGCAGGAGGAGGGGGTAGCAACTGGGTGCTCA




AGAGGCTGCTGGCCGTGCCCCTATGGCAGTCACATGAGCTCCTTTA




TCAGCTGAGCGGCCATGGGCAGACCTAGCATTCAATGGCCAGGAGT




CACCAGGGGACAGGTGGTAAAGTGGGGGTCACTTCATGAGACAGG




AGCTGTGGGTTTGGGGCGCTCACTGTGCCCCGAGACCAAGTCCTGT




TGAGACAGTGCTGACTACAGAGAGGCACAGAGGGGTTTCAGGAA




CAACCCTTGCCCACCCAGCAGGTCCAGGTGAGGCCCCACCCCCCTC




TCCCTGAATGATGGGGTGAGAGTCACCTCCTTCCCTAAGGCTGGGC




TCCTCTCCAGGTGCCGCTGAGGGTGGCCTGGGCGGGGCAGTGAGAA




GGGCAGGTTCGTGCCTGCCATGGACAGGGCAGGGTCTATGACTGGA




CCCAGCCTGTGCCCCTCCCAAGCCCTACTCCTGGGGGCTGGGGGCA




GCAGCAAAAAGGAGTGGTGGAGAGTTCTTGTACCACTGTGGGCACT




TGGCCACTGCTCACCGACGAACGACATTTTCCACAGGAGCCGACCT




GCCTACAGACCCGCCTGGAGCTGTACAAGCAGGGCCTGCGGGGCA




GCCTCACCAAGCTCAAGGGCCCCTTGACCATGATGGCCAGCCACTA




CAAGCAGCACTGCCCTCCAACCCCGGTGAGTGCCTACGGCAGGGCC




TCCAGCAGGAATGTCTTAATCTAGGGGGTGGGGTCGACATGGGGAG




AGATCTATGGCTGTGGCTGTTCAGGACCCCAGGGGGTTTCTGTGCC




AACAGTTATGTAATGATTAGCCCTCCAGAGAGGAGGCAGACAGCCC




ATTTCATCCCAAGGAGTCAGAGCCACAGAGCGCTGAAGCCCACAGT




GCTCCCCAGCAGGAGCTGCTCCTATCCTGGTCATTATTGTCATTACG




GTTAATGAGGTCAGAGGTGAGGGCAAACCCAAGGAAACTTGGGGC




CTGCCCAAGGCCCAGAGGAAGTGCCCAGGCCCAAGTGCCACCTTCT




GGCAGGACTTTCCTCTGGCCCCACATGGGGTGCTTGAATTGCAGAG




GATCAAGGAAGGGAGGCTACTTGGAATGGACAAGGACCTCAGGCA




CTCCTTCCTGCGGGAAGGGAGCAAAGTTTGTGGCCTTGACTCCACT




CCTTCTGGGTGCCCAGAGACGACCTCAGCCCAGCTGCCCTGCTCTG




CCCTGGGACCAAAAAGGCAGGCGTTTGACTGCCCAGAAGGCCAAC




CTCAGGCTGGCACTTAAGTCAGGCCCTTGACTCTGGCTGCCACTGG




CAGAGCTATGCACTCCTTGGGGAACACGTGGGTGGCAGCAGCGTCA




CCTGACCCAGGTCAGTGGGTGTGTCCTGGAGTGGGCCTCCTGGCCT




CTGAGTTCTAAGAGGCAGTAGAGAAACATGCTGGTGCTTCCTTCCC




CCACGTTACCCACTTGCCTGGACTCAAGTGTTTTTTATTTTTCTTTTT




TTAAAGGAAACTTCCTGTGCAACCCAGATTATCACCTTTGAAAGTTT




CAAAGAGAACCTGAAGGACTTTCTGCTTGTCATCCCCTTTGACTGCT




GGGAGCCAGTCCAGGAGTGAGACCGGCCAGATGAGGCTGGCCAAG




CCGGGGAGCTGCTCTCTCATGAAACAAGAGCTAGAAACTCAGGATG




GTCATCTTGGAGGGACCAAGGGGTGGGCCACAGCCATGGTGGGAG




TGGCCTGGACCTGCCCTGGGCACACTGACCCTGATACAGGCATGGC




AGAAGAATGGGAATATTTTATACTGACAGAAATCAGTAATATTTAT




ATATTTATATTTTTAAAATATTTATTTATTTATTTATTTAAGTTCATA




TTCCATATTTATTCAAGATGTTTTACCGTAATAATTATTATTAAAAA




TATGCTTCTACTTGTCCAGTGTTCTAGTTTGTTTTTAACCATGAGCA




AATGCCAT






Human IL-12
MGHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYP
SEQ ID


fusion protein
DAPGEMVVLTCDTPEEDGITWTLDQSSEVLGSGKTLTIQV
NO: 34


(Linker
KEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDILKD



underlined)
QKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSS




RGSSDPQGVTCGAATLSAERVRGDNKEYEYSVECQEDSA




CPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDIIKPDPPKN




LQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQG




KSKREKKDRVFTDKTSATVICRKNASISVRAQDRYYSSSW






embedded image






RAVSNMLQKARQTLEFYPCTSEEIDHEDITKDKTSTVEAC




LPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSI




YEDSKMYQVEFKTMNAKLLMDPKRQIFLDQNMLAVIDEL




MQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRAV




TIDRVMSYLNAS






Human IL-15Ra-

MAPRRARGCRTLGLPALLLLLLLRPPATRG
DYKDDDDKI

SEQ ID


IL15 (signal

EGRITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKA

NO: 37


sequence
GTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPP



underlined, flag-


embedded image





tag in bold,

SHFLTEAGIHVFILGCFSAGLPKTEANWVNVISDLKKIEDLIQS




linker sequence

MHIDATLYTESDVHPSCKVTAMKCELLELQVISLESGDASIHD




double

TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVH




underlined,

IVQMFINTS




human IL-15




italics)







Human IL-15Ra-
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
SEQ ID


sushi
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPP
NO: 39


Human IL-15
MRISKPHLRSISIQCYLCLLLNSHFLTEAGIHVFILGCFSAGL
SEQ ID



PKTEANWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCK
NO: 40



VTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNG




NVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS






Human IL-12
MGHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYP
SEQ ID


p40 subunit
DAPGEMVVLTCDTPEEDGITWTLDQSSEVLGSGKTLTIQV
NO: 46



KEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDILKD




QKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSS




RGSSDPQGVTCGAATLSAERVRGDNKEYEYSVECQEDSA




CPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDIIKPDPPKN




LQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQG




KSKREKKDRVFTDKTSATVICRKNASISVRAQDRYYSSSW




SEWASVPCS






Human IL-12
ATGGGTCACCAGCAGTTGGTCATCTCTTGGTTTTCCCTGGTTT
SEQ ID


p40 subunit
TTCTGGCATCTCCCCTCGTGGCCATATGGGAACTGAAGAAAG
NO: 47



ATGTTTATGTCGTAGAATTGGATTGGTATCCGGATGCCCCTG




GAGAAATGGTGGTCCTCACCTGTGACACCCCTGAAGAAGAT




GGTATCACCTGGACCTTGGACCAGAGCAGTGAGGTCTTAGGC




TCTGGCAAAACCCTGACCATCCAAGTCAAAGAGTTTGGAGAT




GCTGGCCAGTACACCTGTCACAAAGGAGGCGAGGTTCTAAG




CCATTCGCTCCTGCTGCTTCACAAAAAGGAAGATGGAATTTG




GTCCACTGATATTTTAAAGGACCAGAAAGAACCCAAAAATA




AGACCTTTCTAAGATGCGAGGCCAAGAATTATTCTGGACGTT




TCACCTGCTGGTGGCTGACGACAATCAGTACTGATTTGACAT




TCAGTGTCAAAAGCAGCAGAGGCTCTTCTGACCCCCAAGGG




GTGACGTGCGGAGCTGCTACACTCTCTGCAGAGAGAGTCAG




AGGGGACAACAAGGAGTATGAGTACTCAGTGGAGTGCCAGG




AGGACAGTGCCTGCCCAGCTGCTGAGGAGAGTCTGCCCATTG




AGGTCATGGTGGATGCCGTTCACAAGCTCAAGTATGAAAACT




ACACCAGCAGCTTCTTCATCAGGGACATCATCAAACCTGACC




CACCCAAGAACTTGCAGCTGAAGCCATTAAAGAATTCTCGGC




AGGTGGAGGTCAGCTGGGAGTACCCTGACACCTGGAGTACT




CCACATTCCTACTTCTCCCTGACATTCTGCGTTCAGGTCCAGG




GCAAGAGCAAGAGAGAAAAGAAAGATAGAGTCTTCACGGAC




AAGACCTCAGCCACGGTCATCTGCCGCAAAAATGCCAGCATT




AGCGTGCGGGCCCAGGACCGCTACTATAGCTCATCTTGGAGC




GAATGGGCATCTGTGCCCTGCAGT






Human IL-12
RNLPVATPDPGMFPCLHHSQNLLRAVSNMLQKARQTLEF
SEQ ID


p35 subunit
YPCTSEEIDHEDITKDKTSTVEACLPLELTKNESCLNSRETS
NO: 48



FITNGSCLASRKTSFMMALCLSSIYEDSKMYQVEFKTMNA




KLLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSL




EEPDFYKTKIKLCILLHAFRIRAVTIDRVMSYLNAS






Human IL-12
AGAAACCTCCCCGTGGCCACTCCAGACCCAGGAATGTT
SEQ ID


p35 subunit
CCCATGCCTTCACCACTCCCAAAACCTGCTGAGGGCCGT
NO: 49



CAGCAACATGCTCCAGAAGGCCAGACAAACTCTAGAAT




TTTACCCTTGCACTTCTGAAGAGATTGATCATGAAGATA




TCACAAAAGATAAAACCAGCACAGTGGAGGCCTGTTTA




CCATTGGAATTAACCAAGAATGAGAGTTGCCTAAATTC




CAGAGAGACCTCTTTCATAACTAATGGGAGTTGCCTGG




CCTCCAGAAAGACCTCTTTTATGATGGCCCTGTGCCTTA




GTAGTATTTATGAAGACTCGAAGATGTACCAGGTGGAG




TTCAAGACCATGAATGCAAAGCTTCTGATGGATCCTAA




GAGGCAGATCTTTCTAGATCAAAACATGCTGGCAGTTA




TTGATGAGCTGATGCAGGCCCTGAATTTCAACAGTGAG




ACTGTGCCACAAAAATCCTCCCTTGAAGAACCGGATTTT




TATAAAACTAAAATCAAGCTCTGCATACTTCTTCATGCT




TTCAGAATTCGGGCAGTGACTATTGATAGAGTGATGAG




CTATCTGAATGCTTCCTAA






Human IL-15Ra
ATTACCTGCCCGCCGCCGATGAGCGTGGAACATGCGGA
SEQ ID


sushi domain
TATTTGGGTGAAAAGCTATAGCCTGTATAGCCGCGAAC
NO: 50



GCTATATTTGCAACAGCGGCTTTAAACGCAAAGCGGGC




ACCAGCAGCCTGACCGAATGCGTGCTGAACAAAGCGAC




CAACGTGGCGCATTGGACCACCCCGAGCCTGAAATGCA




TTCGCGATCCGGCGCTGGTGCATCAGCGCCCGGCGCCG




CCG






Human IL-15
ATGCGCATTAGCAAACCGCATCTGCGCAGCATTAGCAT
SEQ ID



TCAGTGCTATCTGTGCCTGCTGCTGAACAGCCATTTTCT
NO: 51



GACCGAAGCGGGCATTCATGTGTTTATTCTGGGCTGCTT




TAGCGCGGGCCTGCCGAAAACCGAAGCGAACTGGGTGA




ACGTGATTAGCGATCTGAAAAAAATTGAAGATCTGATT




CAGAGCATGCATATTGATGCGACCCTGTATACCGAAAG




CGATGTGCATCCGAGCTGCAAAGTGACCGCGATGAAAT




GCTTTCTGCTGGAACTGCAGGTGATTAGCCTGGAAAGC




GGCGATGCGAGCATTCATGATACCGTGGAAAACCTGAT




TATTCTGGCGAACAACAGCCTGAGCAGCAACGGCAACG




TGACCGAAAGCGGCTGCAAAGAATGCGAAGAACTGGA




AGAAAAAAACATTAAAGAATTTCTGCAGAGCTTTGTGC




ATATTGTGCAGATGTTTATTAACACCAGC
















TABLE 6





OTHER SEQUENCES



















Linker
VPGXG, wherein X is any 
SEQ ID




amino acid except
NO: 22




proline








Elastin-like
VPGXGVPGXG, wherein X
SEQ ID



polypeptide
is any amino acid
NO: 23



sequence
except proline








APMV-1
G-R-Q-G-R↓L
SEQ ID



LaSota

NO: 24







APMV-2
K-P-A-S-R↓F
SEQ ID



Yucaipa

NO: 25







APMV-3
R-P-S-G-R↓L
SEQ ID



Wisconsin

NO: 26







APMV-4
D-I-Q-P-R↓F
SEQ ID



Hong-Kong

NO: 27







APMV-6
K-R-K-K-R↓F
SEQ ID



Hong-Kong

NO: 28







APMV-7
L-P-S-S-R↓F
SEQ ID



Tennessee

NO: 29







APMV-8
Y-P-Q-T-R↓L
SEQ ID



Delaware

NO: 30







APMV-9
I-R-E-G-R↓I
SEQ ID



New York

NO: 31







Mlu I
ACGCGT
SEQ ID



restriction 

NO: 32



site









Kozak
CCGCCACC
SEQ ID



sequence

NO: 33







Linker
GGGGGGS
SEQ ID





NO: 35







Linker
SGGSGGGGSGGGSGGGGS
SEQ ID




LQ
NO: 36







Flag tag
DYKDDDDKIEGR
SEQ ID





NO: 38







Signal
MAPRRARGCRTLGLPAL
SEQ ID



sequence
LLLLLLRPPATRG
NO: 41



(IL-15





signal





sequence)









Linker
AGCGGCGGCAGCGGCGGCG
SEQ ID




GCGGCAGCGGCGGCGGCAG
NO: 42




CGGCGGCGGCGGCAGCCTG





CAG








Signal
ATGGCGCCGCGCCGCGCGC
SEQ ID



sequence
GCGGCTGCCGCACCCTGGG
NO: 43




CCTGCCGGCGCTGCTGCTG





CTGCTGCTGCTGCGCCCGC





CGGCGACCCGCGGC








Flag tag
GATTATAAAGATGATGATG
SEQ ID




ATAAAATTGAAGGCCGC
NO: 44







Linker
GGTGGCGGTGGCGGCGGAT
SEQ ID




CT
NO: 45










6. EXAMPLE: ANTI-TUMOR PROPERTIES OF AVIAN PARAMYXOVIRUSES

This example demonstrates the efficacy of using APMV strains (especially, APMV-4 strains) to treat cancer. In particular, this example demonstrates that the use of APMV-4 Duck/Hong Kong/D3/1975 results in statistically significant anti-tumor activity in different animal models for various tumors.


6.1 Materials & Methods
6.1.1 Cell lines, Antibodies and Other Reagents

B16-F10 (mouse skin melanoma cells; ATCC Cat # CRL-6475, 2016), TC-1 (lung carcinoma; Johns Hopkins University, Baltimore, MD) and CT26 (murine colon carcinoma; ATCC Cat# CRL-2639, 2016) were maintained in DMEM or RPMI medium supplemented with 10% FBS (fetal bovine serum) and 2% penicillin and streptomycin). B16-F10, CT26 and TC-1 master cell-banks were created after purchase and early-passage cells were thawed in every experimental step. Once in culture, cells were maintained not longer than 8 weeks to guarantee genotypic stability and were monitored by microscopy. Required IMPACT test for in vivo experiments of the master-cell bank was performed by the Center for Comparative Medicine and Surgery at Icahn School of Medicine at Mt Sinai (Mount Sinai Hospital, New York, N.Y.). Reduced serum media Opti-MEM™ (Gibco™) was used as an in vitro viral infection medium. Rabbit polyclonal serum to NDV was previously described [14]. Avian paramyxovirus serotype-specific antiserums (type-2 471-ADV, type-3 473-ADV, type-4 475-ADV, type-6 479-ADV, type-7 481-ADV, type-8 483-ADV and type-9 485-ADV, 2017) were purchased from the National Veterinary Services Laboratories, United States Department of Agriculture (USDA, Ames, Iowa). Goat anti-chicken, Alexa-conjugated secondary antibody (Alexa-568, A-11041) was from Thermo Fisher. Hoechst 33258 nuclear staining reagent was purchased from Invitrogen (Molecular Probes, Eugene, Oreg.). CellTiter-Fluor™ cell viability assay (G608) was purchased from Promega.


6.1.2 Viruses

Modified Newcastle disease virus LaSota-L289A was generated in house and already tested as a therapeutic vector [43]. APMVs prototypes APMV-2 Chicken/California/Yucaipa/1956 (171ADV9701), APMV-3 Turkey/Wisconsin/1968 (173ADV9701), APMV-4 Duck/Hong Kong/D3/1975 (175ADV0601), APMV-6 Duck/Hong Kong/199/1977 (176ADV8101), APMV-7 Dove/Tennessee/4/1975(181ADV8101), APMV-8 Goose/Delaware/1053/1976 (none; 10/27/1986) and APMV-9 Duck/New york/22/1978 (185ADV 0301) were obtained from National Veterinary Services Laboratories, United States Department of Agriculture (USDA, Ames, Iowa). Viral stocks were propagated in 8 or 9 days embryonated chicken eggs and clear purified from the allantoic fluid. Viral titers were calculated by Hemagglutination assay (HA) using chicken blood (Lampire laboratories).


6.1.3 In Vitro Cell Viability Assay

B16-F10 cells were cultured at a confluence of 80% in 96 well dishes and infected at an MOI of 1 PFU/cell of the indicated virus. Viral suspension was removed lh post infection and cells were incubated in 100 μl of supplemented DMEM. 24 hours after infection, equal volume of the CellTiter-Fluor™ reagent (100 μl) was added to each well and cells were subsequently incubated 1 hour at 37° C. under restricted light conditions. The resulting fluorescence of each sample was recorded (400 nmEx/505 nmEmwavelength) using a Synergy H1 micro-plate reader (BioTek). Survival rate was calculated in reference to the viability of mock-infected cells (negative control). Survival rate (%)=[Fluor505nm infected-sample/Fluor505nm mock-infected sample]×100.


6.1.4 Fluorescence Microscopy

For indirect immunofluorescence staining, cells seeded in 96-well standard plates were infected for 1 h at an MOI of 1 PFU/cell in Opti-MEM™, after which the inoculum was removed and replaced with 100 μl of DMEM-FBS-P/S. At 20 hours post-infection cells were fixed with 2.5% paraformaldehyde for 15 minutes. Cell-membrane permeabilization was carried out using 0.2% Triton-PBS and blocked in PBS 1% BSA for 1 h. Primary antibodies were incubated with the samples for 1 h at room temperature. Secondary antibodies (goat anti-chicken Alexa Fluor 568, goat anti-rabbit Alexa Fluor 488; purchased from Invitrogen, USA) were used at a 1:1000 dilution for 45 minutes prior to imaging using an EVOS FL cell imagine system (Thermo Fisher).


6.1.5 Syngeneic Tumor Model

BALBc and C57/BL6J female mice 4-6 weeks of age used in all in vivo studies were purchased from Jackson Laboratory (Bar Harbor, ME). A B16-F10, TC-1 and CT26 cell suspension of 2.5×105 cells (in 100 μl of PBS) was intradermally implanted into the flank of the right posterior leg of each C57B1/6 (melanoma and lung carcinoma) or BALBc (colon carcinoma) mouse. After 7-10 days, the mice were treated by intratumoral injection of 5×106 PFU of the indicated virus or PBS. The intratumoral injections were administered every 24 hours for a total of four treatment doses. Tumor volume was monitored every 48 hours or every 24 hours when the last volume estimation was approaching the experimental endpoint of 1000 mm3. Mice were humanely euthanized the day in which the volume exceeded the predefined endpoint. Tumor measurement was determined using a digital caliper and total volume was calculated using the formula: Tumor volume (V)=L×W2, where L, or tumor length, is the larger diameter, and W, or tumor width, is the smaller diameter.


6.1.6 Statistical Analysis

Statistical significance between results from triplicate samples was determined by one way-Anova (Dunnett's Multiple comparisons test). The results are expressed as mean value and standard deviations (SD). Comparative of survival curves for in syngeneic tumor models was performed using the long-rank (Mantel-Cox) test.


6.2 Results
6.2.1 Infectivity and Cytotoxicity of APMVs in B16-F10 Murine Melanoma Cancer Cell Line

The capacity of the selected representative APMV strains (Table 4) to infect B16-F10 murine melanoma cancer cells was assessed. B16-F10 monolayers were exposed over 20 hours to a viral suspension containing 2×105 ffu/ml of each of the chosen viruses (the equivalent to an MOI or multiplicity of infection of 1). The previously characterized lentogenic LaSota virus (APMV-1 serotype) was used as positive reference of infectivity and mock-infected cells were used as a negative control. After 20 hours of incubation, the samples were processed to detect the presence of viral antigens in infected cells by immunostaining. Positive fluorescence signal was detected in all the samples treated with the selected APMVs (FIG. 1A), demonstrating the susceptibility of the murine B16-F10 cancer cell line to be infected by avian avulaviruses other than NDV.


To evaluate the cytotoxic effect attained by the different serotypes, B16-F10 monolayers were infected at an MOI of 1 and incubated for 24 hours. Loss of viability was quantified as described above. Fluorometric analysis of the samples show that only APMV-9 and -4 prototypes were able to reduce cell viability to a similar extent as the LaSota virus, whereas the rest of the tested strains did not show relevant impact in cell viability at 24 hours after infection (FIG. 1B).









TABLE 4







APMV Serotypes and Prototype Viruses Included in the Study












SEQUENCE
HA


SERO-

ACCESSION
TI-


TYPE
STRAIN
NUMBER
TERS*





APMV-2
Chicken/California/Yucaipa/1956
EU338414.1
6-7


APMV-3
Turkey/Wisconsin/1968
EU782025.1
7


APMV-4
Duck/Hong Kong/D3/1975
FJ177514.1
7


APMV-6
Duck/Hong Kong/199/1977
EU622637.2
7-8


APMV-7
Dove/Tennessee/4/1975
FJ231524.1
8


APMV-8
Goose/Delaware/1053/1976
FJ619036.1
7


APMV-9
Duck/New York/22/1978
NC_025390.1
7-8





*Chicken red blood cells


Viruses were propagated in the allantoic cavity of embryonated, 8 days old, chicken eggs (SPF)






The pathogenicity in chickens of the selected APMVs included in the study are detailed in Table 5.









TABLE 5







Pathogenicity associated to the selected APMVS included in the study










F PROTEIN



SEROTYPE
CLEAVAGE



STRAIN
SITE
PATHOGENICITY IN CHICKENS





APMV-1
G-R-Q-G-R↓L
Avirulent: no neurodegenerative disease,


LaSota
(SEQ ID NO: 24)
mild respiratory complications,




drop in egg production: Could grow




to 210HA units in eggs. [84]




MDT: 112 h




ICP: 0





APMV-2
K-P-A-S-R↓F
Avirulent: no neurodegenerative disease


Yucaipa
(SEQ ID NO: 25)
(ICP in 1 day old chickens); mild




respiratory complications, drop in




egg production; Could grow to 212HA




units in eggs. [85]




MDT > 168 h




ICP: 0





APMV-3
R-P-S-G-R↓L
No natural infections in chickens;


Wisconsin
(SEQ ID NO: 26)
Could grow to 28HA units in 9 days




old eggs [86]




MDT > 168 h




ICP: 0





APMV-4
D-I-Q-P-R↓F
Avirulent; No disease in a day or


Hong-Kong
(SEQ ID NO: 27)
three-week-old chickens. Could growth




to high titers in eggs. [84]




MDT > 144 h




ICP: 0





APMV-6
K-R-K-K-R↓F
Avirulent. [84]


Hong-Kong
(SEQ ID NO: 28)
MDT > 168 h




ICP:0





APMV-7
L-P-S-S-R↓F
Av irulent. [84]


Tennessee
(SEQ ID NO: 29)
MDT > 144 h




ICP: 0





APMV-8
Y-P-Q-T-R↓L
Avirulent; Could grow to 28HA units


Delaware
(SEQ ID NO: 30)
in eggs. [84]




MDT > 144 h




ICP: 0





APMV-9
I-R-E-G-R↓I
Avirulent: [84]


New York
(SEQ ID NO: 31)
MDT in eggs is more than 120 h




ICP: 0





MDT: Mean embryo Death Time is the mean time in hours for the minimal lethal dose to kill inoculated embryos. Virulent, 60 h; intermediate 60-90 h; avirulent > 90 h


ICP: Intracerebral pathogenicity index: evaluation of disease and death following intracerebral inoculation in 1-day-old SPF chicks. Virulent 1,5-2; intermediate 0.7-1.5; avirulent strains 0.7-0.0.






6.2.2 In Vivo Anti-Tumor Activities of APMVs in a Syngeneic Murine Melanoma Model

B16-F10 murine melanoma cells were intradermally implanted in the flank of the posterior right leg of C57BL/6 female mice. Tumors were allowed to develop for 10 days after which time the animals were intratumorally treated every other day with a total of four doses of 5×106 PFU of La Sota-L289A or APMVs prototypes, or PBS for control mice (days 0, 2, 4 and 6; n=5 for each treatment group). The previously characterized LaSota-L289A virus (APMV-1 serotype) was used as positive reference of anti-tumor activity and a PBS mock-treated group was used as control of tumor growth. Tumor volume was monitored every 48 hours or every 24 hours when approaching the experimental end point of 1,000 mm3, after which mice were euthanized. FIG. 2A depicts tumor volume of individual mice at the indicated time points. FIG. 2B depicts the average tumor volume per experimental group at the indicated time points. Administration of the avulavirus prototypes controlled to some extent tumor growth early during treatment when compared to the PBS treated group, with the only exception being APMV-9. Only three of the avulavirus serotypes exerted prolonged anti-tumor activity: APMV -7, APMV-8, and APMV-4. APMV-7 and -8 treated groups showed delayed tumor growth and extended survival as compared to control at a similar rate as the reference LaSota-L289A virus. APMV-4 treated mice exhibited a profound inhibition in tumor growth and a statistically significant increase in survival time when compared to the reference LaSota-L289A virus (FIG. 2C). Error bars correspond to standard deviation of each group. (*, p<0.03).


6.2.3 Oncolytic Capacity of APMVs in a Syngeneic Murine Colon Carcinoma Model

CT26 cells were implanted in the flank of the posterior right leg of BALBc mice. Starting on day 7 after tumor cell line injection, the animals were intratumorally treated every other day with a total of four doses of 5×106 PFU of La Sota-L289A or APMVs prototypes, or PBS for control mice (days 0, 2, 4 and 6; n=5 for each treatment group). Tumor volume was monitored every 48 hours and then every 24 hours when approaching the experimental end point of 1,000 mm3, after which mice were euthanized. FIG. 3A depicts tumor growth of individual mice at the indicated time points. FIG. 3B depicts the average tumor volume of each treatment group at the indicated time points. Murine colon carcinoma was more susceptible to APMV induced-therapy than the melanoma model discussed above. All the APMV-treated groups exhibit a beneficial clinical response as demonstrated by the control of tumor growth and extended survival, when compared to the mock treated PBS group (FIGS. 3A and 3B). Furthermore, with the exception of APMV-3 and APMV-7, treatment with the selected APMV virus strains induced complete tumor remission (CR) in at least one animal in each treatment group. The APMV-4 and APMV-8 groups exhibited the best therapeutic response of the strains tested, where 4 out of 5 mice administered APMV-4 exhibited complete tumor remission and 3 out of 5 mice administered APMV-8 exhibited complete tumor remission (FIG. 3C).


On experimental day 130, tumor-free survivors were re-challenged by intradermal injection of 5×105 CT26 cells in the flank of the posterior left leg (contralateral). As shown in FIG. 3D, APMV-4 re-challenged mice (4 out of 4) as well as LS-L289A′ single survivor displayed full protection against colon carcinoma development, which lasted for the extent of the long-term survival study (day 300). Contralateral tumor development was observed in 1 out of 3 of the re-challenge mice within the APMV-6, APMV-8 and APMV-9 experimental groups. No protection against re-challenge was observed in the APMV-2 treated group.


6.2.4 Oncolytic Capacity of APMV-4 in a Syngeneic Murine Lung Carcinoma Model

TC-1 cells were implanted in the flank of the posterior right leg of C57BL/6 mice. Starting on day 10 after tumor cell line injection, the animals were intratumorally treated every other day with a total of four doses of 5×106 PFU of La Sota-L289A or APMV-4 Duck/Hong Kong/D3/1975, or PBS for control mice (days 0, 2, 4 and 6; n=5 for each treatment group). Tumor volume was monitored every 48 hours and then 24 hours when approaching the experimental end point of 1,000 mm3, at which time the mice were euthanized. FIG. 4A depicts tumor growth of individual mice at the indicated time points. FIG. 4B depicts the average tumor volume of each treatment group at the indicated time points. The overall survival of treated TC-1 tumor-bearing mice is shown in FIG. 4C (**, p<0.03). These data demonstrate that treatment with APMV-4 Duck/Hong Kong/D3/1975 strain results in enhanced antitumor response when compared to the LaSota-L289A APMV-1 strain and mock PBS treated groups. In this refractory tumor model, the response to APMV-4 oncolytic therapy features statistically significant control of tumor growth and prolonged survival.


6.2.5 References Cited in Background (Section 2) and Section 6



  • 1. Lamb R A, & Parks, G. D. 2013. Paramyxoviridae: the viruses and their replication, 6th ed, vol 1. Lippincott, Williams, and Wilkins, Philadelphia.

  • 2. Shnyrova A V, Ayllon J, Mikhalyov, II, Villar E, Zimmerberg J, Frolov V A. 2007. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. J Cell Biol 179:627-633.

  • 3. Alexander D. 2003. Paramyxoviridae, 11th ed. Iowa State University Press, Iowa.

  • 4. Afonso C L, Amarasinghe G K, Banyai K, Bao Y, Basler C F, Bavari S, Bejerman N, Blasdell K R, Briand F X, Briese T, Bukreyev A, Calisher C H, Chandran K, Cheng J, Clawson A N, Collins P L, Dietzgen R G, Dolnik O, Domier L L, Durrwald R, Dye J M, Easton A J, Ebihara H, Farkas S L, Freitas-Astua J, Formenty P, Fouchier R A, Fu Y, Ghedin E, Goodin M M, Hewson R, Hone M, Hyndman T H, Jiang D, Kitajima E W, Kobinger G P, Kondo H, Kurath G, Lamb R A, Lenardon S, Leroy E M, Li CX, Lin X D, Liu L, Longdon B, Marton S, Maisner A, Muhlberger E, Netesov S V, Nowotny N, et al. 2016. Taxonomy of the order Mononegavirales: update 2016. Arch Virol, 161:2351-2360.

  • 5. Gogoi P, Ganar K, Kumar S. 2017. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 64:53-67.

  • 6. Hines N L, Miller C L. 2012. Avian paramyxovirus serotype-1: a review of disease distribution, clinical symptoms, and laboratory diagnostics. Vet Med Int 2012:708216.

  • 7. Ganar K, Das M, Sinha S, Kumar S. 2014. Newcastle disease virus: current status and our understanding. Virus Res 184:71-81.

  • 8. Senne D A, King D J, Kapczynski D R. 2004. Control of Newcastle disease by vaccination. Dev Biol (Basel) 119:165-170.

  • 9. Dortmans J C, Peeters B P, Koch G. 2012. Newcastle disease virus outbreaks: vaccine mismatch or inadequate application? Vet Microbiol 160:17-22.

  • 10. Dortmans J C, Koch G, Rottier P J, Peeters B P. 2011. Virulence of Newcastle disease virus: what is known so far? Vet Res 42:122.

  • 11. Elmberg J, Berg C, Lerner H, Waldenstrom J, Hessel R. 2017. Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective. Infect Ecol Epidemiol 7:1300450.

  • 12. Park M S, Shaw M L, Munoz-Jordan J, Cros J F, Nakaya T, Bouvier N, Palese P, Garcia-Sastre A, Basler C F. 2003. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77:1501-1511.

  • 13. Wilden H, Fournier P, Zawatzky R, Schirrmacher V. 2009. Expression of RIG-I, IRF3, IFN-beta and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. Int J Oncol 34:971-982.

  • 14. Park M S, Garcia-Sastre A, Cros J F, Basler C F, Palese P. 2003. Newcastle disease virus V protein is a determinant of host range restriction. J Virol 77:9522-9532.

  • 15. Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V, Momburg F. 2009. Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J Virol 83:8108-8121.

  • 16. Ginting T E, Suryatenggara J, Christian S, Mathew G. 2017. Proinflammatory response induced by Newcastle disease virus in tumor and normal cells. Oncolytic Virother 6:21-30.

  • 17. Schirrmacher V, Fournier P. 2009. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol 542:565-605.

  • 18. Kapczynski D R, Afonso C L, Miller P J. 2013. Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol 41:447-453.

  • 19. Schirrmacher V, Ahlert T, Probstle T, Steiner H H, Herold-Mende C, Gerhards R, Hagmuller E, Steiner H H. 1998. Immunization with virus-modified tumor cells. Semin Oncol 25:677-696.

  • 20. Romer-Oberdorfer A, Mundt E, Mebatsion T, Buchholz U J, Mettenleiter T C. 1999. Generation of recombinant lentogenic Newcastle disease virus from cDNA. J Gen Virol 80 (Pt 11):2987-2995.

  • 21. Peeters B P, de Leeuw O S, Koch G, Gielkens A L. 1999. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73:5001-5009.

  • 22. Nakaya T, Cros J, Park M-S, Nakaya Y, Zheng H, Sagrera A, Villar E, Garcia-Sastre A, Palese P. 2001. Recombinant Newcastle disease virus as a vaccine vector. J Virol 75:11868-11873.

  • 23. Maamary J, Array F, Gao Q, Garcia-Sastre A, Steinman R M, Palese P, Nchinda G. 2011. Newcastle disease virus expressing a dendritic cell-targeted HIV gag protein induces a potent gag-specific immune response in mice. J Virol 85:2235-2246.

  • 24. Park M S, Steel J, Garcia-Sastre A, Swayne D, Palese P. 2006. Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proc Natl Acad Sci USA 103:8203-8208.

  • 25. Swayne D E, Suarez D L, Schultz-Cherry S, Tumpey T M, King D J, Nakaya T, Palese P, Garcia-Sastre A. 2003. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Avian Dis 47:1047-1050.

  • 26. Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, Cros J, Mertz S E, Jewell N A, Hammond S, Flano E, Durbin R K, Garcia-Sastre A, Durbin J E. 2006. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J Virol 80:1130-1139.

  • 27. Fournier P, Arnold A, Schirrmacher V. 2009. Polarization of human monocyte-derived dendritic cells to DC1 by in vitro stimulation with Newcastle Disease Virus. J BUON 14 Suppl 1:S111-122.

  • 28. Carnero E, Li W, Borderia A V, Moltedo B, Moran T, Garcia-Sastre A. 2009. Optimization of human immunodeficiency virus gag expression by newcastle disease virus vectors for the induction of potent immune responses. J Virol 83:584-597.

  • 29. Schirrmacher V. 2016. Fifty Years of Clinical Application of Newcastle Disease Virus: Time to Celebrate! Biomedicines 4.

  • 30. Cuadrado-Castano S, Sanchez-Aparicio M T, Garcia-Sastre A, Villar E. 2015. The therapeutic effect of death: Newcastle disease virus and its antitumor potential. Virus Res 209:56-66.

  • 31. Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V. 2006. Tumor selective replication of Newcastle disease virus: association with defects of tumor cells in antiviral defence. Int J Cancer 119:328-338.

  • 32. Washburn B, Schirrmacher V. 2002. Human tumor cell infection by Newcastle Disease Virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol 21:85-93.

  • 33. Lam H Y, Yeap S K, Rasoli M, Omar A R, Yusoff K, Suraini A A, Alitheen N B. 2011. Safety and clinical usage of newcastle disease virus in cancer therapy. J Biomed Biotechnol 2011:718710.

  • 34. Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C. 1999. Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther 6:63-73.

  • 35. Cassel W A, Garrett R E. 1965. Newcastle Disease Virus as an Antineoplastic Agent. Cancer 18:863-868.

  • 36. Wheelock E F, Dingle J H. 1964. Observations on the Repeated Administration of Viruses to a Patient with Acute Leukemia. A Preliminary Report. N Engl J Med 271:645-651.

  • 37. Pecora A L, Rizvi N, Cohen G I, Meropol N J, Sterman D, Marshall J L, Goldberg S, Gross P, O'Neil J D, Groene W S, Roberts M S, Rabin H, Bamat M K, Lorence R M. 2002. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20:2251-2266.

  • 38. Csatary L K, Gosztonyi G, Szeberenyi J, Fabian Z, Liszka V, Bodey B, Csatary C M. 2004. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol 67:83-93.

  • 39. Freeman A I, Zakay-Rones Z, Gomori J M, Linetsky E, Rasooly L, Greenbaum E, Rozenman-Yair S, Panet A, Libson E, Irving C S, Galun E, Siegal T. 2006. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13:221-228.

  • 40. Heicappell R, Schirrmacher V, von Hoegen P, Ahlert T, Appelhans B. 1986. Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optimal therapeutic effects. Int J Cancer 37:569-577.

  • 41. Lorence R M, Rood P A, Kelley K W. 1988. Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-alpha and augmentation of its cytotoxicity. J Natl Cancer Inst 80:1305-1312.

  • 42. Steiner H H, Bonsanto M M, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D, Bauer H, Kiessling M, Kunze S, Schirrmacher V, Herold-Mende C. 2004. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22:4272-4281.

  • 43. Liang W, Wang H, Sun T M, Yao W Q, Chen L L, Jin Y, Li C L, Meng F J. 2003. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J Gastroenterol 9:495-498.

  • 44. Karcher J, Dyckhoff G, Beckhove P, Reisser C, Brysch M, Ziouta Y, Helmke B H, Weidauer H, Schirrmacher V, Herold-Mende C. 2004. Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells. Cancer Res 64:8057-8061.

  • 45. Pomer S, Schirrmacher V, Thiele R, Lohrke H, Brkovic D, Staehler G. 1995. Tumor response and 4 year survival-data of patients with advanced renal-cell carcinoma treated with autologous tumor vaccine and subcutaneous R-IL-2 and IFN-alpha(2b). Int J Oncol 6:947-954.

  • 46. Bohle W, Schlag P, Liebrich W, Hohenberger P, Manasterski M, Moller P, Schirrmacher V. 1990. Postoperative active specific immunization in colorectal cancer patients with virus-modified autologous tumor-cell vaccine. First clinical results with tumor-cell vaccines modified with live but avirulent Newcastle disease virus. Cancer 66:1517-1523.

  • 47. Bai L, Koopmann J, Fiola C, Fournier P, Schirrmacher V. 2002. Dendritic cells pulsed with viral oncolysates potently stimulate autologous T cells from cancer patients. Int J Oncol 21:685-694.

  • 48. Schirrmacher V, Fournier P. 2014. Multimodal cancer therapy involving oncolytic Newcastle disease virus, autologous immune cells, and bi-specific antibodies. Front Oncol 4:224.

  • 49. Schirrmacher V, Bihari A S, Stucker W, Sprenger T. 2014. Long-term remission of prostate cancer with extensive bone metastases upon immuno- and virotherapy: A case report. Oncol Lett 8:2403-2406.

  • 50. Zamarin D, Holmgaard R B, Subudhi S K, Park J S, Mansour M, Palese P, Merghoub T, Wolchok J D, Allison J P. 2014. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6:226ra232.

  • 51. Zamarin D, Holmgaard R B, Ricca J, Plitt T, Palese P, Sharma P, Merghoub T, Wolchok J D, Allison J P. 2017. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun 8:14340.

  • 52. Li P, Chen C H, Li S, Givi B, Yu Z, Zamarin D, Palese P, Fong Y, Wong R J. 2011. Therapeutic effects of a fusogenic newcastle disease virus in treating head and neck cancer. Head Neck 33:1394-1399.

  • 53. Zamarin D, Palese P. 2012. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7:347-367.

  • 54. Cuadrado-Castano S, Ayllon J, Mansour M, de la Iglesia-Vicente J, Jordan S, Tripathi S, Garcia-Sastre A, Villar E. 2015. Enhancement of the proapoptotic properties of newcastle disease virus promotes tumor remission in syngeneic murine cancer models. Mol Cancer Ther 14:1247-1258.

  • 55. Zamarin D, Vigil A, Kelly K, Garcia-Sastre A, Fong Y. 2009. Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Ther 16:796-804.

  • 56. Zamarin D, Martinez-Sobrido L, Kelly K, Mansour M, Sheng G, Vigil A, Garcia-Sastre A, Palese P, Fong Y. 2009. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther 17:697-706.

  • 57. Zhao H, Janke M, Fournier P, Schirrmacher V. 2008. Recombinant Newcastle disease virus expressing human interleukin-2 serves as a potential candidate for tumor therapy. Virus Res 136:75-80.

  • 58. Vigil A, Martinez O, Chua M A, Garcia-Sastre A. 2008. Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol Ther 16:1883-1890.

  • 59. Vigil A, Park M S, Martinez O, Chua M A, Xiao S, Cros J F, Martinez-Sobrido L, Woo S L, Garcia-Sastre A. 2007. Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 67:8285-8292.

  • 60. Sergel T A, McGinnes L W, Morrison T G. 2000. A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion. J Virol 74:5101-5107.

  • 61. Doyle, T., 1927:A hitherto unrecorded disease of fowls due to a filter-passing virus. J. Comp. Pathol. Ther. 40,144-169.

  • 62. Bankowski, R. A., J. Almquist and J. Dombrucki, 1981: Effect of paramyxovirus Yucaipa on fertility, hatchability, and poult yield of turkeys. AvianDis. 25, 517-520.

  • 63. Tumova, B., J. H. Robinson, and B. C. Easterday, 1979: A hitherto unreported paramyxovirus of turkeys. Res. Vet. Sci. 27,135-140.

  • 64. Andral, B., and D. Toquin, 1984: Isolation of avian paramyxovirus 2 and 3 from turkeys in Brittany. Vet. Rec. 114,570-571.

  • 65. Alexander, D. J., and N. J. Chettle, 1978: Relationship of parakeet/Netherlands/449/75 virus to other avianparamyxovirus-es. Res. Vet. Sci. 25,105-106.

  • 66. Webster, R. G., M. Morita, C. Pridgen and B. Tumova, 1976: Ortho-and paramyxoviruses from migrating feral ducks: characterization of a new group of influenza A viruses. J. Gen. Virol. 32,217-225.

  • 67. Abolnik, C., M. de Castro and J. Rees, 2012: Full genomic sequence of an African avian paramyxovirus type 4 strain isolated from a wild duck. VirusGenes 45,537-541.

  • 68. Mustaffa Babjee, A., P. B. Spradbrow and J. L. Samuel, 1974: A pathogenic paramyxovirus from a budgerigar (Melopsittacus undulatus). AvianDis. 18, 226-230.

  • 69. Boisseau, J., 1993: Basis for the evaluation of the microbiological risks due to veterinary drug residues in food. Vet. Microbiol. 35,187-192.

  • 70. Shortridge, K. F., D. J. Alexander, and M. S. Collins, 1980: Isolation and properties of viruses from poultry in HongKong which represent a new (sixth) distinct group of avian para-myxoviruses. J. Gen. Virol. 49,255-262.

  • 71. Stanislawek, W. L., C. R. Wilks, J. Meers, G. W. Horner, D. J. Alexander, R. J. Manvell, J. A. Kattenbelt and A. R. Gould, 2002: Avian paramyxoviruses and influenza viruses isolated from mallard ducks (Anasplatyrhynchos) in New Zealand. Arch. Virol. 147,1287-1302.

  • 72. Alexander, D. J., V. S. Hinshaw and M. S. Collins, 1981: Characterization of viruses from doves representing a new serotype of avian paramyxoviruses. Arch. Virol.68,265-269.

  • 73. Saif, Y. M., R. Mohan, L. Ward, D. A. Senne, B. Panigrahy and R. N. Dearth, 1997: Natural and experimental infection of turkeys with avian paramyxovirus-7. AvianDis. 41,326-329.

  • 74. Woolcock, P. R., J. D. Moore, M. D. McFarland and B. Panigrahy, 1996: Isolation of paramyxovirus serotype 7 from ostriches(Struthiocamelus). AvianDis.40,945-949.

  • 75. Yamane, N., J. Arikawa, T. Odagiri and N. Ishida, 1982: Characterization of avian paramyxoviruses isolated from feral ducks in northern Japan: the presence of three distinct viruses innature. Microbiol. Immunol. 26,557-568.

  • 76. Cloud, S., and J. Rosenberger, 1980: Characterization of nine avian paramyxoviruses. AvianDis. 24,139-152.

  • 77. Capua, I., R. DeNardi, M. S. Beato, C. Terregino, M. Scremin and V. Guberti, 2004: Isolation of an avian paramyxovirus type 9 from migratory waterfowl in Italy. Vet. Rec. 155,156.

  • 78. Sandhu, T. and V. Hinshaw, 1981: Influenza A virus infection of domestic ducks. AvianDis. 47,93-99.

  • 79. Miller, P. J., C. L. Afonso, E. Spackman, M. A. Scott, J. C. Pedersen, D. A. Senne, J. D. Brown, C. M. Fuller, M. M. Uhart, W. B. Karesh, I. H. Brown, D. J. Alexander and D. E. Swayne, 2010: Evidence for a new avian paramyxovirus serotype 10 detected in rockhopper penguins from the Falkland Islands. J.Virol. 84,11496-11504.

  • 80. Briand, F. X., A. Henry, P. Massin and V. Jestin, 2012: Complete genome sequence of a novel avian paramyxovirus. J. Virol. 86,7710.

  • 81. Terregino, C., E. W. Aldous, A. Heidari, C. M. Fuller, R. DeNardi, R. J. Manvell, M. S. Beato, W. M. Shell, I. Monne, I. H. Brown, D. J. Alexander and I. Capua, 2013: Antigenic and genetic analyses of isolate APMV/wigeon/Italy/3920-1/2005 indicate that it represents a new avian paramyxovirus (APMV-12). Arch. Virol. 158,2233-2243.

  • 82. Yamamoto, E., Ito, H., Tomioka, Y. and Ito, T., 2015: Characterization of novel avian paramyxovirus strain APMV/Shimane67 isolated from migratory wild geese in Japan. Journal of Veterinary Medical Science, 77(9), 1079-1085.

  • 83. Karamendin, K., Kydyrmanov, A., Seidalina, A., Asanova, S., Sayatov, M., Kasymbekov, E., Zhumatov, K., 2016: Complete Genome Sequence of a Novel Avian Paramyxovirus (APMV-13) Isolated from a Wild Bird in Kazakhstan. Genome Announcements, 4(3), e00167-16.

  • 84. Kim S H, Xiao S, Shive H, Collins P L, Samal S K., 2012: Replication, Neurotropism, and Pathogenicity of Avian Paramyxovirus Serotypes 1-9 in Chickens and Ducks. PLoS ONE:7(4):e34927.

  • 85. Subbiah, M., Xiao, S., Khattar, S. K., Dias, F. M., Collins, P. L., & Samal, S. K., 2010: Pathogenesis of two strains of Avian Paramyxovirus serotype 2, Yucaipa and Bangor, in chickens and turkeys. Avian Diseases, 54(3), 1050-1057.

  • 86. Kumar S, Militino Dias F, Nayak B, Collins P L, Samal S. K., 2010: Experimental avian paramyxovirus serotype-3 infection in chickens and turkeys. Veterinary Research.;41(5):72.



7. DEVELOPMENT OF RECOMBINANT APMV-4 ENCODING HUMAN IL-12

The nucleotide sequence CATCGA (SEQ ID NO:52) in the P-M intergenic region of APMV-4/Duck/Hong Kong/D3/1975 strain (residues 2932-2938 of the cDNA sequence of the APMV-4 genome) is altered to form the Mlu I restriction site (ACGCGT (SEQ ID NO:32)). A transgene comprising a Mlu I restriction site, a Kozak sequence (CCGCCACC (SEQ ID NO:33)), a nucleotide sequence encoding human IL-12 protein (e.g., a transgene comprising the nucleotide sequence of SEQ ID NO:16 or 17), and nucleotides CCC is inserted between the P and M genes (the P-M intergenic region; 34 nt from 2979 to 3013) of the APMV-4 strain. As a result of performing this methodology using SEQ ID NO:16 for the nucleotide sequence encoding IL-12 protein, a recombinant APMV-4 comprising a packaged genome is produced. In particular, the recombinant APMV-4-hIL-12 comprising a packaged genome is produced, wherein the packaged genome comprises (or consists of) the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:14.


8. EMBODIMENTS

Provided herein are the following exemplary embodiments:


1. A method for treating cancer, comprising administering to a human subject in need thereof a naturally occurring avian paramyxovirus serotype 4 (APMV-4), wherein the APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.


2. A method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV-4, wherein the recombinant APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.


3. The method of embodiment 1 or 2, wherein administration of the APMV-4 decreases tumor growth and increases survival in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS).


4. The method of embodiment 1 or 2, wherein administration of the APMV-4 results in a greater decrease in tumor growth and a longer survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in a B16-F10 syngeneic murine melanoma model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A.


5. The method of embodiment 4, wherein the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


6. The method of embodiment 1 or 2, wherein administration of the APMV-4 decreases tumor growth and increases survival in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS).


7. The method of embodiment 1 or 2, wherein administration of the APMV-4 results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in the BALBc syngeneic murine colon carcinoma tumor model administrated a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A.


8. The method of embodiment 7, wherein the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


9. The method of embodiment 1 or 2, wherein administration of the APMV-4 decreases tumor growth and increases survival in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival in a C57BL/6 syngeneic murine lung carcinoma tumor model administered phosphate buffered saline (PBS).


10. The method of embodiment 1 or 2, wherein administration of the APMV-4 results in a greater decrease in tumor growth and a longer survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model as compared to tumor growth and survival time in a C57BL/6 syngeneic murine lung carcinoma tumor model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A.


11. The method of embodiment 10, wherein the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


12. The method of any one of embodiments 1 to 11, wherein the APMV-4 is administered to the human subject intratumorally.


13. The method of any one of embodiments 1 to 12, wherein the APMV-4 is administered at a dose of 106 to 1012 pfu.


14. A recombinant APMV-4 comprising a packaged genome, wherein the packaged genome comprises a transgene comprising a nucleotide sequence encoding interleukin-12 (IL-12), interleukin-2 (IL-2), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-15 (IL-15) receptor alpha (IL-15Ra)-IL-15, human papillomavirus (HPV)-16 E6 protein or HPV-16 E7 protein, and wherein the APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.


15. The recombinant APMV-4 of embodiment 14, wherein the transgene is inserted between the AMPV-4 M and P transcription units of the packaged genome.


16. The recombinant APMV-4 of embodiment 14 or 15, wherein the transgene comprises a nucleotide sequence encoding IL-12.


17. The recombinant APMV-4 of embodiment 16, wherein the nucleotide sequence encoding IL-12 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:16 or 17.


18. The recombinant APMV-4 of embodiment 16, wherein the packaged genome of the APMV-4 comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:14.


19. The recombinant APMV-4 of embodiment 14 or 15, wherein the transgene comprises a nucleotide sequence encoding IL-2.


20. The recombinant APMV-4 of embodiment 19, wherein the nucleotide sequence encoding IL-2 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:15.


21. The recombinant APMV-4 of embodiment 14 or 15, wherein the transgene comprises a nucleotide sequence encoding IL-15Ra-IL15.


22. The recombinant APMV-4 of embodiment 21, wherein the nucleotide sequence encoding IL-15Ra-IL-15 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:18.


23. The recombinant APMV-4 of embodiment 14 or 15, wherein the transgene comprises a nucleotide sequence encoding GM-CSF.


24. The recombinant APMV-4 of embodiment 23, wherein the nucleotide sequence encoding GM-CSF comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:21.


25. The recombinant APMV-4 of embodiment 14 or 15, wherein the transgene comprises a nucleotide sequence encoding HPV-16 E6 protein.


26. The recombinant APMV-4 of embodiment 25, wherein the nucleotide sequence encoding the HPV-16 E6 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:19.


27. The recombinant APMV-4 of embodiment 14 or 15, wherein the transgene comprises a nucleotide sequence encoding HPV-16 E7 protein.


28. The recombinant APMV-4 of embodiment 27, wherein the nucleotide sequence encoding the HPV-16 E7 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:20.


29. The recombinant APMV-4 of any one of embodiments 14 to 17 or 19 to 28, wherein the recombinant APMV-4 comprises an APMV-4 Duck/Hong Kong/D3/1975 strain backbone.


30. The recombinant APMV-4 of any one of embodiments 14 to 17 or 19 to 28, wherein the recombinant APMV-4 comprises an APMV-4 Duck/China/G302/2012 strain backbone, APMV4/mallard/Belgium/15129/07 strain backbone; APMV4Uriah-aalge/Russia/Tyuleniy_Island/115/2015 strain backbone, APMV4/Egyptian goose/South Africa/NJ468/2010 strain backbone, or APMV4/duck/Delaware/549227/2010 strain backbone.


31. A method for treating cancer, comprising administering to a human subject in need thereof a naturally occurring avian paramyxovirus serotype 8 (APMV-8), wherein the APMV-8 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.


32. The method of embodiment 31, wherein the APMV-8 is APMV-8 Goose/Delaware/1053/1976.


33. The method of embodiment 31 or 32, wherein administration of the APMV-8 decreases tumor growth and increases survival in a BALBC syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in a BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS).


34. The method of embodiment 31 or 32, wherein administration of the APMV-8 results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in a BALBc syngeneic murine colon carcinoma tumor model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A.


35. The method of embodiment 34, wherein the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


36. A recombinant APMV comprising a packaged genome, wherein the packaged genome comprises a transgene comprising a nucleotide sequence encoding interleukin-12 (IL-12), interleukin-2 (IL-2), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-15 (IL-15) receptor alpha (IL-15Ra)-IL-15, human papillomavirus (HPV)-16 E6 protein or HPV-16 E7 protein, and wherein the recombinant APMV has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7, and the recombinant APMV comprises the APMV-6, APMV-7, APMV-8 or APMV-9 backbone.


37. The recombinant APMV of embodiment 36, wherein the recombinant APMV comprises the APMV-8 backbone.


38. The recombinant APMV of embodiment 37, wherein the recombinant APMV comprises the APMV-8 Goose/Delaware/1053/1976 backbone.


39. The recombinant APMV of embodiment 36, wherein the recombinant APMV comprises the APMV-7 backbone.


40. The recombinant APMV of embodiment 39, wherein the recombinant APMV comprises the APMV-7 Dove/Tennessee/4/1975 backbone.


41. The recombinant APMV of embodiment 36, wherein the recombinant APMV comprises the APMV-6 backbone.


42. The recombinant APMV of embodiment 41, wherein the APMV comprises the APMV-6 Duck/Hong Kong/199/1977 backbone.


43. The recombinant APMV of embodiment 36, wherein the recombinant APMV comprises the APMV-9 backbone.


44. The recombinant APMV of embodiment 43, wherein the recombinant APMV comprises the APMV-9 Duck/New York/22/1978 backbone.


45. The recombinant APMV of any one of embodiments 36 to 44, wherein the transgene is inserted between the AMPV M and P transcription units of the APMV packaged genome.


46. The recombinant APMV of any one of embodiments 36 to 45, wherein the transgene comprises a nucleotide sequence encoding IL-12.


47. The recombinant APMV of embodiment 46, wherein the nucleotide sequence encoding IL-12 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:16 or 17.


48. The recombinant APMV of any one of embodiments 36 to 45, wherein the transgene comprises a nucleotide sequence encoding IL-2.


49. The recombinant APMV of embodiment 48, wherein the nucleotide sequence encoding IL-2 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:15.


50. The recombinant APMV of any one of embodiments 36 to 45, wherein the transgene comprises a nucleotide sequence encoding IL-15Ra-IL15.


51. The recombinant APMV of embodiment 50, wherein the nucleotide sequence encoding IL-15Ra-IL-15 comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:18.


52. The recombinant APMV of any one of embodiments 36 to 45, wherein the transgene comprises a nucleotide sequence encoding GM-CSF.


53. The recombinant APMV of embodiment 52, wherein the nucleotide sequence encoding GM-CSF comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:21.


54. The recombinant APMV of any one of embodiments 36 to 45, wherein the transgene comprises a nucleotide sequence encoding HPV-16 E6 protein.


55. The recombinant APMV of embodiment 54, wherein the nucleotide sequence encoding the HPV-16 E6 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:19.


56. The recombinant APMV of any one of embodiments 36 to 45, wherein the transgene comprises a nucleotide sequence encoding HPV-16 E7 protein.


57. The recombinant APMV of embodiment 56, wherein the nucleotide sequence encoding the HPV-16 E7 protein comprises the negative sense RNA transcribed from the nucleotide sequence of SEQ ID NO:20.


58. A method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV-4 of any one of embodiments 14 to 30.


59. The method of embodiment 58, wherein the recombinant APMV-4 is administered to the human subject intratumorally.


60. The method of embodiment 58 or 59, wherein the recombinant APMV-4 is administered at a dose of 106 to 1012 pfu.


61. A method for treating cancer, comprising administering to a human subject in need thereof a recombinant APMV of any one of embodiments 36 to 57.


62. The method of embodiment 61, wherein the recombinant APMV is administered to the human subject intratumorally.


63. The method of embodiment 61 or 62, wherein the recombinant APMV is administered at a dose of 106 to 1012 pfu.


64. The method of any one of embodiments 31 to 35, wherein the APMV-8 is administered to the human subject intratumorally.


65. The method of any one of embodiments 31 to 35, or 64, wherein the APMV-8 is administered at a dose of 106 to 1012 pfu.


66. A method of treating cancer, comprising administering a naturally occurring avian paramyxovirus serotype 6 (APMV-6) or 9 (APMV-9), wherein the APMV-6 or APMV-9 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.


67. The method of embodiment 66, wherein the APMV-6 is APMV-6 Duck/Hong Kong/199/1977.


68. The method of embodiment 66, wherein the APMV-9 is APMV-9 Duck/New York/22/1978.


69. The method of embodiment 66, 67 or 68, wherein administration of the APMV-6 or APMV-9 decreases tumor growth and increases survival in a BALBC syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival in a BALBc syngeneic murine colon carcinoma tumor model administered phosphate buffered saline (PBS).


70. The method of embodiment 66, 67 or 68, wherein administration of the APMV-6 or APMV-9 results in a greater decrease in tumor growth and a longer survival time in a BALBc syngeneic murine colon carcinoma tumor model as compared to tumor growth and survival time in a BALBc syngeneic murine colon carcinoma tumor model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A.


71. The method of embodiment 70, wherein the packaged genome of the modified NDV LaSota comprises the negative sense RNA transcribed from the cDNA sequence set forth in SEQ ID NO:13.


72. The method of any one of embodiments 1 to 13, 31 to 35, or 58 to 71, wherein the cancer is melanoma, lung carcinoma, colon carcinoma, B-cell lymphoma, T-cell lymphoma, or breast cancer.


73. The method of any one of embodiments 1 to 13, 31 to 35, or 58 to 72, wherein the cancer is metastatic.


74. The method of any one of embodiments 1 to 13, 31 to 35, or 58 to 73, wherein the cancer is unresectable.


75. The method of any one of embodiments 1 to 13, 31 to 35, or 58 to 74 further comprising administering the subject a checkpoint inhibitor.


76. The method of any one of embodiments 1 to 13, 31 to 35, or 58 to 75 further comprising administering the subject a monoclonal antibody that specifically binds to PD-1 and blocks the binding of PD-1 to PD-L1 and PD-L2.


The invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying Figures. Such modifications are intended to fall within the scope of the appended claims.


All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

Claims
  • 1.-76. (canceled)
  • 77. A method of treating melanoma in a subject in need thereof, the method comprising administering to the subject a recombinant avian paramyxovirus serotype 4 (APMV-4) comprising a packaged genome, wherein the packaged genome comprises a transgene.
  • 78. The method of claim 77, wherein the transgene comprises a nucleotide sequence encoding interleukin-12 (IL-12).
  • 79. The method of claim 77, wherein the transgene comprises a nucleotide sequence encoding interleukin-2 (IL-2).
  • 80. The method of claim 77, wherein the transgene comprises a nucleotide sequence encoding granulocyte-macrophage colony-stimulating factor (GM-CSF).
  • 81. The method of claim 77, wherein the transgene comprises a nucleotide sequence encoding interleukin-15 (IL-15).
  • 82. The method of claim 77, wherein the transgene comprises a nucleotide sequence encoding human papillomavirus (HPV)-16 E6 protein.
  • 83. The method of claim 77, wherein the transgene comprises a nucleotide sequence encoding human papillomavirus (HPV)-16 E7 protein.
  • 84. The method of claim 77, wherein the transgene is inserted between AMPV-4 M and P transcription units of the packaged genome.
  • 85. The method of claim 77, wherein the recombinant APMV-4 comprises an APMV-4 Duck/Hong Kong/D3/1975 strain backbone.
  • 86. The method of claim 77, wherein the recombinant APMV-4 comprises an APMV-4 Duck/China/G302/2012 strain backbone.
  • 87. The method of claim 77, wherein the recombinant APMV-4 comprises an APMV4/mallard/Belgium/15129/07 strain backbone.
  • 88. The method of claim 77, wherein the recombinant APMV-4 comprises an APMV4Uriah-aalge/Russia/Tyuleniy_Island/115/2015 strain backbone.
  • 89. The method of claim 77, wherein the recombinant APMV-4 comprises an APMV4/Egyptian goose/South Africa/NJ468/2010 strain backbone.
  • 90. The method of claim 77, wherein the recombinant APMV-4 comprises an APMV4/duck/Delaware/549227/2010 strain backbone.
  • 91. The method of claim 77, wherein administration is intratumoral.
  • 92. The method of claim 77, wherein administration is intravenous.
  • 93. The method of claim 77, wherein the subject is human.
  • 94. The method of claim 77, wherein the recombinant APMV-4 has an intracerebral pathogenicity index in day-old chicks of the Gallus gallus species of less than 0.7.
  • 95. The method of claim 77, wherein administration of the recombinant APMV-4 decreases tumor growth and increases survival in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival in B16-F10 syngeneic murine melanoma model administered phosphate buffered saline (PBS).
  • 96. The method of claim 77, wherein administration of the recombinant APMV-4 results in a greater decrease in tumor growth and a longer survival time in a B16-F10 syngeneic murine melanoma model as compared to tumor growth and survival time in a B16-F10 syngeneic murine melanoma model administered a genetically modified Newcastle disease virus (NDV), wherein the genetically modified NDV is the NDV LaSota strain comprising a packaged genome, wherein the packaged genome comprises a nucleotide sequence encoding a mutated NDV LaSota F protein, wherein the mutated LaSota F protein has the mutation L289A.
Parent Case Info

This application claims the benefit of priority of U.S. provisional patent application No. 62/697,944, filed Jul. 13, 2018, which is incorporated by reference herein in its entirety. The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 9, 2019, is named 6923-282-228_SL.txt and is 322,198 bytes in size.

Provisional Applications (1)
Number Date Country
62697944 Jul 2018 US
Continuations (1)
Number Date Country
Parent 16645378 Mar 2020 US
Child 17527903 US