The present invention relates generally to multifocal diffractive ophthalmic lenses and, more particularly, to apodized diffractive intraocular lenses that can provide enhanced image contrast.
Periodic diffractive structures can diffract light simultaneously into several directions, also typically known as diffraction orders. In multifocal intraocular lenses, two diffraction orders are utilized to provide a patient with two optical powers, one for distance vision and the other for near vision. Such diffractive intraocular lenses are typically designed to have an “add” power that provides a separation between the far focus and the near focus. In this manner, a diffractive intraocular lens can provide a patient in whose eye the lens is implanted with vision over a range of object distances. For example, a diffractive IOL can replace a patient's natural lens to provide the patient not only with a requisite optical power but also with some level of pseudoaccommodation. In another application, a diffractive IOL or other ophthalmic lens can provide the eye of a patient who suffers from presbyopia—a loss of accommodation of the natural lens—with pseudoaccommodative ability.
Conventional multifocal diffractive lenses, however, are not designed so as to control or modify aberrations of the natural eye such that the combined lens and the patient eye would provide enhanced image contrast. Moreover, the design of apodized diffractive lenses for providing better image contrast can present difficulties in that such lenses exhibit a varying diffractive effect at different radial locations across the lens.
The present invention generally provides multifocal ophthalmic lenses, such as intraocular and contact lenses, that employ aspherical surface profiles to enhance image contrast, particularly at a far focus of the lens. In many embodiments, the invention provides pseudoaccommodative lenses having at least one aspherical surface for enhancing image contrast.
In one aspect, the present invention provides a diffractive lens, such as a pseudoaccommodative intraocular lens (IOL), that includes an optic having an aspherical base curve, and a plurality of annular diffractive zones superimposed on a portion of the base curve so as to generate a far focus and a near focus. The aspherical base curve enhances image contrast at the far focus of the optic relative to that obtained by a substantially identical IOL in which the respective base curve is spherical.
The image enhancement provided by the aspherical base curve can be characterized by a modulation transfer function (MTF) exhibited by the combined IOL and a patient's eye in which the IOL is implanted. For example, such an MTF at the far focus can be greater than about 0.2 (e.g., in a range of about 0.2 to about 0.5) when calculated in a model eye at a spatial frequency of about 50 line pairs per millimeter (Ip/mm) or greater than about 0.1 (e.g., in a range of about 0.1 to about 0.4) at a spatial frequency of about 100 Ip/mm, a wavelength of about 550 nm and a pupil size of about 4 mm to about 5 mm. More preferably, the MTF can be greater than 0.3, or 0.4. For example, the MTF can be in a range of about 0.2 to about 0.5. For example, the calculated MTF can be greater than about 0.2 at a spatial frequency of about 50 Ip/mm, a wavelength of about 550 nm, and a pupil size of about 4.5 mm.
In another aspect, the aspherical profile is selected to strike a balance between enhancing image contrast and providing a useful depth of field. Rather than correcting all aberrations, the lens can be configured such that the combined IOL and a patient's eye in which the IOL is implanted can exhibit a useful depth of field, particularly at the far focus. The terms “depth of field” and “depth of focus,” which are herein used interchangeably, are well known in the context of a lens and readily understood by those skilled in the art. To the extent that a quantitative measure may be required, the term “depth of field” or “depth of focus” as used herein, can be determined by an amount of defocus associated with the optical system at which a through-focus modulation transfer function (MTF) of the system calculated or measured with an aperture, e.g., a pupil size, of about 4 mm to about 5 mm (e.g., a pupil size of about 4.5 mm) and monochromatic green light, e.g., light having a wavelength of about 550 nm, exhibits a contrast of at least about 0.3 at a spatial frequency of about 50 Ip/mm or a contrast of about 0.2 at a spatial frequency of about 100 Ip/rm. It should be understood the depth of field at the far focus refers to a defocus distance less than the separation between the far focus and the near focus, i.e., it refers to a depth of field when the patient is viewing a far object.
In a related aspect, the diffractive zones can be disposed within a portion of a lens surface, herein referred to as the apodization zone, surrounded by a peripheral portion of the surface that is substantially devoid of diffractive structures. The diffractive zones can be separated from one another by a plurality of steps located at zone boundaries that have substantially uniform heights. Alternatively, the step heights can be non-uniform. For example, the step heights can progressively decrease as a function of increasing distance from the lens's optical axis.
In some embodiments, the lens includes an anterior surface having the aspherical profile and a posterior surface that is spherical. Alternatively, the posterior surface can be aspherical and the anterior surface spherical. In other embodiments, both the anterior surface and the posterior surface can be aspherical, that is, a total desired degree of asphericity can be divided between the anterior and the posterior surfaces.
In a related aspect, the asphericity of one or more surfaces of the IOL can be characterized by the following relation:
wherein
z denotes a sag of the surface parallel to an axis (z), e.g., the optical axis, perpendicular to the surface,
c denotes a curvature at the vertex of the surface,
cc denotes a conic coefficient,
R denotes a radial position on the surface,
ad denotes a fourth order deformation coefficient, and
ae denotes a sixth order deformation coefficient.
Distances are given herein in units of millimeters. For example, the curvature constant is given in units of inverse millimeter, while ad is given in units of
and ae is given in units of
The parameters in the above relation can be selected based, e.g., on the desired optical power of the lens, the material from which the lens is formed, and the degree of image enhancement expected from the asphericity of the profile. For example, in some embodiments in which the lens optic is formed as a biconvex lens of an acrylic polymeric material of average power (e.g., a power of 21 Diopters), the conic constant (cc) of the anterior surface can be in a range of about 0 (zero) to about −50 (minus fifty), or in a range of about −10 (minus 10) to about −30 (minus 30), or a range of about −15 (minus 15) to about −25 (minus 25), and the deformation constants (ad) and (ae) can be, respectively, in a range of about 0 to about −1×10−3 (minus 0.001) and in a range of about 0 to about −1×10−4 (minus 0.0001).
In another aspect, the present invention provides a pseudoaccommodative apodized diffractive IOL that includes an optic having an anterior surface and a posterior surface, wherein at least one of the surfaces includes an aspherical base profile and a plurality of diffractive zones superimposed on a portion of the base profile such that each zone is disposed at a selected radius from an optical axis of the optic and is separated from an adjacent zone by a step. This lens surface can further include a peripheral region surrounding the diffractive zones. The diffractive zones generate a far focus and a near focus and the aspherical profile enhances the image contrast at the far focus relative to that obtained by a substantially identical lens having a spherical profile.
In other aspects, the present invention provides a pseudoaccommodative, diffractive IOL that includes an optic formed of a biocompatible polymeric material and having a posterior surface and an anterior surface, where the optic provides a near focus and a far focus. At least one of the anterior or the posterior surfaces can be characterized by a base curve and a plurality of diffractive zones disposed as annular concentric diffractive elements about an optical axis, where each has a height relative to the base curve that progressively decreases as a distance of the diffractive element from the optical axis increases. The base curve can exhibit an aspherical profile for enhancing the image contrast at the far focus for pupil diameters in a range of about 4 to about 5 millimeters relative to a substantially identical IOL in which the base curve is spherical.
In other aspects, the invention provides an apodized diffractive ophthalmic lens that includes an optic having an anterior surface and a posterior surface, at least one of which has an aspherical base profile and a plurality of annular diffractive zones disposed on the base profile for generating a near focus and a far focus. The aspherical profile enhances an image contrast at the far focus relative to that obtained by a substantially identical lens in which a respective base profile is spherical. The ophthalmic lens can be, without limitation, an intraocular lens or a contact lens.
In another aspect, the invention provides methods for calculating optical properties of apodized diffractive lenses, and particularly apodized to diffractive lenses that have at least one aspherical surface. Apodized diffractive lenses incorporate aspects of both diffraction and apodization. Hence, both of these aspects need to be included in the lens design. In particular, apodized diffractive lenses exhibit a variation of the diffractive effect at different radial locations across the lens, which can affect image contrast. Conventional aberrations, such as spherical aberration, caused by the shape of the cornea of the eye are normally calculated with the expectation that light transmission is constant across the lens surface. For example, every ray traced through an optical system in a standard raytrace program is given an equal weight. Such a conventional approach is, however, not suitable for apodized diffractive lenses in which optical transmission can vary in different regions of the lens. Rather, principles of physical optics need to be applied in performing optical calculations for apodized lenses. For example, as discussed in more detail below, in a method according to the invention apodization can be modeled as a reduction in the optical transmission through different regions of the lens.
In a related aspect, the invention provides a method of calculating a modulation transfer function (MTF) for an apodized diffractive lens having a plurality of annular diffractive structures disposed at selected radial distances from an optical axis of the lens by determining an apodization function that is indicative of diffraction efficiencies at a plurality of radial locations from an optical axis for directing light into a selected diffraction order of the lens. The apodization function can be integrated over a selected aperture so as to determine a fraction of light energy diffracted into the diffraction order. A preliminary MTF (e.g., calculated by assuming that the IOL lacks the diffractive structures) can be scaled in accordance with the integrated apodization function to generate the desired MTF.
A pseudoaccommodative, diffractive IOL according to the teachings of the invention can find a variety of applications. For example, it can be utilized in both pseudphakic and phakic patients. For example, such an IOL having a low base power (or a zero base power) can be employed as an anterior chamber lens in phakic patients.
Further understanding of the invention can be obtained by reference to the following detailed description in conjunction with the associated drawings, which are described briefly below.
A more complete understanding of the present invention and the advantages thereof may be acquired by referring to the following description, taken in conjunction with the accompanying drawings in which like reference numbers indicate like features and wherein:
The present invention provides multifocal ophthalmic lenses that include at least one aspherical lens surface having an asphericity selected to improve image contrast relative to that provided by a substantially identical lens in which the respective surface is spherical. In the embodiments below, the teachings of the invention are illustrated primarily in connection with intraocular lenses. It should, however, be understood that these teachings apply equally to a variety of other ophthalmic lenses, such as contact lenses.
The anterior surface of the illustrated IOL includes a plurality of annular diffractive zones 22a providing nearly periodic microscopic structures 22b to diffract light into several directions simultaneously (the sizes of the diffractive structures are exaggerated for clarity). Although in general, the diffractive structures can be designed to divert light into more than two directions, in this exemplary embodiment, the diffractive zones cooperatively direct light primarily into two directions, one of which converges to a near focus 24 and the other to a far focus 26, as shown schematically in
As shown schematically in
wherein
λ is the design wavelength (e.g., 550 nm),
n2 is the refractive index of the optic, and
n1 is the refractive index of the medium surrounding the lens.
In one embodiment in which the surrounding medium is the aqueous humor having an index of refraction of 1.336, the refractive index of the optic (n2) is selected to be 1.55. The uniform step height provided by the above equation is one example. Other uniform step heights can also be employed (which can change the energy balance between near and far images).
In this embodiment, the heights of the steps between different diffractive zones of the IOL 10 are substantially uniform, thereby resulting in an abrupt transition from the apodization zone to the outer portion of the lens. In other embodiments, such as those discussed in more detail below, the step heights can be non-uniform, e.g., they can progressively decrease as their distances from the optical axis increase.
The boundary of each annular zone (e.g., radius ri of the ith zone) relative to the optical axis can be selected in a variety of ways known to those skilled in the ophthalmic art.
With reference to
The terms “aspherical base curve” and “aspherical profile” are used herein interchangeably, and are well known to those skilled in the art. To the extent that any further explanation may be required, these terms are employed herein to refer to a radial profile of a surface that exhibits deviations from a spherical surface. Such deviations can be characterized, for example, as smoothly varying differences between the aspherical profile and a putative spherical profile that substantially coincides with the aspherical profile at the small radial distances from the apex of the profile. Further, the terms “substantially identical IOL” or “substantially identical lens,” as used herein refer to an IOL that is formed of the same material as an aspherical IOL of the invention to which it is compared. Each surface of the “substantially identical IOL” has the same central radius (i.e., radius at the apex of the surface corresponding to the intersection of an optical axis with the surface) as that of the corresponding surface of the aspherical IOL. In addition, the “substantially identical IOL” has the same central thickness as the aspherical IOL to which it is compared. However, “substantially identical IOL” has spherical surface profiles; i.e., it lacks the asphericity exhibited by the aspherical IOL.
In many embodiments, the asphericity of the surface is selected to enhance, and in some cases maximize, the image contrast of a patient in which the IOL is implanted relative to that provided by a substantially identical IOL in which the anterior surface has the putative spherical profile 32 rather than the aspherical profile 30. For example, the aspherical profile can be designed to provide the patient with an image contrast characterized by a modulation transfer function (MTF) of at least about 0.2 at the far focus measured or calculated with monochromatic light having a wavelength of about 550 nm at a spatial frequency of 100 line pairs per millimeter (corresponding to 20/20 vision) and an aperture (e.g., pupil size) of about 4.5 mm. The MTF can be, for example, in a range of about 0.2 to about 0.5. As direct measurements of MTF in a patient's eye can be complicated, in many embodiments the image enhancement provided by an aspherical apodized diffractive IOL according to the teachings of the invention can be evaluated by calculating an MTF theoretically in a model eye exhibiting selected corneal and/or natural lens aberrations corresponding to an individual patient's eye or the eyes of a selected group of patients. The information needed to model a patient's cornea and/or natural lens can be obtained from measurements of waveform aberrations of the eye performed by employing known topographical methods.
As known to those having ordinary skill in the art, a measured or calculated modulation transfer function (MTF) associated with a lens can provide a quantitative measure of image contrast provided by that lens. In general, a contrast or modulation associated with an optical signal, e.g., a two-dimensional pattern of light intensity distribution emanated from or reflected by an object to be imaged or associated with the image of such an object, can be defined in accordance with the following relation:
wherein /max and /min indicate, respectively, a maximum or a minimum intensity associated with the signal. Such a contrast can be calculated or measured for each spatial frequency present in the optical signal. An MTF of an imaging optical system, such as the combined IOL and the cornea, can then be defined as a ratio of a contrast associated with an image of an object formed by the optical system relative to a contrast associated with the object. As is known, the MTF associated with an optical system is not only dependent on the spatial frequencies of the intensity distribution of the light illuminating the system, but it can also be affected by other factors, such as the size of an illumination aperture, as well as by the wavelength of the illuminating light.
In some embodiments, the asphericity of the anterior surface 14 is selected so as to provide a patient in which the IOL is implanted with an image contrast characterized by a modulation transfer function (MTF) that is greater than about 0.2, while maintaining a depth of field that is within an acceptable range. Both the MTF and the depth of field can be calculated in a model eye.
In some embodiments, the aspherical profile of the anterior surface 14 of the IOL 10 as a function of radial distance (R) from the optical axis 18, or that of the posterior surface or both in other embodiments, can be characterized by the following relation:
wherein
z denotes a sag of the surface parallel to an axis (z), e.g., the optical axis, perpendicular to the surface,
c denotes a curvature at the vertex of the surface,
cc denotes a conic coefficient,
R denotes a radial position on the surface,
ad denotes a fourth order deformation coefficient, and
ae denotes a sixth order deformation coefficient.
Although in some embodiments, the conic constant cc alone is adjusted to obtain a desired deviation from sphericity, in other embodiments, in addition to the conic constant cc, one or both of the higher order constants ad and ae (and in particular ae) that more significantly affect the profile of the outer portion of the surface are adjusted to provide a selected aspherical profile for one or both surfaces of an IOL. The higher order aspherical constants (ad and ae) can be particularly useful for tailoring the profile of the peripheral portion of the lens surface, i.e., portions far from the optical axis.
The choice of the aspherical constants in the above relation for generating a desired spherical profile can depend, for example, on the aberrations of the eye in which the IOL is implanted, the material from which the IOL is fabricated, and the optical power provided by the IOL. In general, these constants are selected such that the combined IOL and the cornea, or the combined IOL, the cornea and the natural lens, provide an image contrast characterized by an MTF, e.g., an MTF calculated in a model eye, greater than about 0.2 at a spatial frequency of about 100 Ip/mm, a wavelength of about 550 nm, and a pupil size of about 4.5 mm. For example, in some embodiments in which the IOL is fabricated from an acrylic polymeric material (e.g., a copolymer of acrylate and methacrylate) for implantation in an eye exhibiting a corneal asphericity characterized by a conic constant in the range of zero (associated with severe spherical aberration) to about −0.5 (associated with a high level of aspherical flattening), the conic constant cc for the IOL in relation to the above parameters can be in a range of about 0 to about −50 (minus fifty), or in a range of about −10 (minus 10) to about −30 (minus 30), or in a range of about −15 (minus 15) to about −25 (minus 25), while the deformation coefficients ad and ae can be, respectively, in a range of about 0 to about ±1×10−3 and in a range of about 0 to about ±1×10−4. While in some embodiments, the conic constant alone is non-zero, in other embodiments, the coefficients ad and ae are non-zero with the conic coefficient set to zero. More typically, all three aspheric coefficients cc, ad, and ae, and possibly higher order constants, are set to non-zero values to define a profile of interest. Further, the curvature coefficient (c) can be selected based on a desired optical power of the lens, the material from which the lens is formed and the curvature of the lens's other surface in a manner known in the art.
With reference to
Each annular diffractive zone is separated from an adjacent zone by a step (e.g., step 50 separating the second zone from the third zone) whose height decreases as the zone's distance from the optical axis increases, thereby providing a gradual shift in division of transmitted optical energy between the near and the far focus of the lens. This reduction in the step heights advantageously ameliorates the unwanted effects of glare perceived as a halo or rings around a distant, discrete light source. The steps are positioned at the radial boundaries of the zones. In this exemplary embodiment, the radial location of a zone boundary can be determined in accordance with the following relation:
r
i
2=(2i+1)λf Equation (4),
wherein
i denotes the zone number (i=0 denotes the central zone)
λ denotes the design wavelength, and
f denotes a focal length of the near focus.
In some embodiments, the design wavelength λ is chosen to be 550 nm green light at the center of the visual response.
The step height between adjacent zones, or the vertical height of each diffractive element at a zone boundary, can be defined according to the following relation:
wherein
λ, denotes the design wavelength (e.g., 550 nm),
n2 denotes the refractive index of the material from which the lens is formed,
n1 denotes the refractive index of a medium in which the lens is placed,
and fapodize represents a scaling function whose value decreases as a function of increasing radial distance from the intersection of the optical axis with the anterior surface of the lens.
For example, the scaling function can be defined by the following relation:
wherein
ri denotes the radial distance of the ith zone,
rin denotes the inner boundary of the apodization zone as depicted schematically in
rout denotes the outer boundary of the apodization zone as depicted schematically in
exp is a value chosen based on the relative location of the apodization zone and a desired reduction in diffractive element step height.
The exponent exp can be selected based on a desired degree of change in diffraction efficiency across the lens surface. For example, exp can take values in a range of about 2 to about 6.
As another example, the scaling function can be defined by the following relation:
wherein
ri denotes the radial distance of the ith zone, and
rout denotes the radius of the apodization zone.
Referring again to
Similar to the previous embodiment, the asphericity of the base profile 44 of the anterior surface 40 of the IOL 34 can be defined in accordance with the above Equation (3). Values similar to those described above can be employed for the conic constant and the higher order deformation coefficients. In particular, selecting a non-zero conic constant (cc) and a sixth order deformation coefficient (ae) can be especially beneficial for enhancing image contrast for corneas that are more spherical than normal.
To demonstrate the efficacy of an aspherical diffractive intraocular lens according to the teachings of the invention,
In another set of calculations, modulation transfer functions (MTFs) at spatial frequencies of 50 Ip/mm, corresponding to 20/40 vision, as well as at 100 Ip/mm, corresponding to 20/20 vision, were calculated for the following five theoretically modeled apodized diffractive intraocular lenses for different corneal shape factors across a range of lens power values. The optical power (at near focus) D, the radius of curvature (r1) of a spherical posterior surface, the radius of curvature (r2) of the anterior surface at its apex, the central thickness (Ct) of the lens as well as values of the conic constant (cc) and the sixth order deformation constant (ae) for these theoretically modeled lenses are presented in the table below:
Additional theoretical MTF values calculated at a higher spatial frequency of 100 Ip/mm and at a wavelength of 550 nm and a pupil size of 4.5 mm are presented in
In the above exemplary data, calculated modulated transfer functions (MTF) for apodized diffractive lenses were presented. The MTFs were calculated by utilizing a ray tracing procedure in which variation of diffraction efficiency across the diffractive zones is incorporated in a manner described in more detail below. In general, MTF calculations for an apodized diffractive lens, e.g., one having diffractive step heights that vary across the surface, are more complex than corresponding calculations for a diffractive lens having uniform step sizes across its entire surface. In the latter case, the MTF can be calculated in a conventional manner and then rescaled by assuming that the light that is not directed to the focus of interest acts to reduce the image contrast. The MTF contrast values can be multiplied by a diffraction efficiency, except for the point at zero spatial frequency that is set to unity. This is equivalent to assuming that the image plane is evenly illuminated by the light energy that is not focused, with all spatial frequencies of the defocused light equally represented. Although in practice the defocused light has spatial structure in the image plane, it is highly defocused and hence does not significantly affect the overall form of the MTF. In the former case, as noted above, principles of physical optics should be employed to calculate optical properties of an apodized diffractive lens. One method of the invention for calculating optical properties of an apodized diffractive lens models apodization as different levels of reduction in optical transmission through different regions of the lens.
By way of example, in one exemplary method according to the invention for calculating an MTF for an apodized diffractive lens having progressively decreasing step heights (e.g., the lens schematically shown in the above
α=h*(n2−n1)/λ Equation (8)
DE
p=sinc2(α−p) Equation (9),
wherein
Hence, the diffraction efficiency can be determined at any point on the surface by utilizing the local step height provided in Equations (5) and (7). In this manner, the diffraction efficiency provides the local fraction of incident light energy that is directed towards an image of a particular order, thereby providing the effective apodization transmission function.
By way of example, the diffraction efficiency of an exemplary apodized diffractive lens having progressively decreasing step heights shown schematically in
The above method for calculating an MTF of an apodized diffractive lens can be incorporated into a commercial raytrace program, such as OSLO premium ray-tracing program marketed by Lambda Research Corporation of Littelton, Mass., U.S.A., to rescale the points of a conventionally-calculated MTF by a fraction of energy that is directed to a focus of interest (apart from the point at zero spatial frequency that is set to unity) to account for the energy directed to the other orders.
In some embodiments, the surface having the diffractive structures can have a spherical base curve, and the other surface (i.e., the surface lacking the diffractive structures) can have a degree of asphericity selected based on the teachings of the invention, such as those described above.
In another embodiment, an apodized diffractive intraocular lens (IOL) of the invention can have one or two toric surfaces that exhibit two different optical powers along two orthogonal surface directions. Such toric IOLs can be employed, for example, to correct astigmatism. At least one of the toric surfaces can exhibit an asphericity along one or both of the two orthogonal directions. For example, with reference to
Although the above embodiments are directed to intraocular lenses, it should be understood that the teachings of the invention, including the use of aspherical surface profiles to enhance image contrast, can be applied to other ophthalmic apodized diffractive lenses, e.g., contact lenses.
Those having ordinary skill in the art will appreciate that various modifications can be made to the above embodiments without departing from the scope of the invention.
This application is a continuation of U.S. application Ser. No. 11/000,770 filed Dec. 1, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 11000770 | Dec 2004 | US |
Child | 12611945 | US |