Not applicable.
Not applicable.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates generally to brake systems for general aviation aircraft. More particularly, the invention relates to a low cost, antiskid brake system.
Electronic controlled antiskid systems are found on many wheeled vehicles including most cars, large airplanes and some motorcycles. These vehicles have powered hydraulic or pneumatic brake systems that work in conjunction with the antiskid system. These electronic controlled antiskid systems use wheels speed sensors, an electronic controller and control valves to regulate the brake pressure in the powered brake systems to reduce tire skids. These electronic controlled antiskid systems increase safety by improving directional control and shortening the stopping distance of the vehicle by reducing tire skids when braking These electronic controlled antiskid systems are also referred to as Antilock Brake Systems (ABS).
Manual brake systems use the force from an operator's feet and/or hands to provide the energy to actuate and power hydraulic or mechanical brakes. These vehicles do not have powered hydraulic or pneumatic brakes. Examples of wheeled vehicles with manual brakes include general aviation aircraft, motorcycles, and bicycles. Although there are a large number of vehicles with manual brakes that would benefit from an electronic controlled antiskid system, to date there are few if any practical electronic controlled antiskid systems available for these vehicles. It is therefore an objective of the present invention to provide an antiskid brake system that is practical for use on these types of vehicles.
Almost all electronic controlled antiskid systems in use today on wheeled vehicles require a powered hydraulic or pneumatic brake system for their operation. Power for these brake systems is generally provided from a hydraulic or pneumatic pump coupled to the vehicle's engine or an electric motor that gets its power from the vehicle's electrical system.
An aircraft brake system allows the pilot to apply the brakes independently to left and right main wheels 115 by pressing on left and right brake pedals 109. Left and right brake pedals 109 are connected to their respective metering valves 108. When the pilot pushes on brake pedals 109, metering valves 108 modulate the pressure of the hydraulic fluid through pipes 110 to brake cylinders 111. Brake pistons 112 inside brake cylinders 111 are connected to brake pads 113. When the pilot pushes on brake pedals 109, brake cylinders 111 cause brake pads 113 to push against brake discs/drums 114 creating the friction to slow the turning brake discs/drums 114 that are connected to wheels 115. This action slows or stops the aircraft. A back up system is required for some vehicles so they can be stopped if there is a loss of power to the brake system. On a powered hydraulic brake system, this can be accomplished by adding a hydraulic accumulator 124 to the brake system.
The electronic controlled antiskid system needs to monitor the rotation of wheels 115 to determine when a skid is occurring or about to occur. This is done with wheel speed sensors 116 located at each wheel 115. A tone ring 117 turns with wheel 115 and creates a magnetic field disruption that can be detected by wheel speed sensors 116. Wheel speed sensor 116 and tone ring 117 are typically integrated into a single unit and located inside the axle on large aircraft. The wheel speed signals are sent to an electronic controller 119 using electrical cables 118. Using the speeds from wheel speed sensors 116, electronic controller 119 determines when a skid condition is occurring and sends a signal to required control valves 122 through electrical cables 120 to reduce the brake pressure. Hydraulic fluid is released from brake cylinders 111 through pipes 121, through control valves 122 and through pipes 123 back to reservoir 100. When controller 119 determines that the skid event is over, it commands required control valves 122 to close, and the brake system returns to its normal braking mode.
Referring to
Manual mechanical brake systems are common on motorcycles and bicycles. These vehicles use a separate hand and/or foot lever for the front and rear wheels, which each have a brake. Referring to
Hybrid manual brake systems exist that combine hydraulic and mechanical linkages to couple the operator's hand and/or foot movements to operate and power the brake mechanism. The brake pads in these hybrid manual brake systems can be mechanically or hydraulically actuated.
There are currently known electronically controlled antiskid systems for manual hydraulic brake systems for motorcycles, however, there are no electronically controlled antiskid systems for manual mechanical brakes like those used on motorcycles and bicycles. As illustrated by way of example in
In view of the foregoing, there is a need for improved techniques for providing a low cost, electronically controlled antiskid system that may be implemented in a practical manner on manual brakes.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
To achieve the forgoing and other aspects and in accordance with the purpose of the invention, an apparatus and a system for mitigating wheel skidding in a manual brake system is presented.
In one embodiment an apparatus includes means for controlling a movement of a manual mechanical linkage shaft in a manual brake system for a vehicle wheel, and means for directing the actuator assembly to control the movement of the manual mechanical linkage shaft during a braking of the vehicle wheel where the control of the movement mitigates skidding of the vehicle wheel during the braking Another embodiment further includes means for engaging and disengaging the controlling means to and from the manual mechanical linkage shaft. Yet another embodiment further includes means for driving the controlling means where a manually applied force to the manual mechanical linkage shaft is modulated to mitigate the skidding of the vehicle wheel during the braking Still another embodiment further includes means for actuating the engaging and disengaging means. Another embodiment further includes means for forming a unit suitable for replacing a manual hydraulic master cylinder of the manual brake system. Yet another embodiment further includes means for enabling the apparatus to be added to a hydraulic line of the manual brake system.
In another embodiment an apparatus includes an actuator assembly configured for controlling a movement of a manual mechanical linkage shaft in a manual brake system for a vehicle wheel. An electronic controller directs the actuator assembly to control the movement of the manual mechanical linkage shaft during a braking of the vehicle wheel where the control of the movement mitigates skidding of the vehicle wheel during the braking Another embodiment further includes a lock and release assembly configured for engaging and disengaging the actuator assembly to and from the manual mechanical linkage shaft. In yet another embodiment the apparatus is configured as an addition to the manual brake system. Still another embodiment further includes an electric servomotor for driving the actuator assembly where, under direction of the electronic controller, a manually applied force to the manual mechanical linkage shaft is modulated to mitigate the skidding of the vehicle wheel during the braking In another embodiment the actuator assembly includes a cam and cam followers disposed about the manual mechanical linkage shaft for moving the manual mechanical linkage shaft. In yet another embodiment the lock and release assembly includes a locking tab including a hole configured for engaging the actuator assembly to the manual mechanical linkage shaft. Still another embodiment further includes an electric solenoid for actuating the lock and release assembly to engage the actuator assembly to the manual mechanical linkage shaft, and a release spring for disengaging the actuator assembly from the manual mechanical linkage shaft. Another embodiment further includes a master cylinder joined to the actuator assembly, electric servomotor, lock and release assembly, and the electric solenoid for forming a unit suitable for replacing a manual hydraulic master cylinder of the manual brake system, thereby adding the apparatus to the manual brake system. In yet another embodiment the actuator assembly, electric servomotor, lock and release assembly, and the electric solenoid are centrally located about a linkage shaft joined to the master cylinder enabling the actuator assembly, electric servomotor, lock and release assembly, and the electric solenoid to be positioned in a plurality of positions for facilitating adding the apparatus to the manual brake system. Still another embodiment further includes a hydraulic cylinder having a mechanical linkage suitable for engaging the lock and release assembly and the actuator assembly for enabling the apparatus to be added to a hydraulic line of the manual brake system.
In another embodiment a system includes means for controlling a movement of a manual mechanical linkage shaft in a manual brake system for a vehicle wheel, means for driving the controlling means wherein a manually applied force to the manual mechanical linkage shaft is modulated or pulsed, means for engaging and disengaging the controlling means to and from the manual mechanical linkage shaft, means for actuating the engaging and disengaging means, and means for controlling the driving means during a braking of the vehicle wheel to mitigate skidding of the vehicle wheel during the braking Another embodiment further includes means for generating a signal including rotational information of the wheel. Yet another embodiment further includes means for automatically activating or deactivating the system in response to changes in force or pressure. Still another embodiment further includes means for powering the system. Another embodiment further includes means for engaging and disengaging the system, and for varying a frequency of the pulsed force.
In another embodiment a system includes an actuator assembly configured for controlling a movement of a manual mechanical linkage shaft in a manual brake system for a vehicle wheel. An electric motor drives the actuator assembly wherein a manually applied force to the manual mechanical linkage shaft is modulated or pulsed. A lock and release assembly is configured for engaging and disengaging the actuator assembly to and from the manual mechanical linkage shaft. Means actuates the lock and release assembly to engage the actuator assembly to the manual mechanical linkage shaft, and disengage the actuator assembly from the manual mechanical linkage shaft. An electronic controller controls the electric motor during a braking of the vehicle wheel to mitigate skidding of the vehicle wheel during the braking Another embodiment further includes a tone ring and a wheel speed sensor for generating a signal including rotational information of the wheel, the tone ring and the wheel speed sensor being configured for joining to an outside of the wheel's axel. In yet another embodiment the tone ring includes a gear shape on a circumference of a disc. In still another embodiment the electronic controller uses GPS information to determine ground speed of the vehicle. In another embodiment the electronic controller includes a portable computing device. In yet another embodiment the portable computing device provides a vehicle's operator with audio and/or visual signals during a skidding event. Still another embodiment further includes at least one switch for automatically activating or deactivating the system in response to changes in force or pressure. Another embodiment further includes a portable battery supply for powering the system. Yet another embodiment further includes an operator control for engaging and disengaging the system, and for varying a frequency of the pulsed force.
Other features, advantages, and aspects of the present invention will become more apparent and be more readily understood from the following detailed description, which should be read in conjunction with the accompanying drawings.
The present invention is best understood by reference to the detailed figures and description set forth herein.
Embodiments of the invention are discussed below with reference to the Figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
The present invention will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings.
Detailed descriptions of the preferred embodiments are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure or manner.
It is to be understood that any exact measurements/dimensions or particular construction materials indicated herein are solely provided as examples of suitable configurations and are not intended to be limiting in any way. Depending on the needs of the particular application, those skilled in the art will readily recognize, in light of the following teachings, a multiplicity of suitable alternative implementation details.
At least some preferred embodiments of the present invention provide an electronically controlled antiskid system for wheeled vehicles with manual brakes to increase safety by improving directional control and shortening the stopping distance by reducing tire skids while braking when compared to conventional manual brake systems. At least some preferred embodiments are used with manual brake systems where the vehicle's operator uses their hands and/or feet to actuate and power the mechanical or hydraulic brakes. At least some preferred embodiments do not use any hydraulic or pneumatic power to apply the brakes. Instead, at least some preferred embodiments use an electronic controller and a wheel speed sensor to detect a tire skidding event on a wheeled vehicle and command an actuator to move the brake linkage to reduce the brake force that the operator is applying to the brake pads of the skidding wheel and thus reduce the tire skids. In at least some preferred embodiments, electrical power from the vehicles' electrical system is used to power the antiskid system, including the actuators. At least some preferred embodiments can operate on either DC or AC power. In addition, some embodiments can operate on portable battery power, which is ideal for bicycle applications that have no on-board electrical systems.
As illustrated by way of example in
In typical use of at least some preferred embodiments, the manual brake system already in place and certified on a vehicle is not impacted by the addition of the antiskid system. All elements of a manual brake system, shown by way of example in
In at least some preferred embodiments, the electronic controller of the antiskid system for manual brakes can be adapted from electronic controllers for antiskid systems for powered brakes. This includes both analog and digital controller designs that are available today. In addition, antiskid software algorithms for powered brake systems can also be adapted to be used in at least some preferred embodiments. Adapting current antiskid electronics and software for the electronic controller in at least some preferred embodiments is attractive to perspective manufacturers in the antiskid brake business as it can reduce both the development time and cost to manufacture.
Most currently known antiskid controllers compare the wheel speeds of all of the wheels on the vehicle to determine if a skidding event is occurring or about to occur with one or more of the wheels. Some electronic controllers use software algorithms to estimate the vehicle's “reference” or ground speed. Other antiskid controllers use inputs from other systems on board the vehicle to determine the estimated ground or reference speed. A function that can be added to some embodiments of the present invention is a Global Positioning System (GPS) capability that calculates the ground speed of the vehicle using GPS satellite data.
At least some preferred embodiments of the present invention may be implemented with an advanced controller for aircraft and motorcycles applications or a basic controller sufficient for bicycle applications. For example, without limitation, a simple version of the electronic controller may be used on off road bicycles when a cyclist needs to maintain maximum braking and directional control when riding down a step dirt hill. In this non-limiting example, the electronic controller is an ON/OFF switch that the cyclist holds “ON” to engage the antiskid actuator in a “pulse the brakes mode” when the antiskid function is needed.
At least some preferred embodiments of the present invention may utilize either type of automotive wheel speed sensors: the variable-reluctance or the magneto-resistive type of sensor. These sensors are environmentally rugged, lightweight, compact and low cost, and magneto-resistive wheel speed sensors can operate down to zero wheel speeds. Furthermore, wheel speed sensors in at least some preferred embodiments are not mounted inside the axle of the wheel. Wheel speed sensors typically use a gear shaped device called a tone ring to disrupt the magnetic field around the wheel speed sensor. Aircraft wheel speed sensors integrate the tone rings with the senor into a single unit that is mounted inside the aircraft's axle. This is not practical on general aviation aircraft due to the small axle diameters. The wheel speed sensor used in at least some preferred embodiments is located outside the axle. In addition in at least some preferred embodiments, the tone ring can be integrated into the brake disc for vehicles that utilize a disc brake. This is done by forming a gear shape in the outside or inside diameter of the brake disc. This can be done on aircraft, motorcycles or bicycles and can reduce weight and system complexity.
There are several groups of people that could benefit from an electronically controlled antiskid system for vehicles with manual brakes in accordance with at least some preferred embodiments of the present invention. Pilots of general aviation (GA) aircraft can utilize at least some preferred embodiments to increase safety and reduce operating costs. The landing phase of flight has the highest accident rate and loss of direction control is the biggest accident factor in this category. Having an antiskid system available for GA aircraft pilots could improve aircraft safety and increase pilots' peace of mind. Flight schools may also be interested in having the antiskid function according to at least some preferred embodiments on their GA aircraft since they typically experience two blown tires a year per aircraft from excessive braking by students. Manufacturers of GA aircraft with manual brake systems may also be interested in at least some preferred embodiments, as they could create more sales. With at least some preferred embodiments, manufacturers of aircraft brakes and antiskid systems would be able to enter the untapped retrofit market with over 200,000 GA airplanes flying today with manual brakes and no antiskid system available for these aircraft. Motorcycle manufactures may be interested in at least some preferred embodiments for motorcycles with manual brakes as many motorcycle manufacturers continue to provide more safety features on their vehicles, similar to cars to promote safety and increase sales. At least some preferred embodiments would be particularly beneficial for motorcycles that are operated in wet or icy conditions. With at least some preferred embodiments manufacturers of motorcycle brakes would also be able to enter the untapped retrofit market with millions of motorcycles in use today with manual brakes and no antiskid system available for these vehicles. Bicycle manufactures may be interested in at least some preferred embodiments for bicycles operated in wet and icy conditions and for bicycles operated by off-road cyclists that need enhanced skid and directional control when riding their bicycles in the dirt or mud. With at least some preferred embodiments manufacturers of bicycle brakes would be able to enter the untapped retrofit market with millions of bicycles in use today with manual brakes and no antiskid system available for these vehicles.
In a basic embodiment of the present invention, an antiskid system uses an actuator assembly to move a brake linkage to reduce the force that an operator is applying to a brake pad. The actuator assembly that moves the brake linkage utilizes a pulsing motion to reduce the average force that is being applied to the brake pad to reduce or eliminate tire skid. In this basic embodiment, the antiskid system also uses an electronic controller that is an On/Off switch that is actuated by the vehicle's operator to turn on the actuator assembly that pulses the manual brake linkage to reduce or eliminate tire skid. A typical application this embodiment is on a bicycle.
In an advanced embodiment of the present invention, an antiskid system uses an actuator assembly that can set and hold a position of a manual brake linkage to modulate the force on a brake pad. Wheel speed sensors and optional GPS data are used by an electronic controller to detect a skidding event. When a skidding event is detected, the electronic controller automatically commands the actuator to modulate the brake force to reduce tire skid. This advanced embodiment provides more efficient antiskid protection than a basic embodiment. A typical application for the present embodiment is on GA aircraft and motorcycles.
Referring to
In the present embodiment, the antiskid system comprises a lock and release assembly, an actuator assembly and an electronic controller. The actuator assembly may comprise a gearmotor and pulses the brake linkage to reduce the average force on the brake pads. The lock and release assembly connects the actuator assembly to the brake linkage when the antiskid function is needed and disconnects the actuator assembly from the brake linkage when the antiskid function is not needed or if there is a loss of electrical power. There is a lock and release assembly for each actuator assembly. The actuator assembly and the lock and release assembly can be powered by the vehicle's electrical system or by a portable battery. The lock and release assembly and the actuator assembly can be located in several positions through out the manual hydraulic brake linkage system. For example without limitation, a lock and release assembly 301A and an actuator assembly 302A are shown mounted at brake lever 200, a lock and release assembly 301B and an actuator assembly 302B are shown mounted near input shaft 201, and a lock and release assembly 301C and an actuator assembly 302C are shown mounted near brake pad 113.
Referring to
In the present embodiment, the electronic controller used on the manual hydraulic and mechanical brake system is an On/Off Switch that is actuated by the vehicle's operator to turn on actuator assembly 302A, 302B, 302C, or 302D that pulses the manual brake linkage to reduce or eliminate tire skids. The switch also turns on lock and release assembly 301A, 301B, 301C, or 301D to connect actuator assembly 302A, 302B, 302C, or 302D to the brake linkage. A typical application for an electronic controlled antiskid system utilizing an On/Off switch is on a bicycle.
In an alternate embodiment, the system comprises an actuator assembly with a gearmotor that pulses the brake linkage to reduce the average force on the brake pads without a lock and release assembly. There may be an actuator assembly for one or both wheels. The actuator assembly may be powered by the vehicle's electrical system or by a portable battery. The lock and release assembly may be eliminated when the configuration of the brake linkage enables the actuator assembly to engage and disengage the brake linkage without the need for a connection device. This is the case on some bicycle brake systems where the actuator assembly moves the scissor type brake linkages at the brake pads or when the actuator assembly moves the brake handle. When there is no lock and release assembly, a position switch is required to turn off the actuator assembly at its most refracted position.
Referring to
In the present embodiment, the vehicle operator provides the power for the actuation of the brakes by pushing or pulling on brake lever 200 with his hand or foot. Brake lever 200 is coupled to a mechanical lever 206 with a rod or cable 205. When the operator pushes or pulls on brake lever 200, mechanical lever 206 pulls or pushes rod or cable 207 that is connected to a mechanical lever 208 that is connected to brake pad 113 by a rod or cable 207. Brake pad 113 is pushed against brake disc/drum 114 creating the friction to slow the turning brake disc/drum 114 that is connected to wheel 115. This action slows or stops the vehicle. In alternate embodiments the number and arrangement of rods, cables and levers may vary depending on the particular geometry of the vehicle.
In the present embodiment, a lock and release assembly, an actuator assembly and an electronic controller is added to the manual mechanical brake system. As in the simple system, the lock and release assembly and the actuator assembly can be located in several positions through out the manual mechanical brake linkage system. For example, without limitation, a lock and release assembly 301E and an actuator assembly 302E are shown mounted near brake lever 200, a lock and release assembly 301F and an actuator assembly 302F are shown mounted along rod or cable 205, a lock and release assembly 301G and an actuator assembly 302G are shown mounted on mechanical lever 206, a lock and release assembly 301H and an actuator assembly 302H are shown mounted along rod or cable 207, a lock and release assembly 301I and an actuator assembly 3021 are shown mounted on mechanical lever 208, and a lock and release assembly 301J and an actuator assembly 302J are shown mounted near brake pad 113.
Hybrid manual brake systems exist that combine hydraulic and mechanical linkages to couple the operator's hand and/or foot movements to operate and power the brake mechanism. The brake pads in these hybrid manual brake systems can be mechanically or hydraulically actuated. In alternate embodiments the features and functions described above for the manual hydraulic and manual mechanical brake systems can be used in their respective locations in these hybrid systems.
In alternate embodiments the functionality of the electronic controller may be increased by replacing On/Off Switch 400 with other types of switches. One alternate embodiment comprises a force switch that is mounted in the brake linkage and closes when a specific brake force is reached. This turns on the actuator assembly and the lock and release assembly connecting the actuator assembly to the brake linkage. When the brake force drops below a specific level, the force switch opens and the actuator assembly stops pulsing the brakes and the lock and release assembly disconnects from the brake linkage. In this embodiment, a separate force switch is required for each actuator assembly.
In another alternate embodiment, a pressure switch is mounted in the hydraulic circuit and closes when a specific brake pressure is reached. This turns on the actuator assembly and the lock and release assembly connecting the actuator assembly to the brake linkage. When the brake pressure drops below a specific level, the pressure switch opens and the actuator assembly stops pulsing the brakes and the lock and release assembly disconnects from the brake linkage. The pressure switch only works with manual hydraulic brake systems. In this embodiment, a separate pressure switch is needed for each actuator assembly.
In another alternate embodiment, an inertia switch is mounted to the vehicle and closes when a specific deceleration level is reached. This switch turns on the actuator assembly and the lock and release assembly connecting the actuator assembly to the brake linkage. When the vehicle's deceleration drops below a specific level, the inertia switch opens and the actuator assembly stops pulsing the brakes and the lock and release assembly disconnects from the brake linkage. Only one inertia switch is needed for all of the actuator assemblies in this embodiment.
In yet another alternate embodiment, On/Off Switch 400 is replaced with a rheostat that is actuated by the vehicle's operator in order to turn on the actuator assembly that pulses the manual brake linkage to reduce or eliminate tire skids. The rheostat enables the operator to vary the voltage, which in turn varies the frequency of the pulses from the actuator assembly. The rheostat also activates and disengages the lock and release assembly. In the present embodiment, a rheostat is need for each actuator assembly.
Referring to
In the present embodiment, the electronic controller uses On/Off switch 400 actuated by the vehicle's operator or automatic switch 404 to turn on actuator assembly 302 that pulses the manual brake linkage to reduce or eliminate tire skids. Once actuator assembly is turned on, rheostat 407 may be actuated by the operator to control the pulsing of actuator assembly 302. Switch 400 or 404 also turns on lock and release assembly 301 to connect actuator assembly 301 to the brake linkage. A typical application for an electronic controlled antiskid system in accordance with the present embodiment is in a bicycle.
Alternate embodiments of the present invention may incorporate an electronic controller that increases its functionality by incorporating a wheel speed sensor and a tone ring for each wheel that is coupled to a computing device such as, but not limited to, a smart phone by a wire or wireless connection. The tone ring and brake disc can be integrated into one assembly by making a gear shape on the inside or outside diameter of the brake disc. The wheel speed sensor and tone ring are preferably mounted outside the axle rather than inside the axle. The computing device may also comprise a GPS capability like those found on smart phones. With the use of application software, the computing device may interpret the wheel speed and compare it to the GPS ground speed calculated by the computing device. The electronic controller includes brake release switches for each wheel that enable the operator to manually turn the gearmotors in the actuator assemblies on or off to pulse the brake linkages or to stop the pulsing. Earphones located on the operator's left and right ears are connected to the computing device by wire or wireless connection. When the computing device determines that a wheel is skidding or about to skid, the computing device sends a tone to the left or right ear corresponding to the brake release switch that needs to be turned on to pulse the appropriate brake. The tone continues until the skidding stops to alert the operator to turn off the pulsing. In alternate embodiments a visual signal may be sent to the operator to warn the operator of wheel skidding, for example, without limitation, a flashing light on a control panel. In the present embodiment, the electronic controller can be powered by the vehicle's electrical system or by a portable battery. In some embodiments rheostats can be used instead of On/Off switches to vary the frequency of the pulses to the brake linkage.
The embodiments described in the foregoing are directed to relatively basic implementations of an electronically controlled antiskid system for manual hydraulic and mechanical brake systems. However, the embodiments illustrated by way of example in
In the present embodiment, a switch is not required to actuate the antiskid system. Instead, advanced electronic controller 500 monitors the speed of wheels 115 as detected by wheel speed sensors 116 to determine if one wheel is rotating at a slower speed than the other wheel. Advanced electronic controller has electronic circuitry that can provide the electrical power for wheel speed sensors 116 and receive the wheel speed data for each wheel 115 through electric cables 118. In alternate embodiments the advanced electronic controller may be connected to the wheel speed sensors through a wireless connection. In the present embodiment, a tone ring 117 turns with wheel 115 and creates a magnetic field disruption that can be detected by wheel speed sensors 116 to enable wheel speed sensor 116 to determine the wheel speed. In alternate embodiments, the tone ring and the brake disc/drum can be integrated into one assembly by making a gear shape on the inside or outside diameter of the brake disc/drum. In the present embodiment, wheel speed sensor 116 and tone ring 117 are mounted outside the axle. Based on the difference in wheels speeds and the rate of change of the wheel speeds, advanced electronic controller 500 determines if a skid event is occurring or about to occur. Advanced electronic controller 500 also may use an optional Global Positioning Signal (GPS) to calculate the vehicle's ground or reference speed. This feature enhances the ability of advanced electronic controller 500 to detect and control skidding events.
When advanced electronic controller 500 detects a skidding event, it automatically commands a lock and release assembly 301 to connect actuator assembly 302 to the brake linkage system. Advanced electronic controller 500 then commands actuator assembly 302 to move the brake linkage a specific distance. When the brake linkage is moved, the force on the brake pads is reduced. No matter how hard the vehicle's operator pushes or pulls on the brake lever, it cannot be converted into a force on the brake pads because the brake linkage is generally prevented from moving. Once the skid is prevented, reduced or eliminated, advanced electronic controller 500 de-energizes lock and release assembly 301, which disconnects actuator assembly 302 from the brake linkage system, and actuator assembly 302 is commanded by advanced electronic controller 500 to return to its home position. With the antiskid system in its standby mode, the manual hydraulic or mechanical brake system remains fully functional until a new skid event is detected and the antiskid process is repeated again. The antiskid system remains in standby mode as long as the antiskid function is not needed or if there is a loss of electrical power. In an alternate embodiment, an advanced electronic controller may be used to pulse the actuator assembly rather than modulating the force on the brake pads.
An advantage of the advanced form of electronic controller 500 for an antiskid system for manual brakes is that electronic controller 500 can be adapted from the electronic controllers for antiskid systems for powered brakes. This includes both analog and digital controller designs that are available today. In addition, antiskid software algorithms for powered brake systems can also be adapted to be used with electronic controller 500. Adapting current antiskid electronics and software for electronic controller 500 makes it attractive to perspective manufacturers in the antiskid business as it will reduce both the development time and cost if they are licensed to produce an antiskid system according to the present embodiment. Advanced electronic controller 500 also has the computing power to capture and annunciate faults with the antiskid system. Advanced electronic controller 500 also provides an interface connection with the antiskid control panel located at the operator's station. Advanced electronic controller 500 may be powered by the vehicle's electrical system or by a portable battery.
In the present embodiment, actuator assembly 302 moves the brake linkage to reduce the force that is being applied to the brake pads and thus reduce or eliminate the tire skid. Actuator assembly 302 must have enough power to overcome the input force being applied by the operator's hand or foot. As shown by way of example in
Electricity is the primary source of power for actuator assembly 302. Power may be provided from the vehicle's electrical system, the vehicle's battery, or a portable battery through advanced electronic controller 500. Advanced electronic controller 500 is connected to lock and release assembly 301 and actuator assembly 302 through an electric cable 501. Vehicles with manual brake systems that have an electrical system usually have a Direct Current (DC) system. Consequently, actuator assembly 302 typically uses DC electricity. However, Alternating Current (AC) electricity can also be used with actuator assembly 302 by converting the vehicle's DC electrical power to AC electrical power for the antiskid system. Actuator assembly 302 is typically driven by an electric motor; however, a hydraulic or pneumatic motor can also drive actuator assembly 302. When a hydraulic or pneumatic motor is used, an electric motor drives a hydraulic or pneumatic pump that in turn drives the hydraulic or pneumatic motor that drives actuator assembly 302. Power can also be provided from an accumulator or tank that contains compressed gas that can drive a hydraulic or pneumatic motor. The accumulator can directly power a hydraulic or pneumatic cylinder. The motors that drive actuator assembly 302 in most implementations use a gearbox to reduce the speed and increase the torque of the output shaft of the motor. The gearbox can be integral with the motor or can be independent from the motor. The function of actuator assembly 302 is to move the brake linkage a small distance to reduce the force on the brake pad. Therefore, the electric, hydraulic or pneumatic motors, with and without gearboxes, in some cases must convert their rotary output motion into a linear motion.
Referring to
Those skilled in the art, in light of the present teachings, will readily recognize that a multiplicity of other suitable means may be used to drive the actuator assembly in alternate embodiments. For example, without limitation, an electric servomotor may be used to drive the actuator assembly. The servomotor utilizes an electric motor coupled to a gearbox that has an electronic sensor that monitors the rotation and position of the output shaft of the gearbox. With the use of an electronic servo controller, the output shaft of the servomotor can be commanded to rotate a specific distance and hold that position.
In other non-limiting examples, the actuator assembly may utilize the independent elements described above and couple them together in various configurations. These elements can include, without limitation, combinations of electric motors, hydraulic or pneumatic pumps and motors, many different devices to convert rotary to linear motion, solenoids, hydraulic or pneumatic actuators and servomotors. These elements may also be integrated into sub-assemblies or complete assemblies to form the actuator assembly.
At least some preferred embodiments of the present invention may utilize one of two types of actuator assemblies. For example, without limitation, in a basic implementation, the actuator assembly 302 pulses the brakes by moving the brake linkage back and forth a short distance at a rate of several times a second. The linear actuators described above by way of example with respect to
In at least some preferred embodiments the lock and release assembly connects the actuator assembly to the brake linkage. This connection is made when the antiskid function is needed to reduce the force on the brake pads to reduce or eliminate tire skids. The lock and release assembly must have enough power to connect it to the brake linkage and support the force applied by the actuator assembly. As shown by way of example in
Referring to
Referring to
Referring to
Referring to
Referring to
Those skilled in the art, in light of the present teachings, will readily recognize that a multiplicity of different suitable means may be used to connect the lock and release assembly the brake linkage, which enables the actuator assembly to move the brake linkage and reduce the force on the brake pads.
The lock and release assembly in at least some preferred embodiments requires an actuator to connect and disconnect it from the brake linkage. Electricity is the primary source of power for the lock and release assembly. Power may be provided from the vehicle's electrical system, the vehicle's battery, or a portable battery. Vehicles with manual brake systems that have an electrical system typically have a Direct Current (DC) system. Therefore, the lock and release assembly normally uses DC electricity. However, alternating current (AC) electricity can also be utilized to power the lock and release assembly. The lock and release assembly can be driven by an electric motor. A hydraulic or pneumatic motor can also drive the lock and release assembly. When a hydraulic or pneumatic motor is used, an electric motor drives a hydraulic or pneumatic pump that in turn drives the hydraulic or pneumatic motor that drives the lock and release assembly. Power can also be provided from an accumulator or tank that contains compressed gas that can drive a hydraulic or pneumatic motor. The accumulator can also directly power a hydraulic or pneumatic cylinder to operate the lock and release assembly.
When motors are used to drive the lock and release assembly, the motors in most cases use a gearbox to reduce the speed and increase the torque of the output shaft of the motor. The gearbox can be integral with the motor or it can be independent from the motor. The lock and release assembly may use an electric, hydraulic or pneumatic motor, with or without a gearbox, and in some cases the rotary output motion of the motor must be converted into a linear motion.
As described in foregoing, there are many methods for incorporating the lock and release assembly and the actuator assembly for an electronically controlled antiskid system for vehicles with manual brakes in accordance with at least some preferred embodiments of the present invention. The following description outlines a preferred method of incorporating the lock and release assembly and the actuator assembly in a manual hydraulic brake system. On manual hydraulic brake systems, the master cylinder, the lock and release assembly and the actuator assembly can be combined into an integrated package that is referred to herein as an electric master cylinder (EMC). The master cylinder in the integrated package maintains the same geometry and retains the same functions as the manual master cylinder that has been certified for the vehicle. This enables the original manual brake system to remain certified and fully functional when the electronic controlled antiskid system is not operating.
The second type of motor that can be used on the EMC is a gearmotor. When energized, the gearmotor rotates continuously. This in turn rotates a cam 803 continuously raising and lowering input shaft 201 a set distance. The gearmotor “pulses” the brakes to reduce tire skidding. Because the hydraulic brake pressure cannot be modulated, the gearmotor configuration is a less efficient antiskid system compared to the servomotor configuration. A position switch is required to stop the gearmotor when the cam is in its lowest position.
In the present embodiment, electric motor 800 is attached to a master cylinder 202. Attached to output shaft 802 of motor 800 is a drive train 804. Drive train 804 couples output shaft 802 of motor 800 to cam 803. Several different types of drive trains can be used such as, but not limited to, gears (as shown), sprockets and chain, belts and pulleys, etc. Any of these drive trains may be used with either a servomotor or a gearmotor. In addition, the servomotor can use a push/pull rod to connect output shaft 802 to cam 803 because the output shaft of a servomotor only rotates approximately 90 degrees.
One end of drive train 804 is centrally located about output shaft 802 of motor 800 and the other end is centrally located about input shaft 201 of master cylinder 202. Mounted under cam 803 is a thrust bearing 805. Thrust bearing 805 reduces the friction and torque in drive train 804 from the force applied to input shaft 201 from a brake lever by an operator's hand or foot. Attached to drive train 804 and located at input shaft 201 is cam 803. Cam 803 uses ramps to raise and lower cam followers 806 when drive train 804 is rotated by motor 800. Cam 803 has one ramp for each cam follower 806. The slope of the ramps determines the rate and amount of modulation or pulsing on the brake system's hydraulic pressure. In the present embodiment, actuator assembly 302 comprises motor 800, output shaft 802, cam 803, drive train 804, and thrust bearing 805, and these items can be located radially in any position about input shaft 201 to create a compact design to facilitate the retrofit replacement of the manual master cylinder 202 with the integrated EMC in the vehicle.
In the present embodiment, a lock and release assembly 301 is also integrated into the EMC. Lock and release assembly 301 comprises cam followers 806 an electric lock solenoid 807, a mounting block 808, axles 809, a pivot edge 810, a lock tab 811, a lock solenoid armature 812, a nut 813, a washer 814 a release spring 815, a fastener 816, and anti-rotation ears 817. Lock and release assembly 301 can be located radially in any position about input shaft 201 to create a compact design to facilitate the retrofit replacement of the manual master cylinder 202 with the EMC. Lock and release assembly 301 connects actuator assembly 302 to input shaft 201 when there is a skidding situation. Electric lock solenoid 807 is energized by the electronic controller when lock and release assembly 301 needs to connect to input shaft 201 when the brake pressure must be lowered to generally prevent, reduce or eliminate a tire skid. The electrically actuated lock solenoid 807 is used in the present embodiment so that, if there is a loss of electrical power, the antiskid system automatically disconnects from input shaft 201 and the manual brake system remains fully operational. However, in alternate embodiments the lock and release assembly may use other connection means such as, but not limited to, those shown by way of example in
A mounting block 808 is required to secure cam followers 806 and lock solenoid 807 together as a single unit. Mounting block 808 has a vertical hole through it that centrally locates it about input shaft 201. Rocking of mounting block 808 about input shaft 201 is preferably minimized by having a close tolerance hole for input shaft 201 with a sufficient length to diameter ratio. Protruding from mounting block 808 are axles 809, which are used to attach cam followers 806 to mounting block 808. Mounting block 808 comprises pivot edge 810 located a short distance from input shaft 201. This distance partially determines the lock and release loads for lock tab 811. Also attached to mounting block 808 is lock solenoid 807. Lock tab 811 comprises a hole that centrally locates lock tab 811 about input shaft 201. The diameter and thickness of the hole are sized to create the necessary lock and release loads of lock tab 811. Lock tab 811 comprises a feature at one end to facilitate the attachment of lock solenoid armature 812. In the present embodiment, lock solenoid 807 is attached to mounting block 808 in such a way that lock solenoid 807 can be adjusted vertically to create the desired pull force with lock solenoid armature 812, which is attached to lock tab 811. When electrical power is applied to lock solenoid 807, a magnetic force is created that pulls lock solenoid armature 812 into lock solenoid 807. This pulls lock tab 811 towards lock solenoid 807, which secures lock tab 811 to input shaft 201.
A hold down spring 819 is centrally located about input shaft 201. Hold down spring 819 is retained on input shaft 201 with nut 813 and washer 814. Hold down spring 819 generally ensures that lock tab 811 remains seated against pivot edge 810 in both the locked and released modes of operation. Hold down spring 819 also generally ensures that lock and release assembly 301 returns to its lowest position when lock solenoid 807 is de-energized. Release spring 815 located between solenoid mounting block 808 and lock tab 811 generally ensures that lock tab 811 releases from input shaft 201 when lock solenoid 807 is de-energized. Release spring 815 is retained in the proper position by placing it over lock solenoid armature 812. Release spring 815 provides a fail-safe mode when used in conjunction with electric solenoid 807. The movement of lock tab 811 is restricted by fastener 816. Anti-rotation ears 817 are part of master cylinder 202 and generally prevent lock and release assembly 301 from rotating about input shaft 201 when the actuator assembly 302 is operating.
In some embodiments the hydraulic cylinder, shown by way of example in
Testing of a prototype EMC has shown that 38 watts of electrical power is used to operate both lock and release assembly 301 and actuator assembly 302. This level of power consumption is achieved at a proof pressure of 600 PSI, which is 50% higher than the maximum operating pressure of master cylinder 202. Actuator assembly 302 and lock and release assembly 301 work against a force on input shaft 201 of 225 pounds to attain the 600 PSI of brake pressure. Testing of the prototype EMC has also revealed that hydraulic brake pressure may be modulated at a rate of 1000 PSI per second and the pressure may be set within 10 PSI using a servomotor. The total weight for lock and release assembly 301 and actuator assembly 302 in the present embodiment is less than one pound.
In at least some preferred embodiments, the function of a wheel speed sensor is to provide a signal to an electronic controller that can be used to determine the speed that the wheel is turning. There are two types of wheel speed sensors that can be used in an electronically controlled antiskid system for vehicles with manual brakes. The first type is a variable-reluctance sensor. The disadvantage of the variable-reluctance sensor is the decreasing signal strength as the wheel rotation slows. This means that the antiskid function cannot operate below a vehicle speed of approximately 10 miles per hour due to an insufficient signal from the wheel speed sensor. The second type of wheel speed sensor is an active or magneto-resistive sensor. This type of sensor cannot generate a signal on its own and needs input power from the electronic controller to operate. However, an advantage of the magneto-resistive type of wheel speed sensor is that it can operate down to zero wheel speed. This means the antiskid function can work down to zero vehicle speed making the antiskid function available during both high and low speeds.
The variable-reluctance and magneto-resistive types of wheel speed sensors both require a gear-shaped tone ring to operate. When the tone ring rotates near a wheel speed sensor of either type, a magnetic field fluctuates around the sensor. The electronic controller interprets the voltage and frequency variation sent from sensor 116 and converts this information into a speed of rotation of wheel 115. In the present embodiment, the tone ring is incorporated into a brake disc 902 by cutting a gear shape into the outside circumference of brake disc 902. This enables brake disc 902 to perform the function of a tone ring. In alternate embodiments the gear shape may be cut into the inside diameter of the brake disc. In the present embodiment, wheel speed sensor 116, attached to brake caliper 900, and brake disc 902, which functions as a tone ring, are externally mounted to the axle of wheel 115.
Having fully described at least one embodiment of the present invention, other equivalent or alternative methods of providing an electronically controlled antiskid braking system for vehicles with manual brakes according to the present invention will be apparent to those skilled in the art. The invention has been described above by way of illustration, and the specific embodiments disclosed are not intended to limit the invention to the particular forms disclosed. For example, the particular implementation of the antiskid system may vary depending upon the particular type of vehicle used. The vehicles described in the foregoing were directed to two wheeled implementations; however, similar techniques are to provide antiskid systems for vehicles with manual brakes that have fewer or more wheels such as, but not limited to, unicycles, tricycles, three wheeled motorcycles, all terrain vehicles (ATVs), etc. Non-two wheeled implementations of the present invention are contemplated as within the scope of the present invention. The invention is thus to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the following claims.
Claim elements and steps herein have been numbered and/or lettered solely as an aid in readability and understanding. As such, the numbering and lettering in itself is not intended to and should not be taken to indicate the ordering of elements and/or steps in the claims.
The present Utility patent application claims priority benefit of the U.S. provisional application for patent Ser. No. 61/325,237 and entitled “Antiskid System For General Aviation Aircraft”, filed on 16 Apr. 2010 under 35 U.S.C. 119(e). The contents of this related provisional application are incorporated herein by reference for all purposes.]
Number | Date | Country | |
---|---|---|---|
61325237 | Apr 2010 | US |