The invention pertains to an apparatus for the treatment of a cutting edge, such as a knife's edge, or the edge of a sheet-formed material, and relates more specifically to an apparatus of the type comprising at least two series of mutually slanting and oppositely arranged surfaces that alternately overlap each other this way forming a groove in which an edge or cutting edge is insertable for treatment by said surfaces. The invention also relates to a grinding block designed for the purpose.
In addition to conventional grinding stones, grinding devices for knives and other cutting tools can be separated into two main groups, one of which refers to devices having stationary grinding means requiring that the edge is manually moved forth and back for grinding, and the other main group comprising motor driven grinding means which are driven to move relative to the edge.
The later group is dominated by devices wherein upon grinding the edge has an essentially tangential orientation with respect to a rotating grinding means. As an example on the latter type of devices, reference can be made to the German publication DE-A1-100 44 614. A characteristic feature in these grinding devices is that the polishing direction essentially follows the length direction of the edge, which is not always optimal.
It is therefore an object of the invention to provide a grinding apparatus which provides an optimal polishing direction transversely to the longitudinal extension of an edge or cutting edge, and which can polish both sides of the edge simultaneously, when appropriate.
Another object of the invention is to provide a grinding apparatus by which it can be ensured that a one-sided or two-sided edge on each occasion can be formed to have the same desired and correct angle.
An additional object of the invention is to provide a grinding block which is designed for an optimal polishing direction transversely to the longitudinal extension of an edge, and which ensures that the edge on each occasion can be formed to have a correct angle.
One or several of these objects are met in a grinding apparatus of the type mentioned by way of introduction, wherein the surfaces in each series of surfaces are arranged in a common plane forming one side of a grinding block, respectively, the blocks being seated in a holder by which each block is spring biased towards the opposite block, the blocks being driven in reciprocating movement transversely to the longitudinal extension of the edge, while the surfaces are resiliently pressed against the mutually opposite sides of the edge/cutting edge.
The series of surfaces is preferably arranged on sections of the subject block, said sections being separated by recesses wherein corresponding sections of the opposite block intermesh in a toothed engagement.
Preferably, material removing surfaces are integrally formed in the block sections, however, the sections of a block can in the alternative be coated with a material removing layer.
It is preferred that the blocks are spring mounted in the holder in the direction of the reciprocating movement.
The reciprocating movement is preferably generated by means of a shaft which is driven in rotation, and a motion conversion means that is caused to rotate with the shaft and arranged to transform the rotary motion of the shaft into a linear, reciprocating movement of the blocks. This motion transferring means may be realized as a disc that is eccentrically supported on the shaft, wherein a wear ring that is supported about the periphery of the disc for free rotation thereabout is arranged to generate the reciprocating movement of the blocks and grinding surfaces.
Alternatively, the motion transferring means may be realized as a disc that is centrally supported on the shaft and having a cam with cam points projecting from the periphery of the disc. Advantageously, the points of the cam may have a smaller angle of inclination as seen in the rotational direction of the disc and in relation thereto a steep angle of inclination as seen in the opposite direction.
Alternatively, the motion transferring means may be realized as an irregularity formed on the shaft exterior, such as a radial projection or a curved axial portion of the shaft.
The blocks are preferably spring biased away from the motion transferring means so as to be brought in motion transferring contact with the motion transferring means upon overcoming of the biasing force.
In addition, the blocks may advantageously be arranged to pivot about a first axis that has a transverse orientation with respect to said groove. Likewise, the holder itself can be pivotally arranged about a second axis that is oriented transversally to the groove.
The third object is briefly met in a grinding means comprising cooperating grinding blocks, each of which includes a series of individual surfaces supported in a common plane and on sections of the block, wherein the sections of the block are separated through intermediate recesses wherein corresponding sections of an opposite block are insertable in a toothed engagement.
Embodiments of the grinding apparatus and the grinding block are more closely disclosed hereinafter in the description and in the appended claims.
The invention is more closely explained below with reference made to the appended drawings, wherein
a-3b are end views, respectively, showing a grinding means incorporated in the apparatus;
c-3d show the grinding means from above;
In the following description, the invention will be explained as applied in a grinding apparatus arranged for sharpening a knife's cutting edge. It should however be understood that the apparatus also can be arranged for shaping or sharpening an edge of other types of cutting tools than knives. It should also be understood that the arrangement can also be adapted to other kinds of treatment besides grinding. For that reason, grinding shall in this context be understood to encompass honing, polishing and other appropriate mechanical processing aiming for shaping or for reshaping an edge.
In this connection it should be noted that the apparatus can also be used in other kind of treatment besides sharpening of cutting edges, such as for chamfering or degrading the edge of a metal plate or a sheet of other material than metal. In the following description and in appended claims, the expression “edge” shall therefore be understood as encompassing both single sided and double sided cutting edges of knives and other cutting or chopping tools, as well as an edge of a sheet-shaped material besides the cutting and chopping tools. Albeit the invention is described below in its application in a grinding apparatus arranged for sharpening of a knife's edge this is not to be understood as limiting the invention to this use and embodiment.
Accordingly, the grinding apparatus comprises mechanically processing grinding means in contact with opposite sides of the edge and which are driven for movement relative to the knife's edge while polishing the edge. With reference to
The subject side of the blocks 4 and 5 are for the purpose arranged to extend at a slanting angle between a bottom plane and a top plane of each block. The bottom and top planes may extend in parallel to adjoin under right angles a side-plane which is opposite to the slanting side-plane on which said surfaces 1a-1c, 2a-2c are formed. The slanting angle of the slanting sides or planes can be equal in both blocks, and the slanting angle may, as an example, amount to the order of 15-25 degrees as measured at the angle α between the side-plane and the bottom plane. In the illustrated embodiment, the slanting angle of the side-planes are also related to a symmetrically oriented plane of intersection or parting line DP between the blocks, which corresponds to an ideal insertion direction of a knife's blade having a double-sided cutting edge. In the disclosed example, the slanting and overlapping side-planes thus form a symmetrical, V-shaped groove having an intermediate angle of 30 to 50 degrees.
However, it should be understood that the groove that is formed between the oppositely arranged surfaces can alternatively have another profile than the symmetrical V-profile of the illustrated embodiment, and that the surfaces can alternatively be formed with a convex or a concave profile when the groove is seen along the length direction thereof. It is further to be understood that the slanting angle of the surfaces of one block can be different from the slanting angle of the surfaces of the opposite block. For the polishing of a single-sided edge, the surfaces of one block may lack completely a slanting orientation, such that the angle of the groove formed this way is solely determined through the slanting angle of the surfaces in one of the blocks. In all cases it can be ensured that the angle of the edge becomes the same at each occasion, and is defined by the subject angle between the surfaces of the oppositely positioned blocks.
The slanting side-planes of the blocks are separated into sections 4a-4c and 5a-5c, respectively, and the shaping surfaces 1a-1c, 2a-2c are formed on these sections. The sections are separated through intermediate recesses 4d-4e and 5d-5e, respectively, in which recesses the corresponding sections of the opposite block are insertable in a toothed engagement. The clearance is such that the blocks can move freely and without friction relative to each other as the result of a force that is manually applied to a knife's blade which is inserted in the groove, such as illustrated in
Polishing surfaces 1a-1c, 2a-2c can be integrally formed in the slanting sections of the block. To this purpose, the surfaces may comprise ridges or teeth that are formed in the surface of a block which is produced from a metal, a hard metal or a composition of metals. The polishing surfaces may alternatively be integrally formed in a block produced from a hard ceramic material. The block sections may alternatively be lined with surfaces in the form of a material removing surface layer as known per se, comprising a ceramic material or diamond particles, e.g. Alternatively, only one block comprises sections having a material removing surface whereas the opposite block has a smooth surface serving as a counter support, which is the case when the blocks are arranged for polishing a single-sided edge, e.g. For reason of simplicity, the subject surfaces will hereinafter be referred to as grinding surfaces, although it is realized that the surfaces may alternatively serve other functions than grinding.
The blocks 4, 5 and associated grinding surfaces are supported in a holder 7, and spring biased towards an intermeshed condition according to
The holder 7 is itself movably supported in the grinding apparatus, and is more precisely spring biased towards a raised home position wherein the grinding apparatus is not under load and at rest. This is schematically illustrated in
The grinding means incorporated in the grinding apparatus is associated with a motion transferring means 10 by which the blocks 4 and 5 and their associated grinding surfaces are driven in a reciprocating movement U-D, transversely or substantially at right angles to the longitudinal direction of the knife's edge to be polished. It should be made clear that the motion referred to is a reciprocating movement in the width direction of the knife's blade, and since the knife's blade during grinding usually has a horizontal orientation, it may also for the purpose of description be appropriate to define the movement as an upwards/downwards movement transversely to the longitudinal direction of the edge.
The motion transferring means can include an electromagnetic driver, comprising for example a permanent magnet that is driven by a coil in reciprocating movement that is transferred to the holder 7.
The motion transferring means preferably comprises a member 11 which is arranged to be brought in rotation through a motor driven rotary shaft 12. The motion transferring means may, e.g., be realized as a circular disc which is supported on the shaft in a non-centre position of the disc, or realized as a cam disc supported on the shaft in a central position, or realized as an irregularity formed on the shaft's exterior such as a radial protrusion or a curved portion of the shaft. Alternatively, the motion transferring means may comprise a pivoting link positioned between the shaft and the holder, or any other structure known per se which is effective for conversion of the rotary motion of the shaft into a linear back and forth movement in the holder/grinding means. In the embodiment including a cam disc supported on the shaft, the points 13 of the cam preferably has a rising flank facing the rotational direction R of the cam disc, and in relation thereto a steeper descending flank on the trailing side of the cam point by which different velocities are accomplished in the movement of the grinding means.
One feature of the invention is that the holder, in result of being subjected to a biasing force, brings the grinding means including the blocks and their associated grinding surfaces out of the operative engagement with the motion transferring means 10. Accordingly, the grinding means is not brought into driving contact with the motion transferring means until the biasing force, acting on the holder, is overcome. This feature can be used to shut off the drive shaft's motor between grinding operations, if a circuit breaker is arranged to be actuated upon pressing down the grinding means into its working position. It can also alternatively be used to passivate an unloaded grinding means in connection with a drive shaft that is driven in continuous rotation.
One embodiment of the grinding means is illustrated in the partially sectioned end view of
In the illustrated embodiment the motion transferring means is realized as a disc 28 which is non-rotationally secured to a rotary shaft 12′. The disc 28 is connected to the shaft in a non-centre position of the disc. The displacement of the point of connection from the geometric centre of the disc is preferably determined such that the difference between distances from the connection point to the highest and lowest points of the disc amounts to the order of 1-10 mm. A wear ring 29 is supported floating on the periphery of the disc, the wear ring thus permitted free rotation about the disc. The contact between the eccentrically rotating disc 28 and the holder 7′ is thus established via the wear ring 29, which may be produced from a synthetic material having low friction coefficient. The arrangement is powered by an electric motor running at a suitable number of revolutions such as 15-30 000 rpm which, in combination with the resilient contact between the grinding blocks/grinding surfaces and the opposite sides of the knife's blade, results in a smooth operation.
In one embodiment adapted for sharpening the cutting edge of a knife or other tool, the grinding apparatus according to the invention is preferably arranged for standing on a worktop. In other applications the grinding apparatus can be arranged as a hand held tool which can be moved forth and back along an edge or cutting edge. The grinding apparatus may also be realized as auxiliary equipment mountable on a tool or tool holder which is powered by electricity or by air.
In one alternative embodiment, the polishing surfaces 1a-1c, 2a-2c may have other shapes than the planar shape which is illustrated in the drawings. It should be noted, albeit not being shown in drawings, that these surfaces may be shaped to have convex configuration as viewed in a longitudinal section through the blocks, this way forming in cooperation a groove that is wave-shaped in its longitudinal direction between the oppositely positioned blocks. This alternative embodiment makes possible the grinding of a knife having a wave-shaped cutting edge. It is also conceivable to form the surfaces with an obtuse angle as viewed in the longitudinal section, forming a saw-toothed groove between the opposite blocks.
From the above description it will thus be realized that the invention may be used in several embodiments which differ in detail from the embodiment explained above, without departing from the concept of the invention as this is defined through the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0800986 | May 2008 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2009/050404 | 4/20/2009 | WO | 00 | 11/2/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/134193 | 11/5/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1365161 | Eisenhauer | Jan 1921 | A |
2024860 | Hobart et al. | Dec 1935 | A |
2200614 | Booth et al. | May 1940 | A |
2241412 | Meade et al. | May 1941 | A |
2249218 | Meade et al. | Jul 1941 | A |
2398711 | Lambert | Apr 1946 | A |
2795156 | Murchison | Jun 1957 | A |
5005319 | Friel | Apr 1991 | A |
20080041190 | Dassaud et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
3515934 | Nov 1986 | DE |
Entry |
---|
International Search Report, dated Jul. 8, 2009, from corresponding PCT application. |
Number | Date | Country | |
---|---|---|---|
20110053473 A1 | Mar 2011 | US |