The present invention relates to 3-D localization in WSN, mobile networks and cooperative wireless networks.
Wireless sensor network (WSN) generally refers to a wireless communication network which is composed of a number of devices, called sensors, allocated over a monitored region in order to measure some local quantity of interest [1]. Due to their autonomy in terms of human interaction and low device costs, WSNs find application in various areas, like event detection (fires, floods, hailstorms) [2], monitoring (industrial, agricultural, health care, environmental) [3], [4], energy efficient routing [5], exploration (deep water, underground, outer space) [6], and surveillance [7] to name a few. In many practical applications, data gathered by sensors are only relevant if they are associated with accurate sensors' locations; hence, estimation of sensors' locations is a key requirement for a majority of practical applications [1].
Sensors are small, low cost and low power nodes commonly deployed in large number over a region of interest with limited to non-existing control of their location in space, e.g., thrown out of an aeroplane for sensing in hostile environments [8]. Installing a global navigation satellite system (GNSS) receiver in each sensor would severely augment the network costs and restrict its applicability [9].
In order to maintain low implementation costs, only a small fraction of sensors are equipped with GNSS receivers (called anchors), while the remaining ones (called targets) determine their locations by using a kind of localization scheme that takes advantage of the known anchor locations [10]. Since the sensors have minimal processing capabilities, the key requirement is to develop localization algorithms that are fast, scalable and abstemious in their computational and communication requirements.
Target localization has gained much attention recently due to its significance in both military and industrial applications [11], [12], Wireless localization schemes usually rely on range measurements [13], [14], drawn from time of arrival, received signal strength (RSS), or directional data, drawn from angle of arrival (AoA), or their combination. Notable advance has been made in developing range/angle localization algorithms recently [15]-[21]. In [15], linear least squares (LS) and optimization based estimators were disclosed. An LS and a maximum likelihood (ML) estimators for a hybrid scheme that merges RSS difference (RSSD) and AoA measurements were derived in [16] by employing non-linear constrained optimization. In [17], a selective weighted LS (WLS) estimator for RSS/AoA localization problem was proposed. An estimator based on semidefinite relaxation technique where triplets of points were used to obtain the angle observations was proposed in [18]. Nevertheless, the methods disclosed in [15]-[18] are designed for 2-D scenarios only. Contrarily to these methods, the current application presents a method based on exploiting the convenient nature of spherical representation of the considered problem and proposes a simple solution in a 3-D setting.
Document [19] discloses a WLS estimator for the 3-D RSS/AoA localization problem when the transmitted power, PT, is unknown. However, the authors in [19] only investigated a small-scale WSN, with low noise power. Contrarly to the method dislosed in [19] which only localizes a single target at a time in a non-cooperative fashion, the method disclosed in the present application simultaneously localizes multiple targets in a cooperative manner.
Documents [20] and [21] disclose the RSS/AoA target localization problem in 3-D WSN, for both cases of known and unknown PT. A novel non-convex objective function from the RSS and AoA measurement models that can be transformed into a convex one, by applying second-order cone programing (SOCP) and semidefinite programming (SDP) relaxation techniques in the case of non-cooperative [20] and cooperative localization [21], respectively, were developed. However, relaxation techniques enlarge the set of possible solutions, which might negatively affect accuracy. Moreover, an iterative approach based on bisection procedure for non-cooperative localization is disclosed in [21]. In contrast to [20] and [21], the present application takes advantage of a natural spherical formulation to establish novel relationships between the measurements and the unknown locations of targets, which result in a simple solution, without resorting to any relaxation technique nor iterations.
In [23], a convex optimization-based method for 2-D and 3-D localization is disclosed. The method relies on pair-wise distance measurements between a target whose location is not known and an anchor whose location is known and pair-wise distance measurements between two targets whose locations are not known. The method is based on formulating a sub-problem such that a subset of both anchors and targets is included, where the subset of sensors are chosen according to intelligent rule sets. The location estimates of the targets included in the formed subset are determined by solving an SDP representation of the derived sub-problem. The method then classifies the targets whose locations have been determined as pseudo-anchors, which are used for formulating further sub-problems. The process is repeated iteratively until all target locations are determined. Contrarily to the method disclosed in [23], the WLS method disclosed in the present application utilizes combined RSS/AoA measurements. Furthermore, the WLS method disclosed in the present application provides a solution obtained in a non-repetitive manner such that error propagation is avoided.
Document [24] discloses a hybrid localization method, where due to area conditions, one or more targets switch between different localization techniques in order to enhance the localization accuracy. This hybrid method is based on RSS measurements, and for given area conditions potentially provides the best possible localization accuracy for those conditions. Several localization techniques (e.g., ecolocation, centroid, approximate point-in-triangulation, maximum likelihood estimator and proximity) were investigated in [24], and the general idea can be easily extended to any RSS-based localization technique. In contrast to the hybrid method disclosed in [24], the WLS method disclosed in the present application is hybrid in the sense that the two radio measurements of the transmitted signal are merged, namely RSS and AoA measurements. Moreover, the method in the present disclosure does not require the specific area conditions to be known nor to solve the localization problem with other localization techniques other than the proposed WLS one.
In [25], sensor network integration through pheromone fusion (SNIPE) that provides an end-to-end demonstration and integrates self-contained sensor/communication with novel swarming algorithms to detect foot and vehicular movement through a monitored area with minimal configuration and maintenance is disclosed. To locate the target in SNIPE, from all anchors that detect the target only the ones that recognize themselves as the closest anchors are used. These anchors then construct a gradient using a small integer (four bits in the preferred implementation) indicating their distance from the edge. A detecting anchor that hears no edge distance greater than its own knows that it is farthest from the edge; hence, it belongs to the set of the nearest anchors. Then by using the nearest anchors' locations and tactical target location, the target location is determined. Contrarily to the method in [25], the WLS method disclosed in the present application is not directly dependent on anchor density and the number of anchors that detect a given target and does not use gradients.
The disclosure in [26] provides a system having a compressive wireless array for bearing estimation of multiple acoustic sources with a plurality of sensors using a wireless channel under bandwidth constraints. It is shown in [26] that, when the source signals are unknown but incoherent, the high-rate samplers can be eliminated from all but one of the array elements by using a constrained convex optimization algorithm to perform the bearing estimation calculation. This method is important for sensor networks consisting of only arrays, since these networks can significantly outperform the average localization performance of the cheaper proximity sensors in spite of their sheer number per capita. In contrast to [26], the WLS method disclosed in the present application combines the bearing measurements (both azimuth and elevation angles) with the RSS ones.
In document [27], wireless integrated miniature sensing stations, which can be organized into a communicating network to allow sensitive detection and analysis of vibration, infrared radiation, sound, or other physical or condition change indicative of an intruder, vehicle movement, etc. is disclosed. These stations can be placed randomly in the area of interest (e.g., dropped from an aircraft or a ship) and they are programmable to localize themselves in a distributed fashion. However, in huge contrast to the disclosure in the present application, the disclosure in [27] does not provide any kind of localization algorithm for estimating the unknown stations' positions, but rather focuses on the components and characteristics of the sensing stations.
Methods and apparatus for enhancing communications transmitted via wireless mesh networks are disclosed in [28]. These networks include a number of radio nodes organized in a mesh topology, equipped with omnidirectional antennas or directional antennas to transmit large volumes of data. Contrarily to the disclosure in the present application, the disclosure in [28] focuses on network configuration to transmit data at a specific data rate and frequency range, and does not focus on localizing the radio nodes.
The disclosure in [29] provides a wireless computing system composed of wireless access points (APs) able to receive a signal from a user computing device (UCD). The system first calculates an estimation of a location of UCD based on a coarse calculation using AoA of the received signal from UCD. This estimation is used to determine whether or not UCD is likely to be in a favorable location to receive an accurate (full and uninterrupted) signal due to proximity of an AP. In the former case, a fine calculation of the device's location based on a more thorough analysis of the received AoA from a smaller area is performed. Moreover, the system determines another estimate of the UCD's location based on RSS, which is done via triangulation. The two estimates (from AoA and RSS) are then combined together to compute the final estimate of UCD's location. In the latter case, when UCD is not likely in a favorable location, the final estimation is determined according to a combination of a coarse AoA estimate and the RSS one. In contrast to the disclosure in [29], the current one exploits the combined RSS and AoA measurements to cast the considered problem into its more natural framework comprising spherical coordinates, which enables effortless linearization of the measurement model. Moreover, by employing a simple weighting strategy to the linearized model, a solution is derived in a single iteration, in a form of a WLS estimator. Document [30] discloses an extension of the wireless computing system disclosed in [29]. Namely, the wireless computing system may be set to determine UCD's location recurrently within a predefined time period (e.g. every 5, 10, or 20 seconds, or any other suitable period) according to the method disclosed in [29]. It is assumed that the system can store and time-stamp previous estimations for later use. During a pre-established time threshold, the system takes advantage of all previously acquired RSS estimates and combines them with either coarse or fine estimates based on AoA measurements, depending if Lien location is likely or not to be in a favorable location. If the time threshold between the current estimate and the previous one is penetrated, the previous estimate will not be considered for localization improvement in the current step, and the estimation accuracy will depend only on the AoA estimate (coarse or fine) in combination with the current RSS estimate. Unlike the disclosure in [30], the current disclosure requires only a single measurement acquisition and offers a solution in a single iteration. Rather than using RSS-only and AoA-only measurements to get two location estimates like in [30], the current disclosure integrates both RSS and AoA measurements, and by applying a WLS criterion offers a final location estimate.
The disclosure in [31] presents an apparatus and a method for localizing a single target at a time in non-cooperative WSNs. It is assumed that targets can communicate with anchors exclusively (with all of them actually), and that anchors are equipped with the necessary antennas to measure both RSS and AoA quantities. In contrast to [31], the current application considers that the targets have a limited communication range; thus, only some of them can establish a target/anchor link directly. Therefore, in order to acquire the necessary information, in the current application, target cooperation is allowed. As a direct consequence, the targets are also allowed to measure the considered quantities.
The RSS/AoA network localization method in 3-Dspace disclosed in this application merges RSS and AoA observations for the situation where PT is known, and its generalization to the case where PT is unknown is straightforward. Low computational complexity and high estimation accuracy are achieved by exploiting the convenient nature of spherical coordinates which allows usto establish new relationships between the measurements and the unknown locations of targes, and results in an efficient solution. Due to its low computational complexity (linear in the number of links) and upfront derivation (without resorting to convex relaxation techniques), the method provides fast and accurate solution. Simulation results validate the accuracy of the proposed method.
Patents and publications relevant to the patentability of the instant claims, conce Method for 3-D network localization.
[1] N. Patwari. Location Estimation in Sensor Networks. Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., USA, 2005.
[2] Y. Singh, S. Saha, U. Chugh, e C. Gupta, “Distributed Event Detection in Wireless Sensor Networks for Forest Fires,” UKSim, pp. 634-639, April 2013.
[3] Z. Rongbai e C. Guohua, “Research on Major Hazard Installations Monitoring System Based on WSN,” ICFCC, pp. V1-741-V1-745, Maz 2010.
[4] Z. Dai, S. Wang, and Z. Yan, “BSHM-WSN: A Wireless Sensor Network for Bridge Structure Health Monitoring,” ICMIC, pp. 708-712, June 2012.
[5] Lj. Blazevic, J. Y. Le Boudec, e S. Giordano, “A Location-based Routing Method for Mobile Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 97-110, March 2005.
[6] L. Ghelardoni, A. Ghio, e D. Anguita, “Smart Underwater Wireless Sensor Networks,” IEEE!, pp. 1-5, November 2012.
[7] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Van, e L. Gu, “Energy-Efficient Surveillance System Using Wireless Sensor Networks,” MobiSys, pp. 1-14, June 2004.
[8] L. Buttyain e J. P. Hubaux, Security and Cooperation in Wireless Networks: Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing. Cambridge University Press, New York, N.Y., USA, 2007.
[9] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, e N. S. Correal, “Locating the Nodes: Cooperative Localization in Wireless Sensor Networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54-69, July 2005.
[10] G. Destino. Positioning in Wireless Networks: Noncooperative and Cooperative Algorithms. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2012.
[11] S. Bartoletti, W. Dai, A. Conti, M. Z. Win, “A Mathematical Model for Wideband Ranging,” IEEE I. Selec. Top. Sign. Process., vol. 9, no. 2, pp. 216-228, March 2015.
[12] S. Tomic, M. Beko, and R. Dinis, “RSS-based Localization in Wireless Sensor Networks Using Convex Relaxation: Noncooperative and Cooperative Schemes,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2037-2050, May 2015.
[13] S. Tomic, M. Beko, and R. Dinis, “Distributed RSS-AoA Based Localization with Unknown Transmit Powers,” IEEE Wirel. Commun. Letters, vol. 5, no. 4, pp. 392-395, August 2016.
[14] D. C. Popescu and M. Hedley, “Range Data Correction for Improved Localization,” IEEE Wirel. Commun. Letters, vol. 4, no. 3, pp. 297-300, June 2015.
[15] K. Yu, “3-D Localization Error Analysis in Wireless Networks,” IEEE Trans. Wirel. Commun., vol. 6, no. 10, pp. 3473-3481, October 2007.
[16] S. Wang, B. R. Jackson, and R. Inkol, “Hybrid RSS/AOA Emitter Location Estimation Based on Least Squares and Maximum Likelihood Criteria,” IEEE QBSC, pp. 24-29, June 2012.
[17] L. Gazzah, L. Najjar, and H. Besbes, “Selective Hybrid RSS/AOA Weighting Algorithm for NLOS Intra Cell Localization,” IEEE WCNC, pp. 2546-2551, April 2014.
[18] P. Biswas, H. Aghajan, and Y. Ye, “Semidefinite Programming Algorithms for Sensor Network Localization Using Angle of Arrival Information,” Asilomar, pp. 220-224, October 2005.
[19] Y. T. Chan, F. Chan, W. Read, B. R. Jackson, and B. H. Lee, “Hybrid Localization of an Emitter by Combining Angle-of-Arrival and Received Signal Strength Measurements,” IEEE CCECE, pp. 1-5, May. 2014.
[20] S. Tomic, L. Marikj, M. Beko, R. Dinis, and N. Órrão, “Hybrid RSS-AoA Technique for 3-D Node Localization in Wireless Sensor Networks,” IWCMC, pp. 1277-4282, August 2015.
[21] S. Tomic, M. Beko and R. Dinis, “3-D Target Localization in Wireless Sensor Network Using RSS and AoA Measurement,” IEEE Trans. Vehic. Technol., vol. 66, no 4, pp. 3197-3210, April 2017.
[22] L. Gazzah, L. Najjar, and H. Besbes,“Selective Hybrid RSS/AOA Approximate Maximum Likelihood Mobile intra cell Localization,” EW, April 2013.
[23] U.S. Pat. No.: 7,970,574 B2. Scalable Sensor Localization For Wireless Sensor Networks, June 2011.
[24] U.S. Pat. No.: 7,941,157 B2. Hybrid Localization In Wireless Networks, May 2011.
[25] U.S. Pat. No.: 7,480,395 B2. Decentralized Detection, Localization, And Tracking Utilizing Distributed Sensors, January 2009.
[26] U.S. Pat. No.: 2010/0265799 A1. Compressive Sensing System And Method For Bearing Estimation Of Sparse Sources In The Angle Domain, October 2010.
[27] U.S. Pat. No.: 6,208,247 B1. Wireless Integrated Sensor Network Using Multiple Relayed Communications, March 2001.
[28] U.S. Pat. No.: 2012/0326927 A1. Apparatus And Method For Enhancing Wireless Mesh Network Communications, Dec. 2012.
[29] U.S. Pat. No.: 2017/9749786 B1. Determining Location Via Wireless Signal Attributes, August 2017.
[30] U.S. Pat. No.: 2017/0208281A1. Determining Location Via Current and Previous Wireless Signal Attributes, September 2017.
[31] U.S. Pat. No.: 2018/0100915A1. Apparatus and method for RSS/AoA target 3-D localization in wireless networks, April 2018.
[32] T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice-Hall: Upper Saddle River, N.J. , USA, 1996.
[33] M. B. Ferreira, J. Gomes, and J. P. Costeira, “A Unified Approach for Hybrid Source Localization Based on Ranges and Video,” IEEE ICASSP, pp. 2879-2883, April 2015.
[34] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall: Upper Saddle River, N.J., USA, 1993
[35] K. V. Mardia. Statistics of Directional Data. Academic Press, Inc.: 24/28Oval Road, London, England, 1972.
[36] C. Forbes, M. E. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Fourth Edition, John Wiley & Sons, Inc.: Hoboken, N.J., USA, 2011.
[37] M. W. Khan, N. Salman, and A. H. Kemp, “Optimised Hybrid Localisation with Cooperation in Wireless Sensor Networks,” IET Sign. Process., vol. 11, no. 3, pp. 341-348, May. 2017.
As shown in
Let us consider a connected 3-D network with M targets (unknown locations) and N anchors (known locations) whose true locations are denoted by xiϵ3 for i=1, . . . , M and αjϵ3 for j=1, . . . , N, respectively. Here, it is assumed that the communication range, R, of the targets is limited. Hence, in order to acquire sufficient amount of measurements, target cooperation is allowed, i.e., a target can communicate with any sensor within its communication range. Moreover, the distance is drawn from the RSS information exclusively, since ranging based on RSS does not require additional hardware [1]. The noise-free RSS between i-th and j-th sensors is defined as [32, Ch.3]
where PT is the transmit power of the target,
is the path loss value measured at a short reference distance d0(d0≤dij) and P0 is the received signal strength (RSS) at d0, y is the path loss exponent (PLE), and dij is the distance between sensors i and j. Furthermore, the tuple set ε={(i,j):∥xi−sj∥≤R, for i=1, . . . ,N, j=1, . . . , M, M+1, . . . ,M+N, i≠j} denotes the existance of an edge between two sensors. The RSS model in (1) can be rewritten in a logarithmic form as
where Sj is the j-th neighboring sensor (either a target or an anchor), and nij˜(0,σn
The AoA measurements can be obtained by installing directional antenna or antenna array [15], or even video cameras [33]) at sensors. Thus, by applying simple geometry, azimuth and elevation angle measurements are modeled respectively as [5]:
ϕij={tilde over (ϕ)}ij+mij, ∀(i,j)ϵε (3a)
αij={tilde over (α)}ij+vij, ∀(i,j)ϵε (3b)
where
and mij and vij are the measurement errors of the azimuth and the elevation angles respectively, modeled as a zero-mean von Mises random variables with the concentration parameters, κm
For the sake of simplicity, we stack all unknown vectors into a single matrix, i.e., X=[x1, . . . , xM], (xϵ3×M). From (2), the conditional probability density function (PDF) of an RSS observation is given
Similarly, from (3) we can write the conditional PDF of an azimuth and elevation observations as
where lk(*) is the modified Bessel function of first kind of order k [35], [36].
By maximizing (4) and (5), a maximum likelihood (ML) estimator of X can be obtained,
Although the ML solution is asymptotically optimal, the problem in (5) is highly non-convex with no closed-form solution. Therefore, we propose a sub-optimal approach.
The 3-D localization method in wireless networks comprises the following steps:
since (5) is maximized when the cosines in the arguments are equal to 1, i.e., when {circumflex over (ϕ)}ij={circumflex over (ϕ)}ij and {circumflex over (α)}ij={circumflex over (α)}ij;
cij=[−sin(ϕij),cos(ϕij),0]T, and k=[0,0,1]T. If we switch from Cartesian to spherical coordinates, we can write xi−sj=rijuij, with rij≥0 and ∥uij∥=1, i.e., uij=cos(ϕij)sin(αij),sin(ϕij)sin(αij),cos(Δij)T is the estimated unit vector;
which can be writen as
where x=[x1,x2, . . . ,xM]T, (xϵ3M×1), W=l3⊗diag(w), with ⊗ denoting the Kronecker product, and
At,3(i−1)+1:3i=λijuijT, bt=λijuijTαij+ηd0, ∀(i,j)ϵ, t=1, . . . ,||;
At,3(i−1)+1:3i=cijT, bt=cijTαij, ∀(i,j)ϵ, t=||+1, . . . , 2||;
At,3(i−1)+1:3i=(cos(αij)uij−k)T, bt=(cos(αij)uij−k)Tαj, ∀(i,j)ϵ, t=2||+1, . . . ,3||;
At,[3(i−1)+1:3i, 3(j−1)+1:3j]=[cijT,−cijT], bt=0, ∀(i,j)ϵ, t=3||+1, . . . ,3||+||;
At,[3(i−1)+1:3i, 3(j−1)+1:3j][cijT,−cijT], bt=0, ∀(i,j)ϵ, t=3||+||+1, . . . ,3||+2||;
At,[3(i−1)+1:3i, 3(j−1)+1:3j]=[(cos(αij)uij−k)T, −(cos(αij)uij−k)T], bt=0, ∀(i,j)ϵ, t=3||+2||+1, . . . ,3||+3||;
with and denoting the tuple sets of all target/anchor and target/target edges respectively, and |*| representing the cardinality of a set. The solution to (15) is given as
{circumflex over (x)}=(ATWTWA)−1)ATWTb).
Various aspects of embodiments disclosed here, including features and advantages of the present invention outlined above, are described in detail together with the drawings, where like reference numerals refer to like elements throughout, in which:
The present application describes the apparatus and a method for network localization based on integrated RSS and AoA measurements in 3-D space. Let xiϵ3 be the unknown location of the i-th target (i=1, . . . , M) and αjϵ3 be the known location of the j-th anchor (j=1, . . . , N). As shown in
The determination of the locations is done by using a hybrid system that combines distance and angle measurements obtained at the blocks 101 and 102 of
It is assumed that the distance is drawn in 101 from the RSS information exclusively, since ranging based on RSS does not require additional hardware [1]. The noise-free RSS between two sensors i and j is defined as [32, Ch.3]
where PT is the transmit power of the target,
is the path loss value measured at a short reference distance d0(d0≤dij) and P0 is the received signal strength (RSS) at d0, γ is the path loss exponent (PLE), and dij is the distance between sensors i and j. Furthermore, the tuple set ε={(i,j):∥xi−sj∥≤R, for i=1, . . . ,N, j=1, . . . , M, M+1, . . . ,M+N, i≠j} denotes the existance of an edge between two sensors. The RSS model in (1) can be rewritten in a logarithmic form as
where sj is the j-th neighboring sensor (either a target or an anchor) of the i-th target and nij˜(0,σn
The AoA measurements acquired within the block 102 can be obtained by installing directional antenna or antenna array [15], or even video cameras [33]) at sensors. Thus, in 102, by applying simple geometry, azimuth and elevation angle measurements are modeled respectively as [5]:
ϕij={circumflex over (ϕ)}ij+mij, ∀(i,j)ϵε (3a)
αij={circumflex over (α)}ij+vij, ∀(i,j)ϵε (3n)
where
and mij and vij are the measurement errors of the azimuth and the elevation angles respectively, modeled as a zero-mean von Mises random variables with the concentration parameters, κm
For the sake of simplicity, we stack all unknown vectors into a single matrix, i.e., X=[x1, . . . , xM], (Xϵ3×M). From (2), the conditional probability density function (PDF) of an RSS observation is given
Similarly, from (3) we can write the conditional PDF of an azimuth and elevation observations as
where lk(*) is the modified Bessel function of first kind of order k [35], [36].
By maximizing (4) and (5), a maximum likelihood (ML) estimator of X can be obtained [34, Ch. 7], i.e.,
Although the ML solution is asymptotically optimal, the problem in (5) is highly non-convex with no closed-form solution. The 3-D localization method in wireless networks disclosed in this application is implemented in the block 104, and it aproximates (6) by another estimator whose solution is found efficiently, and it is comprises the following steps:
First, from (4), the distance that best estimates ∥xi−αj∥ in the ML sense is:
Similarly, from (5), the angles which best estimate ϕij and αij in the ML sense are respectively
since (5) is maximized when the cosines in the arguments are equal to 1, i.e., when {circumflex over (ϕ)}ij={circumflex over (ϕ)}ij and {circumflex over (α)}ij={circumflex over (α)}ij.
From (7) and (8), we can respectively write
λij∥xi−sj∥≈¢d0, (9)
cijT(xi−sj)≈0, (10a)
kT(xi−sj)≈∥xi−sj∥cos(αij), (10b)
where
cij=[−sin(ϕij), cos(ϕij),0]T and k=[0,0,1]T. If we switch from Cartesian to spherical coordinates, we can write xi−sj=rijuij, with rij≥0 and ∥uij=1, i.e., uij=[cos(ϕij)sin(αij),sin(ϕij)sin(αij),cos(αij)]T is the estimated unit vector.
Apply the described conversion to (9) and (10b), and multiply with 1 (formed as uijTuij), to respectively get:
λijuijTrijuij≈ηd0⇔λijuijT(xi−sj)≈ηd0, (11)
and
kTrijuij≈uijTrijuijcos(αij)⇔(cos(αij)uij−k)T(xi−sj)≈0. (12)
To give more importance to nearby links, introduce weights, w=[√{square root over (wij)}], where each wij is defined as
Next, according to the WLS criterion and (11), (10a), (12) and (13), obtain the following estimator:
which can be writers as
where x=[x1,x2, . . . ,xM]T, (xϵ3M×1), W=I3⊗diag(w), with ⊗ denoting the Kronecker product, and
At,3(i−1)+1:3i=λijuijT, bt=λijuijTαij+ηd0, ∀(i,j)ϵ, t=1, . . . ,||;
At,3(i−1)+1:3i=cijT, bt=cijTαij, ∀(i,j)ϵ, t=||+1, . . . , 2||;
At,3(i−1)+1:3i=(cos(αij)uij−k)T, bt=(cos(αij)uij−k)Tαj, ∀(i,j)ϵ, t=2||+1, . . . ,3||;
At,[3(i−1)+1:3i, 3(j−1)+1:3j]=[cijT,−cijT], bt=0, ∀(i,j)ϵ, t=3||+1, . . . ,3||+||;
At,[3(i−1)+1:3i, 3(j−1)+1:3j][cijT,−cijT], bt=0, ∀(i,j)ϵ, t=3||+||+1, . . . ,3||+2||;
At,[3(i−1)+1:3i, 3(j−1)+1:3j]=[(cos(αij)uij−k)T, −(cos(αij)uij−k)T], bt=0, ∀(i,j)ϵ, t=3||+2||+1, . . . ,3||+3||;
with and denoting the tuple sets of all target/anchor and target/target edges respectively, and |*| representing the cardinality of a set. The solution to (15) is given as
{circumflex over (x)}=(ATWTWA)−1(ATWTb).
When the transmitted power information, PT, is not known, it translates to η in (9) being unknown. In such a case, the derivation procedure is somewhat different, and it goes as follows.
To give more importance to nearby links, introduce weights, ŵ=[√{square root over ({tilde over (w)})}ij], where each {tilde over (w)}ij is defined as
According to the WLS criterion and (11), (10a), (12) and (16), obtain the following estimator:
which can be writes as
where y=[x1,x2, . . . , xM,η]T, (yϵ(3M+1)×1), {tilde over (W)}=l3⊗diag({tilde over (w)}), and
Ãt=[At, −d0], {tilde over (b)}t=λijuijTαij, ∀(i,j)ϵ, t=1, . . . , ||;
Ãt=[At, 0], {tilde over (b)}t=cijTαij, ∀(i,j)ϵ, t=||+1, . . . , 2||;
Ãt=[At, 0], {tilde over (b)}t=(cos(αij)uij−k)Tαj, ∀(i,j)ϵ, t=2|+1, . . . ,3||;
Ãt=[At, −d0], {tilde over (b)}t=0, ∀(i,j)ϵ, t=3||+1, . . . , 3||+||;
Ãt=[At, 0], {tilde over (b)}t=0, ∀(i,j)ϵ, t=3||+||+1, . . . , 3||+2||;
Ãt=[At, 0], {tilde over (b)}t=0, ∀(i,j)ϵ, t=3||+2||+1, . . . , 3||+3||.
The solution of (18) is given as
{tilde over (y)}=(ÃT{tilde over (W)}T{tilde over (W)}Ã)−1(ÃT{tilde over (W)}T{tilde over (b)}).
Table 1 provides an overview of the considered algorithms together with their worst case computational complexities.
Table 1 shows that the computational complexity of the considered methods depends mainly on the network size, i.e., the total number of sensors in the network. This property is a characteristic of methods operating in a centralized manner [21], where all information is conveyed to a central processor. From Table 1, we can see that the computational complexity of the proposed method is linear.
Performance of the proposed algorithm was verified through computer simulations. It was assumed that radio measurements were generated by using (2), (3) and (4). All sensors were deployed randomly inside a box with an edge length B=10 m in each Monte Carlo (Mc) run. The reference distance is set to d0=1 m, the reference path loss to L0=40 dB, and the PLE was fixed to γ=2.5 . However, to account for a realistic measurement model mismatch and test the robustness of the new algorithm to imperfect knowledge of the PLE, the true PLE was drawn from a uniform distribution on the interval [2.2, 2.8], i.e., γi˜μ[2.2, 2.8], ∀(i,j)ϵε. Finally, σn
where {circumflex over (x)}ij denotes the estimate of the true location of the i-th target, xij, in the j-th Mc run.
The performance of the WLS estimator is compared to the existing SDP in [21] and LLS in [37] for RSS-AoA localization in cooperative WSNs. Furthermore, the results obtained by its counterpart that takes advantage of AoA-only observations, denoted by “LSAOA”, are included also in order to show the benefit of a hybrid approach in comparison to the classical one. Finally, the Cramer-Rao lower bound (CRLB) [34] is also included in all figures.
The above description of illustrated embodiments is not intended to be exhaustive or limited by the disclosure. Some specific embodiments of various equivalent modifications are possible (and examples are described herein for illustrative purposes), as those skilled in the relevant art will recognize.
Number | Name | Date | Kind |
---|---|---|---|
9749786 | Pandey | Aug 2017 | B1 |
10338193 | Beko | Jul 2019 | B2 |
20150338937 | Shepelev | Nov 2015 | A1 |
20170346559 | Eroglu | Nov 2017 | A1 |
20180100915 | Beko | Apr 2018 | A1 |
20190007642 | Ju | Jan 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200205011 A1 | Jun 2020 | US |