The present invention relates to a portable electronic game system and more particularly to a stand-alone electronic bingo game apparatus.
Bingo is game of chance in which each player's chances of winning depends upon numbers drawn at random. Players compete in against other using bingo cards prepared with a design of five rows of five squares each for a total of 25 squares. The letters B-I-N-G-O is displayed above the grid, with each letter aligned with a vertical column of squares. A two-digit number generally from 1 to 99, but preferably from 1 to 75, appears in every square of the bingo card except the center square, which is designated as a free play. The game also uses a central source for generating random numbers. The random numbers are drawn from a pool of bingo balls. The number of balls corresponds to the range of numbers available on the bingo card. On each ball are found letters and numbers corresponding to those printed on the bingo cards. Each ball includes one letter from the word bingo and one number from the range of numbers printed on the bingo card.
From a conventional air-ball machine or a box, a caller chooses numbers at random one ball at a time and announces the letter and number appearing on the ball. The players with numbers matching the number on the ball called, marks off the number being called using an ink marker called a “dauber”. In the basic form of bingo, as soon as five numbers are covered in a straight line vertically, horizontally or diagonally, the person with the covered numbers calls out “bingo!” Each player that attains “bingo” in a game wins a prize. At the end of each game players turn in their marked cards and must purchase new cards to play another round. Players generally have an opportunity to play more than one bingo card. Often players may attempt as may bingo cards as they have table space available with the idea that the more cards played increases the player's chances of winning bingo. Bingo cards are often sold prepackaged in groups of various denominations. Players can purchase these packaged cards as an added convenience.
With the growth in popularity for the bingo game, more challenging changes have added to the bingo game. First, the basic winning patterns of aligning five numbers on a card either horizontally, vertically or diagonally have been supplemented by a number of complex winning patterns. Some of these winning patterns are as follows:
In addition, some bingo halls are now using “wild numbers” to further add to the complexity of the game. The “wild numbers” are typically called out at the beginning of game play. A “wild number” is identified by the caller before it is drawn. The caller also identifies what characteristic will make the number wild. For example, if the number is even then all even numbers may be marked. Or for example, all numbers sharing the same first digit may also be declared as wild. Other, criteria may be used as well, but it is generally the bingo hall that determines the rules for each game.
Wild card numbers and the winning patterns generally change for each bingo game. In order to achieve “bingo” during any game, the players must know the rules and apply the rules properly during each called number in order to achieve bingo. A problem occurs with players accustomed to playing large numbers of bingo cards. The complexity of tracking several winning numbers for each game combined with the large number of cards played, often increases the chances that a players will miss a possible winning match.
Electronic bingo devices have been developed to help alleviate the problem of tracking large numbers of bingo cards over various patterns; however many of these devices are not well suited for complexities of game play available. While other devices which are well suited for such game play are complex and require computer operators to load the game information before use. One such device is disclosed in U.S. Pat. No. 4,747,600 issued to Richardson which describes a gaming board that includes a communications port used in an electronic bingo system. A computer operator transfers individual game player cards and winning pattern information to the gaming boards from a base station computer. This method has to be performed on each gaming board used in play. The result is added cost and labor to the bingo hall. Another problem with the electronic bingo system is that each game board must be individually connected to the base station in order to be configured. This causes added delay, as players must wait for the operator of the base station to configure their systems.
Some electronic bingo devices have a monochrome character display, which is fabricated with segmented preformed characters. These characters are in fixed positions in the display and the only symbols available are those that can be formed from illuminating combinations of the segments of a character. To display a bingo card, a character display is fabricated with 25 cells in a 5×5 array, each cell formed of two characters. Four such displays are used to display four bingo cards. Other information cannot be displayed along with the bingo cards, and a different number of bingo cards cannot be displayed. When other information is displayed instead of bingo cards, it must be displayed within the format of four 5×5 arrays of two-character cells. The extent of interaction with the user is limited by the monochrome display.
Some battery-powered electronic bingo devices have short battery life, requiring the user to return the device to a recharging station at frequent intervals. Often, battery power will run out during a bingo game, causing the player to lose data entered for that game. When this occurs, bingo hall employees must replace the exhausted batteries, plug in a backup power supply, or issue a new device to the player. All of these options involve an interruption of the game in progress and a recovery period in which the player re-enters information about the interrupted game in progress.
As such, many typical electronic bingo devices suffer one or more shortcomings. Other problems and disadvantages of the prior art will become apparent to one skilled in the art after comparing such prior art with the present invention as described herein.
The present invention provides an electronic game device for monitoring bingo cards during a game of bingo. A large number of cards may be played by the player in any game. A series of bingo games with different winning patterns and different wild number rules can be loaded into the device and used to monitor the bingo cards in play. When a card in play exhibits a winning pattern, the device notifies the player. A bit-mapped color display is used to present a selectable number of bingo cards to the user, and other information can be presented in appropriate formats. Reduced power operational modes can be adopted in battery-powered devices to extend battery life. Devices whose batteries have almost run out can be connected to an external power source without interrupting a game in progress.
More specifically, aspects of the invention may be found in a portable game apparatus with a power supply, a central processing unit, a user interface, a non-volatile memory, and a bit-mapped color display. The memory contains a representation of bingo cards, a set of games to be played and the winning patterns for those games, instructions for monitoring bingo cards during a bingo game, and instructions for displaying a selectable number of bingo cards together on the display. A portion of the memory may be located in a removable game key that can be inserted into the game apparatus. The power supply may be a battery and the game apparatus may have circuitry to switch the apparatus to reduced power operating modes. The power supply may be a plurality of batteries, and the game device may have circuitry that charges one of the batteries fully before recharging the other batteries. The game device may have an external power connector to which an external power source can be connected without interrupting a game in progress. The game device may have a wireless communication port, which may be bi-directional, and the memory of the device may be loaded through the wireless port. A communication protocol with security features may be used for communications on the wireless port. The game device may test its circuitry and memory before commencing game play.
Other aspects of the invention may be found in a method of monitoring bingo cards during play using a portable game device that has memory, a user interface and a bit-mapped color display. Steps of the method include storing data representing bingo cards, a series of games to be played and the winning patterns for those games, and the number of bingo cards to be played. Further steps of the method include displaying one or more bingo cards on the display, the number of cards being selected by the user. The method also includes the step of receiving called numbers entered by the user at the user interface. Further steps of the method include creating a mask for each card reflecting the numbers on that card that have been called, comparing each bingo card mask to the winning patterns stored for the game being played and notifying the player when a winning pattern is found.
Other aspects of the invention may be found in a method of preparing game devices for use while playing bingo. The steps of the method include accepting an order specifying the number of bingo cards to be played and providing the player with a game device. A further step of the method include loading the game device with data via a wireless communications link. The data represents a series of games to be played and the winning patterns for those games, and the number of bingo cards to be played.
As such, an apparatus and method for monitoring bingo cards during a game of bingo are described. Other aspects, advantages and novel features of the present invention will become apparent from the detailed description of the preferred embodiments when considered in conjunction with the accompanying drawings.
For a more complete understanding of the present invention and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numbers indicate like features and wherein:
Exemplary embodiments of the invention are illustrated in the Figures, like numerals being used to refer to like and corresponding parts of the various drawings.
In contrast to a character display, as used in other bingo devices, a bit-mapped color display is divided into an array of tiny identical pixels, each of which can be independently controlled for brightness and color. With such a display arbitrary shapes and characters can be formed at any location in the display. Displayed data can be reformatted to appear larger or smaller and moved to any desired location in the display. Data can be displayed in any format that is appropriate, rather than in a format dictated by the display device.
As shown in
Located on the left side of the housing 46 is a game key slot 32 for securing the game key 44 within the device. Also located on the left side of the housing is an external power jack, or connector, 30.
A relatable U-shaped table stand 34 is also shown in
Located on the top side of the housing 46 is a tri color LED indicator 36 (not shown in
The right side of the game device 20 is shown in
Located on the back side of the housing 46 are charging contacts 39 (not shown in
The electronic bingo device is controlled by the circuitry shown in
A graphics engine is provided by Display Formatter 58, which buffers display data from the CPU 50 into video buffer 62, converts the display data into raster format and sends the rasterized signal to the low voltage differential signal (LVDS) encoder 64 which provides a video signal to the color thin-film liquid crystal display 66. The brightness of display 66 is set by inverter 68 and brightness adjustment control 70, which is controlled by input from the user of the game device and by signals received over the I2C bus 72. This graphics engine circuitry frees a significant amount of processing bandwidth in the CPU that would otherwise be taken up in writing to the display.
The I2C bus 72 interconnects brightness adjustment control 70, CPU 50, watchdog processor 74, keypad 78, removable game key 44, and radio interface 80. Watchdog processor 74 uses an onboard analog-to-digital converter to monitor the voltage levels of the game device power supply. Upon sensing a failure in the correct operation of the game device circuitry, the watchdog processor can reset CPU 50 and Display Formatter 58 to restore correct operation. The watchdog processor can put the game device into a low power “sleep” mode by instructing FET switch 84 to cut main power to most of the circuitry of the game device. In “sleep” mode, only the watchdog processor 74 and radio interface 80 continue to receive power watchdog processor 74 also connects to IR transceiver 82 via a serial connection, and thus can restore main power to the game device in response to signals received from the IR transceiver or the radio interface.
Watchdog processor 74 can also put the game device into a reduced power “inactive” mode by instructing the CPU 50 to enter an idle mode and instructing the brightness adjustment control 70 to dim the display 66. The game device can be returned to active mode from either “sleep” mode or “inactive” mode not only in response to signals received from the IR transceiver or the radio interface, but also upon keypad activity. The keypad provides an interrupt signal to CPU 50, which causes it to resume normal functioning and notify watchdog processor 74 that it is again active.
Watchdog processor 74 also connects to CPU 50 via a serial connection and, when the CPU is active, communications received from the IR transceiver can be passed on to the CPU, as well as being acted upon by the watchdog processor. The serial connection is also used to communicate to CPU 50 the battery voltage measured by watchdog processor 74. CPU 50 displays this voltage as a battery level indicator on display 66.
Twin batteries 90 are connected in parallel to game key socket 94. When a hardware key 44 is connected to the hardware key socket 94, the battery power is connected to FET switch 84. Under the control of watchdog processor 74, the FET switch connects the battery power to multi-voltage power supply 86. Power supply 86 produces power at multiple voltages to power the other circuitry of the game device. Multi-voltage power supply 86 can also draw power from emergency power jack 30 when an external power source is connected. The output voltages of power supply 86 do not fluctuate when an external power source is connected to emergency power jack 30, thereby preventing any interruption in the operation of the game device.
While the twin batteries 90 operate in tandem to power the game device, they are individually connected to charging circuitry 88. Charging circuitry 88 receives power from charging connectors 39 and indicates its status on LED indicators 36. When both batteries are discharged, the red LED flashes. When charging power is applied to the charging connectors, the charging circuitry, under the control of watchdog processor 74, begins charging one of the two batteries. Once that battery is fully charged, the red LED is extinguished and the green LED flashes. The charging circuitry then begins charging the other battery. Once the second battery is fully charged, the green LED turns on solid. During the period that one battery is fully charged and the other is partially charged, charging power can be removed and the game device operated normally.
Charging circuitry 88 and multi-voltage power supply 86 are part of power supply circuitry 92, which supplies power to the watchdog processor 74 and radio interface 80 when the game device is in “sleep” mode.
When a hardware key 44 is inserted into the hardware key slot 32 in the housing of the game device, it also engages hardware key socket 94 to provide electrical communication between the CPU 50 and an electrically programmable read only memory (EPROM) circuit 96 having memory located within the hardware key. The key may have 1, 32, 64, 128 or more kilobytes of memory, among other amounts. The data stored in a type of hardware key known as a player key includes the number of cards purchased by the player for each game. Game devices can also receive this information via the IR transceiver or the radio interface from an external device and store it in DRAM, which may then be transferred into Flash. In these situations, a hardware key 44 without EEPROM circuit 96 is used. Such a key only connects battery power to the FET switch 84.
Other types of hardware keys include a game key, which contains a list of the games and parts of games to be played in a bingo session, the wild number rules for those games and the winning patterns for those games; a card set key, which contains the collection of bingo cards to be used by the game device; and a code key, which contains programs for the game device CPU 50. When one of these types of hardware keys is inserted into the game device, the CPU 50 reads an identifier in the memory of the key and recognizes the type of data contained in the key. The CPU then transfers the data from the hardware key into the FlashRAM of the game device. Game devices can also receive this information via the IR transceiver or the radio interface from an external device and store it in FlashRAM. When the game device is subsequently powered up with a player key, the data stored in FlashRAM will be used in performing the function of monitoring bingo cards.
When player data, game data, card set data or game device program code is transferred from an external device, a communication protocol providing security features such as checksums or unique device identifiers is used to ensure that the data and code come from an authorized device and have not been tampered with or corrupted in the transmission process.
The CPU is also connected to piezo-electric audio transducer 76. This allows the game device to notify the player that one of his cards has a winning pattern by playing a song or some other type of audio signal.
This display format permits an additional type of bingo game to be played, in which a winning pattern can occur on certain of the cards. For example, a diagonal bingo on the three leftmost cards might be the winning pattern for such a multiple card game.
A display format 112 for displaying a single bingo card is shown in
Other modified bingo games can be played using the bit-mapped color display of the present invention. Cards can be displayed with some squares holding two numbers, rather than the usual single number. This is possible because the numbers displayed within a square can be made smaller and shifted, in order to fit two numbers in the same square. In another modification to the usual bingo card, certain squares on a player's cards can be marked with a star to signify that a bingo including that square wins a special prize. This can be done by displaying the star in the background of the square in a contrasting color to the background color of the other squares of the bingo card.
The “Bingo Board” key in the function keypad 26 of
The system has arrays of structures which have embedded function pointers for each key. When a key event is processed a routine iterates through these structures until it finds the structure that matches the key pressed. When this structure is found the embedded function is called. This allows a great deal of flexibility when processing the keys. Different arrays of structures can also be used to describe what should happen on each key press. For example when the in game submenu is showing the #2 key will allow a user to change a dauber. When the dauber select sub-menu is up the #2 key will select option 2, while there is no current game being played the #2 key will do nothing and while playing the #2 key will adjust the current number in the input buffer.
In other examples, if the number is entered the entered number variable is updated. If the clear key has been pressed the entered number variable is cleared to zero. If the enter key has been pressed the game number updating routine (
The above method is exemplary. The method steps may occur in differing orders. Some steps may be omitted in other embodiments. As such, alternate methods may be envisaged.
In an exemplary embodiment, a check for win routine 276 (
An exemplary score card routine 314 in
Otherwise, the routine sets up the bingo device to play a new game. A first card number is calculated at step 344 to determine how many cards have been allotted from the bingo card memory for this game at step 344. Then the corresponding number of bingo cards is loaded from the list of bingo cards at step 346. The program then jumps to step 343 to load in the winning pattern information and wild card information for the next round of play. Winning patterns from the Flash are read at step 348. When proceeding to the next part of an existing game, all numbers are re-scored based on the new patterns at step 350 by jumping to the score card routine until all cards have been scored.
However, the methods of
An example of the operation of the embodiment of the present invention described herein is now given. The game device is disabled until a game key is inserted. This game key may contain game data representing the number of games authorized for that player, the number of cards purchased containing star information, the number of cards to be played each game, and the winning patterns that are valid for each game. Alternatively, the game key may enable the game device to receive game data into Flash RAM via the IR transceiver or the radio interface. Each game device contains a list of cards in Flash RAM. The details of the storage of this information are covered in a later section.
When the player presses the Enter button in the numeric keypad on a game device that has just had its game key inserted, the first game is selected. Pressing one or two numbers followed by the ENTER key will cause that number to be daubed.
If a number is displayed on the bingo board that has not been called, it may be removed by pressing one or two numbers and the DELETE key. Pressing the BINGO BOARD button will cycle the display to the 1, 4, 9 flashboard screens. The normal display will return when the BINGO BOARD button is pressed again.
If the daubed numbers on one or more of the cards in play match the winning criteria ( one or more patterns on 1 or more sheets ) an audible alarm may sound and the numbers on that sheet that form the winning criteria will be shown and all others will remain not highlighted. All buttons will continue to operate so that any necessary corrections may be made if the win was due to erroneous entry.
Some games allow for Wild numbers to be entered at the beginning of a game. These numbers are daubed by entering a number followed by the Wild Button, followed by the Enter key. They may be undaubed by entering the number, followed by the Wild Button, followed by the Delete key. The following sections describes the wild algorithms that may be used:
The wild algorithm is selected per game as determined by the house. The algorithm to be used in each game is stored in the game data that configures the game device for play. When the wild number is entered, a group of numbers is daubed simultaneously based on the selected wild algorithm, which may be one of the following:
Even/Odd—If the number entered is even, all even numbers on the card will be daubed. If the number entered is odd, all odd numbers on the cards will be daubed.
Ending-In—All cards ending in the same number will be daubed.
Both Ways—Begins or ends in a given number.
The method for determining the number of a card is now described. A bingo card consists of 5 columns of 5 numbers. In the first column, five numbers from the range of 1 to 15 may be arranged in any order. In the second column, five numbers from the range 16 to 30, in the third 31 to 45, in the fourth 46 to 60, in the fifth 61 to 75. Thus in the first position there are 15 possible numbers. In the second, there are 14 (the one number chosen for the first position cannot be reused), in the third there are 13, etc. In the second column, the sequence is repeated. Thus, the number of possible numbers for each position in each column are as follows: (15, 14, 13, 12, 11, 15, 14, 13, 12, 11, 15, 14, 13, 12, 11, 15, 14, 13, 12, 11, 15, 14, 13, 12, 11). Multiplying the first five of these numbers gives the number of combinations in a single column, multiplying all these numbers gives the number of possible different bingo cards. Each column thus has the potential of 360, 360 different combinations and the total number of different cards is 6.0796911214672*1027.
The identification of winning patterns is now described. Winning patterns can consist of from 1 to 25 positions on a card. This can be identified by a vector of 25 bits. A one bit in any position indicates that the position on the card corresponding to that bit is required by that pattern. For example, the following win mask identifies the common bingo pattern of all numbers in the first column being daubed: 000000000000000000011111. And this win mask identifies the pattern of all numbers in the first row being daubed: 0000100001000010000100001. These numbers can be conveniently fitted into a long integer (32 bits). The upper 7 bits are reserved.
The storage of bingo cards is now described. Flash RAM 52 in
Bingo cards may be stored in the Flash RAM in a table with entries of the form:
The Canonical Card Representation is discussed above. The Serial Number is a number assigned to the card in the master card set.
The storage of game data in Flash RAM 52 and game key 44 is now described. One segment of the game data is the win pattern table, which contains a list of all winning patterns. Note that most winning patterns may require multiple entries in the table. For example, the standard bingo winning pattern of any row, any column, or the two diagonals would require 12 entries: one for each of the 5 rows; one for each of the 5 columns, and one for each of the two diagonals.
Each entry in the win pattern table may be in the following format:
The entries are arranged in an array with 0 referring to the first element in the array, as shown below. The number of entries in this table is limited only by the memory in the game device.
Another segment of the game data is the Game/Part Table, which contains authorized game numbers, the number of games, and the winning patterns for each game. There are two formats for entries in this table: the game header and the part header. Single part games will have one game header, followed by one part header. Multipart games will have one game header followed by as many part headers as there are parts to the game. These two headers may take various formats.
The method of scoring cards is now described. In bingo, all that really matters for winning is if a pattern is complete. The card either has a pattern completed or it does not. But, in order to determine which are the best cards in play, it is necessary to give each card a score. This score is determined as follows: First, cards are scored by the pattern closest to a pattern match. For example a card that is one away from winning on some combination is better that a card that has no combination better than two away. Next, the cards that are at any given rank are then further ranked by how many different combinations are at the minimum. For example a card that is one away on two different patterns is better that one that is one away on only one pattern. Lastly any ties are broken by where the card was in the previous ranking. This prevents the cards from jumping around in order when the score has not changed as a result of sorting them. These scores are combined as follows:
Score=(Don*Npatterns−Non)*Ncip+Rold
where:
Don Number of numbers required for win on the best pattern on this card.
Npatterns Number of win patterns in the current game.
Non Number of patterns that are at Don from a win.
Ncip Number of cards in play in this game.
Rold Card rank after last scoring pass.
The Scores are then ordered from best to worst. The best is assigned rank 0 and each card is assigned a successively higher rank in order of its score, with the worst receiving a rank of NumCards-1. After the first ranking, all the scores will be unique since Rold is unique.
As such, an apparatus and method are described for monitoring bingo cards. In view of the above detailed description of the present invention and associated drawings, other modifications and variations will now become apparent to those skilled in the art. It should also be apparent that such other modifications and variations may be effected without departing from the spirit and scope of the present invention as set forth in the claims that follow.
Number | Date | Country | |
---|---|---|---|
Parent | 11394330 | Mar 2006 | US |
Child | 11543704 | Oct 2006 | US |
Parent | 10272332 | Oct 2002 | US |
Child | 11394330 | Mar 2006 | US |