The present invention relates generally to apparatuses and methods for improving the yield and accuracy of food servings and other materials apportioning applications, and particularly to apparatuses and methods for automatically acquiring and processing the yield and accuracy of food servings.
It is known to use apparatuses and methods to control the apportionment of food servings in a food service restaurant. Conventional apparatuses and methods, however, suffer from one or more disadvantages. For example, some conventional systems attempt to use commercially available mechanical or digital scales installed in proximity to the food serving preparation area to weigh each comestible that needs to be applied to the food serving, but these conventional systems fail to meet the needs of the industry because operators have difficulty accurately and consistently dispensing exact amounts of various required portions, struggle with manual taring or weight subtraction calculations, and in many cases ignore scale usage because it delays and complicates production process/flow.
Other conventional systems attempt to embed or integrate a weigh scale into food preparation equipment, but these conventional systems are similarly unable to meet the needs of the industry.
These imbedded conventional systems make it difficult for operators to calculate and interpret correct portion sizes and typically do not provide visibility into apportionment performance. Also, often times these conventional systems are difficult to implement via retrofitting existing equipment, and therefore tend to be more costly and/or less effective.
In addition, other conventional systems include a digital scale that can be mounted on the existing equipment, but these conventional systems also fail to meet industry needs because they are unable to automatically detect the size of food container, do not tare and adjust to zero automatically, and do not utilize cloud data processing and analytics to provide critical information such as apportionment performance, consistency of operator usage, and economics/savings associated with improved efficiency and accuracy.
Quick-service and commercial restaurants have food items on the menu that include partial (or in whole) specific and standard amounts of comestibles. Typically, when food items are being prepared for serving, operators will dispense the required amount of comestible visually, trusting their own individual judgement. This approach leads to over-filling or under-filling the food serving, resulting in inconsistent portioning which can lead to customer dissatisfaction, as well as varying product usage and cost per serving which is very undesirable for management and owners.
It would be desirable, therefore, if an apparatus and method for a yield improvement system could be provided that would automatically monitor and analyze how accurately and efficiently each individual comestible/material is portioned in a food serving. It would also be desirable if such a system could be provided that would automatically generate corrective actions and information to improve the food serving yield and monitor operator usage/performance. It would be further desirable if such a system could be provided that would improve yield in other restaurant applications such as calibration of liquid dispensers (e.g., shake machines) by weight and measuring baking/cooking ingredients. It would be still further desirable if such a system could be provided that would seamlessly integrate into existing food serving and materials handling equipment and processes without affecting the existing food serving equipment and processes.
Accordingly, it is an advantage of the preferred embodiments of the invention claimed herein to provide an apparatus and method for a yield improvement system that automatically monitors and analyzes how accurately and efficiently each individual comestible/material is portioned in a food serving or other materials portion. It is also an advantage of the preferred embodiments of the system to automatically generate corrective actions and information to improve the food serving yield or other material portion and monitor operator usage/performance. It is a further advantage of the preferred embodiments of the system to improve yield and accuracy in other restaurant applications such as calibration of liquid dispensers (e.g., shake machines) by weight and measuring baking/cooking ingredients as well as similar improvements in yield and accuracy of other materials dispensing applications. It is a still further advantage of the preferred embodiments of the system to seamlessly integrate into existing food serving equipment and processes without affecting the existing food serving and material handling equipment and processes. In addition, it is an advantage of the preferred embodiments of the system to provide a highly automated food serving and materials portion data acquisition and processing system.
Additional advantages of the preferred embodiments of the invention will become apparent from an examination of the drawings and the ensuing description.
The use of the terms “a,” “an,” “the,” and similar terms in the context of describing the invention are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The terms “substantially,” “generally,” and other words of degree are relative modifiers intended to indicate permissible variation from the characteristic so modified. The use of such terms in describing a physical or functional characteristic of the invention is not intended to limit such characteristic to the absolute value which the term modifies, but rather to provide an approximation of the value of such physical or functional characteristic. All methods described herein can be performed in any suitable order unless otherwise specified herein or clearly indicated by context.
Terms concerning attachments, coupling and the like, such as “attached,” “connected,” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both moveable and rigid attachments or relationships, unless specified herein or clearly indicated by context. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship.
The use of any and all examples or exemplary language (e.g., “such as,” “preferred,” and “preferably”) herein is intended merely to better illuminate the invention and the preferred embodiments thereof, and not to place a limitation on the scope of the invention. Nothing in the specification should be construed as indicating any element as essential to the practice of the invention unless so stated with specificity.
The apparatus of the invention comprises a yield improvement system adapted to weigh an object. The preferred yield improvement system comprises a weighing device having a holder that is adapted to removably receive the object to be weighed and a load sensor that is adapted to determine the weight of the object to be weighed. The preferred yield system also comprises a programmable logic controller that is in electrical communication with the weighing device, a cloud platform that is in electrical communication with the programmable logic controller, and an application program interface (API) that is in electrical communication with the cloud platform, and a means for removably attaching the weighing device to an anchoring device.
The method of the invention comprises providing a yield improvement system adapted to weigh an object. The preferred yield improvement system comprises a weighing device having a holder that is adapted to removably receive the object to be weighed and a load sensor that is adapted to determine the weight of the object to be weighed. The preferred yield system also comprises a programmable logic controller that is in electrical communication with the weighing device, a cloud platform that is in electrical communication with the programmable logic controller, and an application program interface (API) that is in electrical communication with the cloud platform, and a means for removably attaching the weighing device to an anchoring device. The preferred method also comprises weighing the object.
The presently preferred embodiments of the invention are illustrated in comestible dispensing applications the accompanying drawings, in which like reference numerals represent like parts throughout, and in which:
Referring now to the drawings, the preferred embodiment of the yield improvement system in accordance with the present invention is illustrated by
In order to automate operation and minimize the required interaction with an operator, the preferred scale is adapted to automatically:
Disclosed is a system together with an associated data acquisition and processing method. The system is made up of the following components: digital weight scale, data processing device, cloud data & analytics platform. These components are related as follows: digital weight scale, its performance and parameters are controlled by the data processing device that collects the scale usage data, regulates operation of the scale, processes aggregated data and exchanges this data with the cloud data and analytics platform. Cloud data and analytics platform comprises software components which perform manipulations of digital weight scale data: data processing, data analytics, visual representation, AI-learning, notifications, alarms, generation of corrective actions, voice commands, performance reports/comparison, ranking, making available such features at a local or remote level.
Also disclosed is a method to collect food serving weight and apportioned material data in an unobtrusive way:
1) Placing a digital weight scale with affixed food serving or apportioned material supporting surface/structure in food serving assembly or apportioned material area
2) Placing food serving or apportioned material container on the supporting surface/structure
3) Automatically choosing the target portion size by one or a combination of following methods:
4) Filling container with comestibles or apportioned material to the specified portion amount:
5) Moving assembled serving to the release area or area for further processing.
Data processing device and digital weigh scale may be connected with hardwired connection, wireless connection, or embedded into a single unit comprising system System-on-a-Chip (SoC); depending on the optimal installation requirements.
Data processing device and digital weigh scale system architecture allow for multiple installation methods to accommodate various food serving equipment and processes that are used in the restaurant environment as well as for material dispensing in commercial/industrial applications. For example, they may be temporarily attached to the preparation equipment (e.g. with magnets, clamps) to allow portability and easy cleaning, permanently affixed to the surface of such equipment, embedded into the equipment itself, or situated nearby apportioning equipment or serving area.
Power for data processing device and digital weigh scale may be provided with mains power source, battery with or without rechargeable power source, and/or solar panel that may collect light from the existing lighting/heating sources. The preferred data processing device may exchange data with the cloud data & analytics platform with a wired or wireless connection. The preferred digital weigh scale is designed to accommodate various container shapes and sizes so it is applicable for any food product (e.g. French fries, pizza, onion rings, etc.) or material. Weight measurement from the load sensor will typically drift with change in ambient temperature. It is typical for restaurant kitchen and commercial/industrial environments to experience high temperatures, so digital weigh scale may utilize embedded temperature sensing functionality to automatically compensate and correct such drift. In order to improve the weight measurement accuracy of the digital weigh scale that drifts over time, the system may automatically or manually initiate a calibration process, that may involve placement of any known weight (e.g. food serving packaging) on the weigh scale and running a self-calibration routine. In order to improve the performance of food serving weight measurements and to minimize required interactions with operators, the digital weigh scale may automatically tare the weight reading, may automatically adjust zero drift, and may automatically detect when and what container is placed on the scale or removed from it.
To further improve interactions with operators and maximize technology adoption level, yield improvement system has additional visual and audio notification components (LCD Display, Tablet, All-in-one PC, Wireless Speaker, etc.) that may generate sounds, voice commands and/or messages to interact with operators and improve their performance (e.g. filling accuracy, performance metrics, alarm notifications, messages and video/audio calls from management, video training, etc.). It should be further noted, that system visual/audio notification components and voice commands could be additionally used to improve operator performance related to all other systems in the store/facility (e.g. commands to turn off/on equipment at specific times, change equipment operation modes, reminders and instructions to improve regular routines/processes, assistance with order processing, messages to boost team/operator morale and productivity, training, etc.). Such sounds, messages and/or voice commands may be generated with local data processing at the use site or with data processing occurring in the cloud data and analytics platform (e.g. with AI-driven functionality).
To allow complete visibility of the food serving assembly and material dispensing process and generate corrective actions for performance improvement, data in the cloud data and analytical platform may be accessible via a web portal, mobile app, locally through visual and audio notification components or external data system through API integration. Cloud data and analytics platform may analyze data to automatically calculate yield, served portions, calorie count of each individual food serving, and other associated metrics/benefits.
The disclosed system is unique when compared with other conventional systems because it provides:
(1) automatic detection of the serving container size;
(2) automatic calibration using serving container as a calibration weight;
(3) automatic compensation for the load sensor zero drift with embedded temperature sensing;
(4) magnetic grip of the serving container holder, making it easily detachable to avoid potential breakage or damage, and allow ease of cleaning;
(5) fully customizable audio and/or visual indications (including voice commands) embedded in the yield improvement system that can deliver information generated by the cloud data and analytical platform;
(6) automatic collection of the serving apportionment performance data with its further processing in the cloud data and analytics platform; and
(7) holders for serving containers could have uniquely customized designs to accommodate variety of containers to help prevent expending and/or holding more product than specified.
Similarly, the associated method is unique when compared to other conventional systems in that it (1) does not interfere with existing serving assembly processes and procedures; and (2) automatically collects telemetry data during such processes.
The disclosed system is superior to conventional systems because collection and further processing of digital weigh scale data in the cloud data and analytical platform allows for aggregating massive amounts of very detailed serving apportionment data. Such data when processed and analyzed with proprietary smart software algorithms, self-learning data models, and AI-processing engines can improve product yield and provide complete visibility of the serving operations on a large and expandable scale. It can also significantly improve technology adoption level by automatically interacting with system operators through data platform driven visual and audio notification components.
The apparatus of the invention comprises a yield improvement system adapted to weigh an object. The preferred yield improvement system comprises a weighing device having a holder that is adapted to removably receive the object to be weighed and a load sensor that is adapted to determine the weight of the object to be weighed. The preferred yield system also comprises a programmable logic controller that is in electrical communication with the weighing device, a cloud platform that is in electrical communication with the programmable logic controller, and an application program interface (API) that is in electrical communication with the cloud platform, and a means for removably attaching the weighing device to an anchoring device.
The preferred system further comprises a solar energy generation source that is operatively connected to the programmable logic controller, a notification device that provides an audio notification and/or a video notification and has a display. In the preferred system, the means for removably attaching the weighing device to the item of equipment comprises an extendable tube, the holder comprises a magnet and/or a holder spacer, the weighing device comprises a weighing device spacer and/or a microcontroller unit (MCU), and the microcontroller unit (MCU) comprises a speaker.
The method of the invention comprises providing a yield improvement system adapted to weigh an object. The preferred yield improvement system comprises a weighing device having a holder that is adapted to removably receive the object to be weighed and a load sensor that is adapted to determine the weight of the object to be weighed. The preferred yield system also comprises a programmable logic controller that is in electrical communication with the weighing device, a cloud platform that is in electrical communication with the programmable logic controller, and an application program interface (API) that is in electrical communication with the cloud platform, and a means for removably attaching the weighing device to an anchoring device. The preferred method also comprises weighing the object. The preferred method further comprises providing notification that the yield improvement system is ready to receive a container, providing notification that the yield improvement system has detected the size of the container, providing notification that the container is under-filled, providing notification that the container is over-filled, and providing notification that the container is properly filled.
In operation, several advantages of the preferred embodiments of the yield improvement system are achieved. For example, the preferred embodiments of the system significantly improve filling accuracy. In food dispensing application the system eliminated recurring overfill of food portions, resulting in ˜30% reduction in food product usage and generating average monthly food cost savings of 500 US dollars. Visual quality of assembled food serving also improved, due to more consistent and accurate distribution of food within the serving container. Embedded voice command functionality alerted and instructed restaurant operators how to optimize usage of electric cooking equipment thereby resulting in ˜20% reductions in daily power usage, leading to average monthly electricity cost savings of 700 US dollars. Intuitiveness and high automation of the system serves to train restaurant system operators in less than 5 minutes. Training and support functions embedded in the system utilize its audio/video capability to train operators from multiple (unlimited) stores during the same virtual training session. Utilization of cloud data and analytics platform provides for 100% visibility into all aspects of the system usage and generated benefits. Voice command functionality embedded in the system provides automatic control of system usage rate and improvement of other store operations by verbally interacting with store operators, monitoring operator's consistent use of system, and realizing additional savings from operations improvement.
The disclosed system is superior to other systems because collection and further processing of digital weigh scale data in the cloud data and analytical platform allows for aggregating massive amounts of very detailed serving and materials apportionment data. Such data when processed and analyzed with proprietary smart software algorithms, self-learning data models, and AI-processing engines can improve product yield and provide complete visibility of the serving and materials processing operations on a large and expandable scale. It can also significantly improve technology adoption level by automatically interacting with system operators through data platform driven visual and audio notification components.
Different features, variations and multiple different embodiments have been shown and described with various details. What has been described in this application at times in terms of specific embodiments is done for illustrative purposes only and without the intent to limit or suggest that what has been conceived is only one particular embodiment or specific embodiments. It is to be understood that this disclosure is not limited to any single specific embodiments or enumerated variations. Many modifications, variations and other embodiments will come to mind of those skilled in the art, and which are intended to be and are in fact covered by this disclosure. It is indeed intended that the scope of this disclosure should be determined by a proper legal interpretation and construction of the disclosure, including equivalents, as understood by those of skill in the art relying upon the complete disclosure present at the time of filing.
This disclosure provides a detailed and specific description with the accompanying drawings. The drawings and specific descriptions of the drawings, as well as any specific or alternative embodiments discussed, are intended to be read in conjunction with the entirety of this disclosure. The system may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided by way of illustration only and so that this disclosure will be thorough, complete, and fully convey understanding to those skilled in the art.
Although this description contains many specifics, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments thereof, as well as the best mode contemplated by the inventors of carrying out the invention. The invention, as described herein, is susceptible to various modifications and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
This application relates back to and claims the benefit of priority from U.S. Provisional Application for Patent Ser. No. 63/010,147 titled “System and Method for Improving the Yield in Food Servings” and filed on Apr. 15, 2020.
| Number | Date | Country | |
|---|---|---|---|
| 63010147 | Apr 2020 | US |