This application claims priority under 35 U.S.C. § 119 to an application entitled “Apparatus And Method For Adaptively Changing Uplink Power Control Scheme According To Mobile Status In A TDD Mobile Communication System” filed in the Korean Intellectual Property Office on Aug. 20, 2004 and assigned Ser. No. 2004-65952, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to an apparatus and method for determining a power control scheme in a time division duplex (TDD) mobile communication system, and in particular, to an apparatus and method for changing an uplink power control scheme according to the status of a subscriber station (SS).
2. Description of the Related Art
As one of the duplex schemes, Time Division Duplex (TDD) uses two distinct sets of time slots on the same frequency for the uplink from a base station (BS) to a Subscriber Station (SS) and the downlink from the SS to the BS. Another major duplex scheme is frequency division duplex (FDD). FDD uses two distinct frequencies for the uplink and the downlink.
Unlike FDD, the uplink and the downlink share the same frequency band in TDD and are separated by time slots dedicated to them. That is, time slots are separately preset for the uplink signal and the downlink signal. Therefore, the uplink and downlink signals are transmitted only in their assigned time slots. TDD has the advantage of high frequency use efficiency.
The mobile communication system schedules bursty uplink/downlink packets. Particularly, the BS decides a modulation and coding scheme (MCS) for the resources to be allocated and already allocated resources in uplink/downlink packet scheduling for an SS. An MCS level to be used depends on the status of the SS. For the uplink scheduling, the BS takes into account the maximum transmit power of the SS. Since the transmit power of the SS is restricted to a set level, the BS performs scheduling taking into account the allocated resources, an MCS level to be applied for the resources, and the transmit power limit of the SS. To do so, the scheduler of the BS must have knowledge of the power headroom or transmit power of the SS.
Typically, the mobile communication system uses downlink and uplink power control to increase call capacity and achieve good call quality. That is, if the BS receives a signal from an SS at a signal-to-interference ratio (SIR) that ensures the minimum required call quality by controlling the transmit power of all of the SSs, system capacity can be maximized. In the case where the signal from the SS is received in the BS at a higher power level, the performance of the SS is increased at the expense of increasing interference from other SSs sharing the same channel. As a result, system capacity is decreased or the call quality of other subscribers drops.
Orthogonal Frequency Division Multiplexing (OFDM)/Orthogonal Frequency Division Multiple Access (OFDMA) has recently been proposed as a physical layer scheme for a 4th generation mobile communication system. The above-described power control has also emerged as a challenging issue to the OFDM/OFDMA system.
OFDM/OFDMA is a transmission scheme based on the IEEE 802.16 standard, in which a serial modulation symbol sequence is transmitted as parallel data. OFDM/OFDMA operates in TDD. In OFDM, 256 modulation symbols are Fast-Fourier-Transformed (FFT-processed) to one OFDM symbol, whereas in OFDMA, one OFDM symbol is formed with more modulation symbols. According to the IEEE 802.16-based OFDMA, the subcarriers of one OFDM symbol are grouped into subchannels and a plurality of OFDM symbols form one frame.
Referring to
Meanwhile, each SS performs initial ranging and periodic ranging to correct time and frequency errors in uplink bursts and control power. When the SS attempts ranging, the BS measures the power of a signal from the SS and transmits to the SS a MAC message including a compensation value for signal power loss caused by path attenuation and rapid signal power change.
Now a description will be made of an uplink power control method in a normal mode in the OFDM/OFDMA TDD system. The uplink power control is executed in two steps.
In the first step, the BS carries out power control. The BS scheduler determines available resources and an available MCS level for uplink transmission within the transmit power range of an SS of interest by
ΔP=SNRreq−SNRUL,RX+(BWreq−BWRX)+MARGINTX≦Headroom (1)
where SNRreq and BWreq respectively denote the required SNR and bandwidth for applying an MCS level to the current packet to be scheduled. SNRUL,RX and BWRX denote the received SNR and allocated bandwidth of a reference signal, respectively. The reference signal is a previously received uplink burst signal, a data signal or a control signal. MARGINTX is a term that represents a channel change. That, this margin is set considering the difference between the time of scheduling based on Equation (1) and the actual time of transmitting an uplink signal. Headroom is the transmit power margin of the SS, calculated by subtracting the current transmit power from the maximum transmit power of the SS. The BS is assumed to have knowledge of the maximum transmit power of the SS. ΔP satisfying Equation (1) ensures that the SS transmits an uplink signal with the resources and MCS level scheduled within the limited power.
In the second step, the SS performs power control. The uplink power control is considered in two ways: closed-loop power control and open-loop power control.
The uplink closed power control is a scheme of controlling the transmit power of the SS according to a command from the BS. The BS notifies the SS of a required power increment/decrement ΔP as well as the resources and MCS level scheduled by Equation (1).
The uplink open-loop power control is a scheme of deciding the uplink transmit power in the SS itself. The BS simply tells the SS the resources and MCS level decided by Equation (1) and the SS then computes the uplink transmit power of an uplink signal to be transmitted using the allocated resources by
where PLUL and PLDL denote uplink and downlink path losses, respectively. In view of the TDD system, these two values are almost the same. The SS can estimate PLDL using the transmit power of the BS, PDL,TX and the downlink received power PDL,RX of the SS. NIUL,RX is the power of a signal and interference measured at a receiver of the BS, common to all of the SSs. SNRreq and BWreq respectively denote the required SNR and bandwidth for an MCS level to be applied to a packet. MARGINRX is a term that represents the difference between the time to which Equation (2) is computed for application and the actual uplink transmission time.
Referring to
In step 203, the BS (scheduler) calculates the received SNR of the reference signal and determines resources, an MCS level, and a power increment ΔP for the SS by Equation (1). Headroom involved in Equation (1) can be calculated using the information of the transmit power (UL_Tx, Power).
In step 205, the BS allocates the uplink resources to the SS according to the scheduling (UL_MAP) and transmits a power control command (or the power increment) to the SS. The resource assignment (UL_MAP) information is delivered in a UL-MAP burst and the power control command is set in a DL burst containing a predetermined control message.
The SS determines its uplink transmit power according to the power control command in step 207 and transmits packets using the allocated resources in step 209. Thereafter, step 203 (BS scheduling) through step 209 (uplink transmission) are repeated.
As described before, the power control command is selectively transmitted in the closed-loop power control. Only if the channel status is changed and the SNR of an uplink received signal is changed, does the BS transmit a power control command to the SS. In the absence of the power control command, the SS determines its uplink transmit power based on the previous uplink transmit power by
Pnew=PLast+SNRNew−SNRLast+(BWNew−BWLast) (3)
where Pnew and PLast denote the new transmit power and the previous transmit power, respectively, SNRNew and SNRLast denote a required new SNR and the previous required SNR, respectively, and BWNew and BWLast denote a new allocated SNR and the previous allocated SNR, respectively.
Referring to
In step 303, the BS (scheduler) calculates the received SNR of the reference signal and determines resources, an MCS level, and a power increment ΔP for the SS by Equation (1). Headroom involved in Equation (1) can be calculated using the information of the transmit power (UL_Tx, Power).
In step 305, the BS allocates the uplink resources to the SS according to the scheduling (UL_MAP) and transmits the uplink resource assignment (UL_MAP) information to the SS. Compared to the closed-loop power control, a power control command is not transmitted in the open-loop power control. Instead, the BS broadcasts in a DL-MAP burst PDL,TX and NIUL,RX necessary for the computation of Equation (2) to all of the SSs.
The SS determines its uplink transmit power using the resource assignment information by Equation (2) in step 307 and transmits an uplink signal using the allocated resources in step 309. At the same time, the SS tells the BS the current transmit power. Thereafter, step 303 (BS scheduling) through step 309 (uplink transmission) are repeated.
As described earlier, in contrast to the closed-loop power control, the open-loop power control scheme provide to the BS information about the current uplink transmit power along with the uplink transmission because the SS can change the uplink transmit power freely. Equation (2) that the SS uses in deciding the transmit power includes a channel variation which is not known to the BS and thus the headroom of the SS is changed, unnoticed by the BS. Therefore, the SS tells the BS the current transmit power at every uplink transmission so that the BS can update the headroom.
On the other hand, in the closed-loop power control, the transmit power of the SS is changed by a power control command from the BS or a transmit power calculation formula (Equation (3)) known to the BS. Accordingly, the BS can distinguish a transmit power change from a channel change in the SNR estimate of an uplink signal. That is, the BS can execute a power control taking the channel change into account, as shown in Equation (1). The headroom can also be calculated using the previous headroom and the previous power control command or using the transmit power of the SS that the bas station can estimate by Equation (3). Consequently, the SS does not need to notify the BS of its transmit power at every uplink transmission in the closed-loop power control.
The features of the two power control schemes are summarized below in Table 1.
As noted from Table 1, the closed-loop and open-loop power control schemes differ in uplink/downlink feedback, scheduling margin, and maximum transmit power margin. The uplink/downlink feedback has been described before. The scheduling margin is MARGINTX in both power control schemes because a scheduling time point coincides with an actual uplink transmission time in them. The maximum transmit power margin is defined as the maximum difference between a required transmit power satisfying SNRreq at the receiver and an actual transmit power. For the closed-loop power control, the maximum transmit power margin is MARGINTX since the actual transmit power is decided at scheduling. For the open-loop power control, the actual transmit power is decided by Equation (2) and thus the maximum transmit power margin is MARGINRX. The scheduling margin leads to resource assignment loss, and the maximum transmit power margin results in an increase in total system interference.
If the SS moves slowly, the closed-loop power control performs better on the whole. Because the channel does not change much at a low mobile velocity, the power control command is not issued frequently and thus the amount of downlink feedback information is small. MARGINTX affected by the channel variation is also very small. Also, the scheduling is done and the transmit power is decided according to the actual uplink channel status, as in Equation (1). Therefore, the uplink power control can be performed with high reliability.
On the contrary, if the SS moves fast, the open-loop power control outperforms the closed-loop power control. The channel changes greatly at a high mobile velocity and thus the number of occurrences of the power control command in the closed-loop power control is approximately equal to the number of transmit power feedbacks in the open-loop power control. However, because MARGINTX MARGINRX, the closed-loop power control tracks the channel variation consuming much resources, or cannot track the channel variation at all. As a result, the closed-loop power control causes greater interference than the open-loop power control in the case where the SS moves fast.
As described above, the closed-loop and open-loop power control schemes offer their benefits according to the velocity of the mobile terminal. Nevertheless, conventional systems adopt only one of the two power control schemes. In another case, the open-loop power control applies to an initial access, and the closed-loop power control applies thereafter. Thus, the conventional systems do not fully utilize the advantages of the closed-loop and open-loop power control schemes.
An object of the present invention is to substantially solve at least the above problems and/or disadvantages and to provide at least the advantages below. Accordingly, an object of the present invention is to provide an apparatus and method for adaptively determining a power control scheme according to mobile velocity in a mobile communication system.
Another object of the present invention is to provide an apparatus and method for adaptively determining a power control scheme according to mobile velocity in an OFDM/OFDMA TDD mobile communication system.
The above objects are achieved by providing an apparatus and method for adaptively changing an uplink power control scheme according to mobile status in a TDD mobile communication system.
According to an aspect of the present invention, in a base station in a mobile communication system supporting a plurality of uplink power control schemes, a mobility estimator generates a mobility index by estimating the velocity of a subscriber station, and a power controller selects a power control scheme for the uplink of a subscriber station from among the plurality of power control schemes by comparing the mobility index with a threshold.
According to another aspect of the present invention, in a subscriber station device in a mobile communication system supporting a plurality of power control schemes, a MAC entity extracts, upon receipt of a power control change command message from a base station, information about a power control scheme requested by the base station from the power control change command message, and a power controller selects a power control scheme according to the extracted information received from the MAC entity and determines the transmit power of an uplink burst according to the selected power control scheme.
According to a further aspect of the present invention, in a method of determining an uplink power control scheme in a mobile communication system supporting a plurality of uplink power control schemes, a base station selects a power control scheme for the uplink of a subscriber station according to the status of the subscriber station and transmits to the subscriber station a power control change command message including information about the selected power control scheme. The subscriber station extracts, upon receipt of the power control change command message from the base station, the power control scheme information from the power control change command message and selects a power control scheme according to the extracted information.
According to still another aspect of the present invention, in a method of determining an uplink power control scheme in a mobile communication system supporting a plurality of uplink power control schemes, a subscriber station transmits to a base station a power control change request message including information about a requested power control scheme. The base station selects, upon receipt of the power control change request message, a power control scheme for the uplink of the subscriber station and transmits a power control change command message including information about the selected power control scheme to the subscriber station. The subscriber station extracts, upon receipt of the power control change command message from the base station, the power control scheme information from the power control change command message and selects a power control scheme according to the information extracted by the subscriber station.
According to yet another aspect of the present invention, in a method of determining an uplink power control scheme in a mobile communication system supporting a plurality of uplink power control schemes, a base station generates a mobility index by estimating the velocity of a subscriber station, selects a power control scheme for the uplink of a subscriber station according to the mobility index, and transmits to the subscriber station a power control change command message including information about the selected power control scheme, if the selected power control scheme is different from a previous power control scheme.
According to yet further aspect of the present invention, in a method of determining an uplink power control scheme in a mobile communication system supporting a plurality of power control schemes, a subscriber station extracts from the power control change command message, upon receipt of a power control change command message from a base station, information about a power control scheme requested by the base station, selects a power control scheme according to the extracted information, and determines the transmit power of an uplink burst according to the selected power control scheme.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
Preferred embodiments of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
The present invention is intended to provide an apparatus and method for selecting a closed-loop power control scheme or an open-loop power control scheme for uplink power control according to mobile status in a mobile communication system. While the present invention will be described in the context of an IEEE 802.16e communication system, for the sake of convenience, the power control scheme changing method of the present invention is applicable to all other Time Division Duplex (TDD) communication systems.
Referring to
The TDD transmission MODEM 403, which includes a channel encoder, a modulator, and an RF transmission unit, converts the data received from the MAC entity 401 to a form suitable for radio transmission. The modulator performs spreading in a code division multiple access (CDMA) communication system, and OFDM modulation (IFFT) in an OFDM communication system.
The TDD reception MODEM 405, which includes an RF reception unit, a demodulator, and a channel decoder, recovers a radio signal received from the duplexer 407, and provides the recovered signal to the MAC entity 401.
The duplexer 407 provides a signal received in TDD from an antenna (uplink signal) to the TDD reception MODEM 405, and provides the transmission signal received from the TDD transmission MODEM 403 (downlink signal) to the antenna.
The scheduler 413 schedules uplink and downlink data transmission according to data transmission status and the channel statuses of the individual SSs, and orders the Subscriber Station (SS)s to transmit and receive data as scheduled. In an IEEE 802.16 communication system, for example, the scheduler 413 generates UL-MAP and DL-MAP as uplink and downlink configuration information, and the MAC entity 401 receives an uplink signal and transmits a downlink signal according to the UL-MAP and DL-MAP from the scheduler 413.
The mobility estimator 411 determines a mobility index by estimating the mobility status of an individual SS from a radio signal received from the SS. Many mobility status estimation algorithms are available and any one of them can be assumed to be used herein. In accordance with the embodiment of the present invention, a higher mobility index indicates a higher mobile velocity.
The uplink power controller 409 is responsible for the closed-loop or open-loop power control. It determines the resources and an MCS level available to each mobile terminal in a predetermined method (e.g. Equation (1)) and tells the scheduler 413 the determined resources and the MCS level. In the case of the closed-loop power control, the uplink power controller 409 generates a power control command for an individual SS to the MAC entity 401. The power control schemes have been described in detail and their description is not provided herein.
In accordance with the present invention, the uplink power controller 409 determines a power control scheme for the SS based on the mobility index received from the mobility estimator 411. This determination can be made every set time period or upon receipt from the SS of a power control change request. If the power control scheme is changed for the SS, the uplink power controller 409 provides to the MAC entity 401 a power control command for the SS. The MAC entity generates a power control change command message according to the power control change command and provides it to the TDD transmission MODEM 403.
Referring to
In the state where PMC=0, if the mobility index received from the mobility estimator 411 is less than a threshold, the state PMC=0 is kept, as indicated by reference numeral 505. If the mobility index is greater than the threshold, the state PMC=0 is transitioned to the state PMC=1, as indicated by reference numeral 511. Similarly, in the state where PMC=1, if the mobility index is greater than the threshold, the state PMC=1 is kept, as indicated by reference numeral 509. If the mobility index is less than the threshold, the state PMC=1 is transitioned to the state PMC=0, as indicated by reference numeral 507. If the PMC value is changed, this implies that a different power control scheme from the previous one has been selected. Thus, a power control change command is transmitted to the SS, notifying the SS of the change of the power control scheme.
With reference to the state transition diagram of
Referring to
In step 611, the BS determines if the PMC has been toggled by comparing the power control scheme set currently with the previous power control scheme. If PMC has not been changed, the BS returns to step 601. If PMC has been changed, the BS transmits to the SS a power control change command message including information the changed power control scheme in step 613 and returns to step 601. The detailed structure of the power control change command message is illustrated below in Table 3.
As described above, the BS decides whether to change the power control scheme and the SS changes its power control scheme only by the power control change command received from the BS.
The SS of the present invention includes a MAC entity 701 connected to a higher layer, a TDD transmission MODEM 703, a TDD reception MODEM 705, a duplexer 707, a power controller 709, and a mobility estimator 711.
Referring to
The TDD transmission MODEM 703, which includes a channel encoder, a modulator, and an RF transmission unit, converts the data received from the MAC entity 701 to a form suitable for radio transmission. Particularly, the TDD transmission MODEM 703 adjusts the transmit power of the uplink signal according to an uplink transmit power value received from the power controller 709.
The TDD reception MODEM 705, which includes an RF unit, a demodulator, and a channel decoder, recovers a radio signal received from the duplexer 707, and provides the recovered signal to the MAC entity 701. The duplexer 707 provides a signal received in TDD from an antenna (downlink signal) to the TDD reception MODEM 705, and provides the transmission signal received from the TDD transmission MODEM 703 (uplink signal) to the antenna.
The mobility estimator 711 determines a mobility index by estimating the mobility status of the SS from a radio downlink signal received from the BS, and provides the mobility index to the power controller 709. Many mobility status estimation algorithms are available and any one of them can be used herein. In accordance with the embodiment of the present invention, it is assumed that a higher mobility index indicates a higher mobile velocity.
The power controller 709 is responsible for the closed-loop or open-loop power control. For the closed-loop power control, the power controller 709 determines uplink transmit power according to a power control command received from the BS or by Equation (3), and provides the uplink power transmit power value to the TDD transmission MODEM 703. For the open-loop power control, the power controller 709 determines the uplink transmit power by Equation (2) and provides it to the TDD transmission MODEM 703. In the case of calculating the uplink transmit power by Equation (2) or Equation (3), information about required bandwidth and SNR is acquired from the resource assignment information (UL-MAP) received from the BS. These power control schemes have been described before in detail and their description is not provided herein.
In accordance with the present invention, the power controller 709 adaptively selects a power control scheme according to the power control change command received from the BS. To be more specific, the power control change command message is provided to the MAC entity 701 through the TDD transmission MODEM 705. The MAC entity 701 extracts a power control change command indicating a power control scheme from the message. The power controller 709 then selects a power control scheme according to the power control change command received from the MAC entity 701.
The power controller 709 can request changing the uplink power control scheme to the BS. Specifically, the power controller 709 selects a power control scheme according to the mobility index received from the mobility estimator 711 and if the selected power control scheme is different from the previous one, the power controller 709 transmits the power control change request to the MAC entity 701. Thus the MAC entity 701 generates a power control change request message and transmits it to the BS. In this way, the SS only needs to request the change of a power control scheme and the BS makes a final decision about the power control scheme.
Referring to
In the state where PMC=0, if the power control change command received from the BS indicates the closed-loop power control, the state PMC=0 (closed-loop power control) is kept, as indicated by reference numeral 805. If the power control change command indicates the open-loop power control, the state PMC=0 is transitioned to the state PMC=1 (open-loop power control), as indicated by reference numeral 811. Similarly, in the state where PMC=1, if the power control change command indicates the open-loop power control, the state PMC=1 (open-loop power control) is kept, as indicated by reference numeral 809. If the power control change command indicates the closed-loop power control, the state PMC=1 is transitioned to the state PMC=0 (closed-loop power control), as indicated by reference numeral 807. In this way, the SS determines the power control scheme according to the power control change command from the BS.
With reference to the state transition diagram of
Referring to
Referring to
In step 1009, the SS determines if PMC has been toggled by comparing the power control scheme set currently (PMC′) with the previous power control scheme (PMC). If PMC has not been changed, the SS returns to step 1001. If PMC has been changed, the SS transmits to the BS a power control change request message including information about the changed power control scheme in step 1011 and returns to step 1001. The detailed structure of the power control change request message is illustrated below in Table 2.
Referring to
Upon receipt of the power control change request message, the BS determines a power control scheme based on the mobility index of the SS in step 1103. If the determined power control scheme is different from the previous one, the BS transmits to the SS in step 1105 a power control change command message including information about the determined power control scheme. The format of the power control change command message is illustrated below in Table 3.
Upon receipt of the power control change command message, the SS sets in step 1107 a power control scheme according to a power control change command set in the received message.
As described above, the SS requests the change of a power control scheme and the BS transmits a power control change command to the SS in response to the power control change request. In another case, the BS can transmit the power control change command according to the mobility index to the SS, without receiving the power control change request. The power control change request message is transmitted to the BS in a UL burst and the power control change command message is transmitted to the SS in a DL burst, as illustrated in
Table 2 below illustrates an example of the power control change request message depicted in
Referring to Table 2, “Management Message Type” is a serial number that identifies the message in the IEEE 802.16 communication system. It can be changed according to a system standardization. “Power control mode change” indicates a requested power control scheme. It is set to ‘0’ for the closed-loop power control and to ‘1’ for the open-loop power control. “UL Tx power” indicates the transmit power value of the uplink burst that delivers the power control change request. Encoding of the transmit power value is performed in compliance with IEEE 802.16, which will not be described in detail herein. The BS can utilize the transmit power value for power control, set in the uplink burst with the power control change request. “Reserved” represents bits inserted to match the total size of the message in bytes.
Table 3 below illustrates an example of the power control change command message depicted in
Referring to Table 3, “Management Message Type” is a serial number that identifies the message in the IEEE 802.16 communication system. It can be changed according to a system standardization. “Power control mode change” indicates a requested power control scheme. It is set to ‘0’ for the closed-loop power control and to ‘1’ for the open-loop power control. “Start frame” indicates a frame in which the indicated power control scheme starts to be applied in the IEEE 802.16 communication system. If the indicated power control scheme is the closed-loop power control, a power control command “Power adjust” about the transmit power of the SS is transmitted. In the case of the open-loop power control, an offset value “OffsetperSS” is transmitted to be reflected in MARGINRX of Equation (2). This offset value is specific to the SS, like the change of link performance caused by channel selectivity and the diversity gain of BS antennas. In this case, MARGINRX reflects the channel status of the SS as well as the time delay until the power control scheme is applied.
Table 4 below illustrates an example of a bandwidth request and uplink transmit power report message that can be transmitted by the SS in the IEEE 802.16 communication system.
Referring to Table 4, the bandwidth request and uplink transmit power report message is a modification to an existing IEEE 802.16 bandwidth request message. In general, uplink communications starts with a bandwidth request from the SS in the IEEE 802.16 communication system. Thus, the bandwidth request message was defined in the IEEE 802.16 communication system. Assuming that the uplink communications start with the bandwidth request from the SS, an uplink message transmitted from the SS when the procedure illustrated in
In Table 4, “HT (Header Type)” indicates a header type. It is set to ‘1’ all the time. “EC (Encryption Control)” indicates if the payload following the header is encrypted or not. “EC” is always set to ‘1’. The bandwidth request and uplink transmit power report message is configured to have a header only, without payload. “Type” indicates the type of the bandwidth request header. It can be changed according to standardization. “BR” is short for Bandwidth Request. It indicates the amount of uplink data in bytes. “UL Tx Power” indicates the transmit power value of a UL burst that carries the bandwidth request and uplink transmit power report message. Encoding of the transmit power value performed in compliance with IEEE 802.16, and its description will not be provided herein. The BS can utilize the transmit power for power control transmit, set in the uplink burst with the bandwidth request and uplink transmit power report message. “CID (Connection ID)” is a 16-bit IEEE 802.16 connection ID. “HCS (Header Check Sequence)” is a 8-bit cyclic redundancy check (CRC) value for the message, to be used for error detection in the BS. The CRC operation is based on IEEE 802.16 and its description will not be provided herein.
In accordance with the present invention as described above, an uplink power control scheme is changed in a TDD communication system. Therefore, the uplink power control can be carried out more efficiently. That is, an efficient uplink power control is provided by fully utilizing the advantages of the closed-loop and open-loop power control schemes.
While the invention has been shown and described with reference to certain preferred embodiments thereof, they are merely exemplary applications. For example, while the closed-loop power control and the open-loop power control have been described as available power control schemes, the present invention is applicable to further-divided power control schemes. Therefore, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0065952 | Aug 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5438683 | Durtler et al. | Aug 1995 | A |
5623535 | Leung et al. | Apr 1997 | A |
5666651 | Wang | Sep 1997 | A |
5787348 | Willey et al. | Jul 1998 | A |
6072784 | Agrawal et al. | Jun 2000 | A |
6144650 | Watanabe et al. | Nov 2000 | A |
6163698 | Leitch et al. | Dec 2000 | A |
6490460 | Soliman | Dec 2002 | B1 |
6587442 | Tripathi | Jul 2003 | B1 |
6697634 | Hayashi | Feb 2004 | B1 |
6771660 | Bourlas et al. | Aug 2004 | B1 |
6842624 | Sarkar et al. | Jan 2005 | B2 |
6862457 | Sarkar et al. | Mar 2005 | B1 |
6891810 | Struhsaker et al. | May 2005 | B2 |
6928102 | Zeira et al. | Aug 2005 | B2 |
6940827 | Li et al. | Sep 2005 | B2 |
6996400 | Posti et al. | Feb 2006 | B2 |
7002929 | Struhsaker et al. | Feb 2006 | B2 |
7006454 | Missel | Feb 2006 | B2 |
7010319 | Hunzinger | Mar 2006 | B2 |
7010320 | Komatsu | Mar 2006 | B2 |
7020483 | Oestreich | Mar 2006 | B2 |
7035231 | Yu et al. | Apr 2006 | B2 |
7069035 | Chen et al. | Jun 2006 | B2 |
7096019 | Wang | Aug 2006 | B2 |
7139537 | Nakayama | Nov 2006 | B2 |
7205842 | Gustavsson et al. | Apr 2007 | B2 |
7230931 | Struhsaker | Jun 2007 | B2 |
7248841 | Agee et al. | Jul 2007 | B2 |
7257101 | Petrus et al. | Aug 2007 | B2 |
7266104 | Belcea | Sep 2007 | B2 |
7269389 | Petrus et al. | Sep 2007 | B2 |
7366247 | Kim et al. | Apr 2008 | B2 |
7493136 | Shin et al. | Feb 2009 | B2 |
20020122411 | Zimmerman et al. | Sep 2002 | A1 |
20020136168 | Struhsaker et al. | Sep 2002 | A1 |
20020136169 | Struhsaker et al. | Sep 2002 | A1 |
20020137535 | Hunzinger | Sep 2002 | A1 |
20020142791 | Chen et al. | Oct 2002 | A1 |
20020159422 | Li et al. | Oct 2002 | A1 |
20020160821 | Kaikati et al. | Oct 2002 | A1 |
20020187784 | Tigerstedt et al. | Dec 2002 | A1 |
20030003875 | Oestreich | Jan 2003 | A1 |
20030045319 | Sarkar et al. | Mar 2003 | A1 |
20030104816 | Duplessis et al. | Jun 2003 | A1 |
20030171123 | Laakso et al. | Sep 2003 | A1 |
20040004944 | Petrus et al. | Jan 2004 | A1 |
20040005905 | Petrus et al. | Jan 2004 | A1 |
20040047328 | Proctor et al. | Mar 2004 | A1 |
20040081076 | Goldstein et al. | Apr 2004 | A1 |
20040085939 | Wallace et al. | May 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040116139 | Yi et al. | Jun 2004 | A1 |
20040146067 | Yi et al. | Jul 2004 | A1 |
20040180686 | Nakayama | Sep 2004 | A1 |
20050003846 | Anderson | Jan 2005 | A1 |
20050048937 | Sarkar et al. | Mar 2005 | A1 |
20050111398 | Wybenga et al. | May 2005 | A1 |
20050117549 | Kanterakis et al. | Jun 2005 | A1 |
20050135328 | Missel | Jun 2005 | A1 |
20050164730 | Chen et al. | Jul 2005 | A1 |
20050197150 | Sarkar et al. | Sep 2005 | A1 |
20050243752 | Brueck et al. | Nov 2005 | A1 |
20050254467 | Li et al. | Nov 2005 | A1 |
20050282574 | Li et al. | Dec 2005 | A1 |
20060025079 | Sutskover et al. | Feb 2006 | A1 |
20060035660 | Anderson | Feb 2006 | A1 |
20060040619 | Cho et al. | Feb 2006 | A1 |
20060067278 | Li et al. | Mar 2006 | A1 |
20060068813 | Ku et al. | Mar 2006 | A1 |
20060092875 | Yang et al. | May 2006 | A1 |
20060135062 | Takai | Jun 2006 | A1 |
20060152285 | Gustavsson et al. | Jul 2006 | A1 |
20060154685 | Shin et al. | Jul 2006 | A1 |
20060215662 | Zhang et al. | Sep 2006 | A1 |
20070218889 | Zhang et al. | Sep 2007 | A1 |
20070223406 | Li et al. | Sep 2007 | A1 |
20080069031 | Zhang et al. | Mar 2008 | A1 |
20080096576 | Brueck et al. | Apr 2008 | A1 |
20080101290 | Sung et al. | May 2008 | A1 |
20080125043 | Karmanenko et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
0 999 657 | May 2000 | EP |
1 077 531 | Feb 2001 | EP |
2 323 987 | Oct 1998 | GB |
1998-703493 | Nov 1998 | KR |
WO 0057574 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060040619 A1 | Feb 2006 | US |