This application claims the priority, under 35 U.S.C. ยง 119, of German Patent Application DE 10 2007 002 154.4, filed Jan. 15, 2007; the prior application is herewith incorporated by reference in its entirety.
The invention relates to an apparatus for aligning sheet stacks in a feeder of sheet processing machines, in particular printing presses or machines for further print processing, having an aligning plate which is driven by motor. The invention also relates to a method for aligning sheet stacks in the feeder of a sheet processing machine having the apparatus for aligning sheet stacks. The invention additionally relates to a sheet processing machine having the apparatus.
Different types of apparatuses are known for an exact stack formation of sheets to be deposited in a delivery of a sheet processing machine. German Patent DE 196 27 241 C2, corresponding to U.S. Pat. No. 5,890,713, describes an apparatus for forming a sheet stack in the delivery of a sheet-fed printing press. The alignment takes place with the aid of vibratory plates which are connected to vibration exciters. In that case, the vibration exciters vibrate independently of a delivery cycle.
German Published, Non-Prosecuted Patent Application DE 42 20 074 A1, corresponding to U.S. Pat. No. 5,423,656, discloses an apparatus for jogging a stack. In that case, a jogging rod which points in the direction of the stack and has a jogging plate at one end is used for jogging. A common feature of the two above-mentioned apparatuses is that the jogging or vibrating movement is purely translational.
An apparatus having an oscillating movement of an aligning plate is described in German Patent DE 198 52 365 C2. A side stop for aligning sheets on delivery stacks in deliveries of printing presses has an aligning plate. The aligning plate is mounted in a rotary bearing. The rotary bearing acts as a pivot point, about which the aligning plate is rotated by a small angle. At its maximum rotary angle, the aligning plate comes into contact with the delivery stack and aligns the latter as a result. Subsequently, the aligning plate is pivoted back into its original position again. In that case, the oscillation excitation of the aligning plate takes place through a pneumatic drive.
If nonstop feeders, such as, for example, those described in German Patent DE 41 29 136 C2, corresponding to U.S. Pat. No. 5,338,020, or German Patent DE 39 41 993 C1, corresponding to U.S. Pat. No. 5,116,041, are used in sheet processing machines, the sheet stacks also have to be aligned or jogged there. In order to make continuous machine operation possible, a residual stack which tends toward tilting is replaced by a new main stack in manual nonstop feeders. Since the residual stack and the main stack can be disposed offset with respect to one another, or individual sheets can be curved, oblique or offset with respect to their setpoint position, the sheets have to be aligned at their side edge and the sheet stack therefore has to be laterally aligned. That alignment takes place by hand according to the prior art.
Manual nonstop feeders have upwardly cycled stacks, that is to say the stack is moved upward, at the same cycle as sheets are pulled off and transferred to the sheet processing machine. As a result, the uppermost sheet of the sheet stack is always situated in the same position relative to the sheet removing apparatus, such as a suction head. Optimum separation and removal of the sheets can therefore be ensured.
A problem with manual stack alignment is that optimum stack alignment is not ensured but rather depends on how and if the machine operator aligns the feeder stack.
It is accordingly an object of the invention to provide an apparatus and a method for aligning sheet stacks and a sheet processing machine having the apparatus, which overcome the hereinafore-mentioned disadvantages of the heretofore-known devices and methods of this general type and which laterally align the sheet stack automatically in a feeder in the case of a continuous upward stack movement.
With the foregoing and other objects in view there is provided, in accordance with the invention, an apparatus for aligning sheet stacks in a feeder of a sheet processing machine, in particular a printing press or a machine for further print processing. The apparatus comprises a motor drive, an aligning plate driven by the motor drive, and a movement converter disposed between the motor drive and the aligning plate. The movement converter forces a movement describing an approximately circular path onto the aligning plate.
With the objects of the invention in view, there is also provided a method for aligning sheet stacks in a feeder of a sheet processing machine. The method comprises providing the apparatus for aligning sheet stacks according to the invention, and synchronizing a vertical speed component of the aligning plate during aligning to an upward speed of the feeder stack.
The apparatus according to the invention makes it possible to align sheet stacks in the feeder both in an exact manner, that is to say with precise edges, as well as in a gentle manner, that is to say without damaging the sheets.
The gentle alignment is achieved by the fact that the aligning plate of the apparatus describes approximately a circular path for aligning sheet stacks in the feeder of sheet processing machines. During the movement cycle, the aligning plate remains oriented parallel to the side face of the sheet stack of the feeder and the upper edge of the aligning plate remains oriented parallel to the upper edge of the sheet stack of the feeder. A movement converter is situated between a motor drive and the aligning plate. The movement converter converts the rotational movement which is provided at the motor drive and forces a movement which describes approximately a circular path onto the aligning plate.
In accordance with another feature of the invention, the movement converter has at least one toothed belt pulley, to which the rotational movement of the motor drive is transmitted through a toothed belt. If the movement converter has a plurality of toothed belt pulleys, the rotational movement of the motor drive can also be transmitted through either one circulating toothed belt or else through a plurality of toothed belts. The toothed belt pulleys are flange-connected in each case onto a rotatably mounted shaft. At its one end or at both ends, each shaft is connected fixedly to one lever at a first pivot point of the respective lever in each case. At a second pivot point of the respective lever, the aligning plate is mounted rotatably through the use of one pin in each case. In addition, the movement converter also has an element for guiding the aligning plate vertically.
In accordance with a further feature of the invention, the apparatus for aligning sheet stacks has a movement converter with two toothed belt pulleys. Two levers of the movement converter, which are spaced apart horizontally, are disposed exactly parallel to one another in this case, in order to make a synchronous rotational movement of the two levers possible and therefore an approximately circular movement of the aligning plate. The vertical guidance of the aligning plate is provided by its mounting at two pivot points of the levers.
In accordance with an added feature of the invention, the motor drive of the apparatus for aligning sheet stacks can, for example, be a servomotor or a frequency-controlled three-phase motor.
In accordance with an additional feature of the invention, advantageously, in each case one apparatus for aligning sheet stacks is fastened to both sides of the feeder, that is to say to the frame of the feeder on the left and right, as seen in the sheet transport direction. In this case, the apparatus for aligning sheet stacks is attached to the feeder frame in such a way that the aligning plate is situated at the level of the upper edge of the sheet stack of the feeder. This achieves a situation where the upper part of the sheet stack is aligned laterally and the sheets of the sheet processing machine can be fed with an accurate position. The apparatus according to the invention with the approximate circular movement of the aligning plate, in contrast to the mainly translational movement of the aligning plate in the prior art, prevents superposition of the upward movement of the feeder stack onto the laterally oriented jogging movement of the aligning plate. This is achieved by an advantageous method for aligning sheet stacks, in which the vertical speed component of the aligning plate during alignment corresponds to the upward speed of the feeder stack. The cyclical upward movement of the feeder stack and the approximately circular movement of the aligning plate are synchronized. The upward speed of the feeder stack depends firstly on the sheet thickness and secondly on the number of sheets which are transferred per unit time to the sheet processing machine, that is to say the machine speed.
In accordance with another mode of the method of the invention, the speed of the aligning plate can be regulated as a function of the machine speed. The adaptation of the speed of the aligning plate is advantageously performed automatically by a machine controller. In addition to the above-described vertical movement component, the movement of the aligning plate also has a horizontal movement component. This brings about a jogging movement of the aligning plate and therefore the alignment of the sheet stack.
In accordance with a further mode of the method of the invention, the alignment of the sheet stack takes place continuously. However, the motor drive of the apparatus can be stopped in every position, with the result that the aligning plate can also serve as a stationary side stop.
With the objects of the invention in view, there is concomitantly provided a sheet processing machine for processing sheets of paper, paperboard and the like. The sheet processing machine comprises an apparatus according to the invention for aligning sheet stacks.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in an apparatus and a method for aligning sheet stacks and a sheet processing machine having the apparatus, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawings in detail and first, particularly, to
The feeder 10 is a manual nonstop feeder which is provided with a device (not shown in
The sheets 1 are separated from the feeder stack 11 by the feeder 10, are fed over a feed table 6 to the sheet punching and stamping machine 100 and are pulled in a sheet transport direction T through the various stations 2, 3 and 4 of the punching and stamping machine 100 by a transport system 7 having gripper carriages 9.
The punching station 2 includes a lower table and an upper table. The lower table is mounted fixedly in the machine frame and is provided with a backing plate for a punching knife. The upper table is mounted in such a way that it can move back and forth vertically.
The gripper carriages 9 transport the sheet 1 from the punching and stamping station 2 into the following stripping station 3, which is equipped with stripping tools. In the stripping station 3, waste pieces which are not required are ejected downward from the sheet 1 with the aid of the stripping tools, as a result of which the waste pieces fall into a container-like carriage that is pushed-in below the station.
The sheet 1 passes from the stripping station 3 into the delivery 4, where the sheet 1 is either only simply deposited or else a separation of individual multiple copies takes place at the same time. The delivery 4 can also include a pallet, on which the individual sheets are stacked in the form of a stack, so that after a defined stack height is reached, the pallets with the stacked sheets 1 can be moved away out of the region of the punching and stamping machine 100.
It is clear from
Number | Date | Country | Kind |
---|---|---|---|
10 2007 002 154 | Jan 2007 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3982751 | Obenshain | Sep 1976 | A |
4147342 | Naramore | Apr 1979 | A |
4346882 | Pessina et al. | Aug 1982 | A |
4607831 | Raybuck | Aug 1986 | A |
4971311 | Tsukimoto | Nov 1990 | A |
5116041 | Pollich | May 1992 | A |
5338020 | Eltner et al. | Aug 1994 | A |
5423656 | Filsinger et al. | Jun 1995 | A |
5890713 | Hofmann et al. | Apr 1999 | A |
6168154 | Asahara et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
25 25 649 | Sep 1976 | DE |
2939267 | Apr 1981 | DE |
3710329 | Jan 1988 | DE |
39 41 993 | Jan 1991 | DE |
41 29 136 | Mar 1993 | DE |
42 20 074 | Dec 1993 | DE |
44 26 861 | Feb 1996 | DE |
196 27 241 | Jun 1997 | DE |
198 52 365 | May 2000 | DE |
0505021 | Sep 1992 | EP |
0970903 | Jan 2000 | EP |
1 511 088 | May 1978 | GB |
Number | Date | Country | |
---|---|---|---|
20080169597 A1 | Jul 2008 | US |