Not applicable.
Not applicable
Not applicable.
Not applicable.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever.
One or more embodiments of the invention generally relate to engines. More particularly, the invention relates to an engine chamber comprising an articulating inner structure.
The following background information may present examples of specific aspects of the prior art (e.g., without limitation, approaches, facts, or common wisdom) that, while expected to be helpful to further educate the reader as to additional aspects of the prior art, is not to be construed as limiting the present invention, or any embodiments thereof, to anything stated or implied therein or inferred thereupon. Due to the large number of moving parts and variables involved in the operation of typical internal combustion engines (ICE's), one may expect that some inefficiencies may arise, which may reduce performance. Some of these inefficiencies may be caused by the position of the crankshaft relative to when peak combustion pressures are experienced in the engine chamber. It is believed that an optimal position for the crankshaft when peak combustion pressures are experienced in the chamber of a typical ICE may be approximately 74 degrees from top dead center (tdc). However, some existing ICE's may not be configured to achieve this. For example, without limitation, peak combustion pressures in gasoline powered ICE's typically occur when the rotation of the crankshaft reaches approximately 11 degrees after tdc and are typically spent at about 25 degrees after tdc. Diesel powered ICE's may be implemented so that the crankshaft rotation is in a more optimal position for peak combustion pressures, hence their higher torque values as compared to gasoline engines. Still, crankshafts in diesel engines are generally not positioned near 74 degrees after tdc during peak combustion pressures where optimum torque may be achieved. An illustrative example of torque verses crankshaft position follows. A user is pedaling a bicycle and stops his weight at 25 degrees from tdc, which would be about one o'clock if tdc is the highest position of the pedal or 12 o'clock. In this scenario, one may expect that the user could not use the full leverage of the complete stroke of the pedal, which may make it difficult to pedal and move the bicycle.
By way of educational background, an aspect of the prior art generally useful to be aware of is that engines are currently available with many different configurations. For example, without limitation, engines may be implemented with various different numbers of strokes per cycle such as, but not limited to, two stoke engines or four stroke engines. Some engines may be arranged to shift between being used as a one stroke engine and a two stroke engine. Furthermore, the shapes of engine chambers may vary.
In view of the foregoing, it is clear that these traditional techniques are not perfect and leave room for more optimal approaches.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
The present invention is best understood by reference to the detailed figures and description set forth herein.
Embodiments of the invention are discussed below with reference to the Figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
It is to be further understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications, described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures. The present invention will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings.
From reading the present disclosure, other variations and modifications will be apparent to persons skilled in the art. Such variations and modifications may involve equivalent and other features which are already known in the art, and which may be used instead of or in addition to features already described herein.
Although Claims have been formulated in this Application to particular combinations of features, it should be understood that the scope of the disclosure of the present invention also includes any novel feature or any novel combination of features disclosed herein either explicitly or implicitly or any generalization thereof, whether or not it relates to the same invention as presently claimed in any Claim and whether or not it mitigates any or all of the same technical problems as does the present invention.
Features which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. The Applicants hereby give notice that new Claims may be formulated to such features and/or combinations of such features during the prosecution of the present Application or of any further Application derived therefrom.
References to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” etc., may indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an exemplary embodiment,” do not necessarily refer to the same embodiment, although they may.
Headings provided herein are for convenience and are not to be taken as limiting the disclosure in any way.
The enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise.
The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.
Devices or system modules that are in at least general communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices or system modules that are in at least general communication with each other may communicate directly or indirectly through one or more intermediaries.
A description of an embodiment with several components in communication with each other does not imply that all such components are required. On the contrary a variety of optional components are described to illustrate the wide variety of possible embodiments of the present invention.
As is well known to those skilled in the art many careful considerations and compromises typically must be made when designing for the optimal manufacture of a commercial implementation any system, and in particular, the embodiments of the present invention. A commercial implementation in accordance with the spirit and teachings of the present invention may configured according to the needs of the particular application, whereby any aspect(s), feature(s), function(s), result(s), component(s), approach(es), or step(s) of the teachings related to any described embodiment of the present invention may be suitably omitted, included, adapted, mixed and matched, or improved and/or optimized by those skilled in the art, using their average skills and known techniques, to achieve the desired implementation that addresses the needs of the particular application.
It is to be understood that any exact measurements/dimensions or particular construction materials indicated herein are solely provided as examples of suitable configurations and are not intended to be limiting in any way. Depending on the needs of the particular application, those skilled in the art will readily recognize, in light of the following teachings, a multiplicity of suitable alternative implementation details.
An embodiment of the present invention may describe a method or process for providing a reciprocating internal combustion engine (ICE) that may utilize an articulating structure within a confined combustion chamber. In some embodiments the use of an articulating geometrical structure may enable the structure to change in volume, size, shape and plane of movement. In one embodiment the plane of movement of the articulating structure at the termination of a stroke with 180 degrees of crankshaft or camshaft rotation may be substantially perpendicular to the original shape of the structure. The movement of the structure in this embodiment may capitalize on the apex of mechanical advantage of an attached crankshaft or camshaft. In some embodiments the movement of the articulating structure may be homeomorphic, meaning the change in shape of the structure may be a continuous deformation between two topological spaces whose inverse deformation is also continuous. Alternate embodiments may be configured with an articulating structure that does not follow a homeomorphic movement.
Referring to
Typically a flywheel is a rotating structural device that is used to store rotational energy. Camshafts, though initially designed as a method of creating reciprocating motion for valve actuation or other mechanical switching devices, may also store rotational energy and be used as a method of converting reciprocating motion to rotary motion in a manner similar to a crankshaft. Flywheels and other rotating structural devices as previously described, have a significant moment of inertia and thus resist changes in rotational speed. The amount of energy stored in a flywheel is proportional to the square of its rotational speed. Energy is transferred to a flywheel, camshaft, or crankshaft, by applying torque to it, thereby increasing its rotational speed, and hence its stored energy. Conversely, a flywheel, camshaft, or crankshaft, releases stored energy by applying torque to a mechanical load, thereby decreasing its rotational speed under certain conditions. This may enable a camshaft or crankshaft to be used to its fullest torque potential when used in an internal combustion engine, a compressor, a pump, a motor, an air motor, a wave and tide electrical generation device, a robotic movement device, etc. In some embodiments the change of shape of the structure may occur in less than one cycle or over multiple cycles. Those skilled in the art will readily recognize, in light of and in accordance with the teachings of the present invention, that a multiplicity of suitable geometrically changing, reciprocating configurations may be used to enable volumetric increases and decreases to occur in a confined chamber or chambers in a similar manner. For example, without limitation, articulating structures may be implemented in various different reciprocating shapes such as, but not limited to, rectangles that expand into circles or ovals, triangles that expand into diamonds or rectangles, etc. Other alternate embodiments may be implemented with more or fewer connecting rods. For example, without limitation, one such embodiment may comprise two connecting rods pivotally attached to four power plates, with two power plates on each rod. The free ends of the power plates on one connecting rod may be pivotally attached to the free ends of the power plates on the other connecting rod to create a square or rectangle shape. This shape may reciprocate from the rectangular shape to a narrow diamond shape to decrease the inner volume by moving the connecting rods toward each other and then may return to the original rectangular shape by moving the connecting rods away from each other to increase the inner volume.
In some embodiments a flywheel or one or more connecting rods may be in contact with a cam, a camshaft, or a crankshaft to convert the reciprocal motion into rotary motion. In the present embodiment, all four connecting rods 201, 202, 203, and 204 are shown protruding from housing 205 for illustration and balance. However, in some embodiment only one connecting rod may be needed to protrude from the housing to run a flywheel, cam, or crankshaft to convert reciprocating motion to rotary motion. Any remaining connecting rods may be used for a variety of other functions such as, but not limited to, as guides, for compression, for controlling evacuation, for combustion, to generate electrical power, for matter movement, etc. In some alternate applications, reciprocal motion may be the desired output, including, without limitation, in pumps, in a reciprocating saw, to open and close sliding valves, etc. In these embodiments one or more of the connecting rods may be attached directly to the element that is meant to move in a reciprocating motion. In some embodiments, reciprocating structure within the chamber may also be designed for combustion. Some embodiments may be an internal combustion engine or an external combustion engine, like a steam engine that has a boiler or a nuclear power station that drive turbines and then the pressurized steam is ported. Some embodiments may incorporate connecting rods that are part of the firing chamber, for increased compression ratios, for dieseling if desired. The geometry of the present invention may allow for multiple peripheries to be incorporated. In the present embodiment, housing 205 comprises exhaust ports 220 to allow for the release of spent combustion gases and four spark-plug holes 225 that are aligned with the compression areas inside housing 205. Spark plugs or other types of igniters may be placed in or near spark plug holes 225, which may provide a spark or flame to ignite the mixture in the compression areas for combustion. In some embodiments, hollow or tube type connecting rods may be used for porting exhaust gases or other matter. An air intake port 230 may be located on one or both sides of housing 205 if needed for providing oxygen to the fuel mixture to aid in combustion.
A multiplicity of suitable materials may be used for construction of the various parts of including, but not limited to, alloys of iron or aluminum, cast iron, forged steel, etc. Materials other than metals may also be used in construction; for example, without limitation, tungsten carbide or a similar composite material or ceramic may be well suited for applications operating at high temperatures because of the low thermal expansion properties held by many of these types of materials. Those skilled in the art will readily recognize, in light of and in accordance with the teachings of the present invention, that the housing design may vary in some embodiments depending on factors such as, but not limited to, the desired compression ratios, the size and shape of the articulating inner structure, ease of movement of the inner structure, fuel type, etc. Similarly, the size and shape of the connecting rods and power plates may also vary and may be designed for specific compression ratios, applications, power plate configurations, etc. For example, without limitation, square or round solid rod or hollow tubing may be used for the connecting rods, the thickness of the power plates may increase or decrease depending on the amount of pressure in the system, the edges of the power plates may be rounded for ease of movement, etc. The present embodiment illustrates four connecting rods to drive flywheel 215. In some embodiments, one connecting rod may be used to drive a crankshaft with or without a flywheel and the other connecting rods used for additional mechanical operations such as but not limited to, air, gas compression, evacuation, fluid pumping, electrical generation, etc. In addition, some embodiments of the present invention may employ, but not limited to, various different fuel types and delivery, cooling means, air intake means, lubrication types, exhaust porting or valving, compression release means, starting and ignition, etc. For example, without limitation, water may be used as a substitute for fuel for several cycles to create a motor fully or partially powered by steam, and it is believed that the combination of a fuel and steam engine may be highly efficient. Some embodiments may use a fuel lubricant combination.
Those skilled in the art will readily recognize, in light of and in accordance with the teachings of the present invention, that any of the foregoing steps may be suitably replaced, reordered, removed and additional steps may be inserted depending upon the needs of the particular application. Moreover, the prescribed method steps of the foregoing embodiments may be implemented using any physical and/or hardware system that those skilled in the art will readily know is suitable in light of the foregoing teachings. For any method steps described in the present application that can be carried out on a computing machine, a typical computer system can, when appropriately configured or designed, serve as a computer system in which those aspects of the invention may be embodied.
All the features disclosed in this specification, including any accompanying abstract and drawings, may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
It is noted that according to USA law 35 USC §112 (1), all claims must be supported by sufficient disclosure in the present patent specification, and any material known to those skilled in the art need not be explicitly disclosed. However, 35 USC §112 (6) requires that structures corresponding to functional limitations interpreted under 35 USC §112 (6) must be explicitly disclosed in the patent specification. Moreover, the USPTO's Examination policy of initially treating and searching prior art under the broadest interpretation of a “mean for” claim limitation implies that the broadest initial search on 112(6) functional limitation would have to be conducted to support a legally valid Examination on that USPTO policy for broadest interpretation of “mean for” claims. Accordingly, the USPTO will have discovered a multiplicity of prior art documents including disclosure of specific structures and elements which are suitable to act as corresponding structures to satisfy all functional limitations in the below claims that are interpreted under 35 USC §112 (6) when such corresponding structures are not explicitly disclosed in the foregoing patent specification. Therefore, for any invention element(s)/structure(s) corresponding to functional claim limitation(s), in the below claims interpreted under 35 USC §112 (6), which is/are not explicitly disclosed in the foregoing patent specification, yet do exist in the patent and/or non-patent documents found during the course of USPTO searching, Applicant(s) incorporate all such functionally corresponding structures and related enabling material herein by reference for the purpose of providing explicit structures that implement the functional means claimed. Applicant(s) request(s) that fact finders during any claims construction proceedings and/or examination of patent allowability properly identify and incorporate only the portions of each of these documents discovered during the broadest interpretation search of 35 USC §112 (6) limitation, which exist in at least one of the patent and/or non-patent documents found during the course of normal USPTO searching and or supplied to the USPTO during prosecution. Applicant(s) also incorporate by reference the bibliographic citation information to identify all such documents comprising functionally corresponding structures and related enabling material as listed in any PTO Form-892 or likewise any information disclosure statements (IDS) entered into the present patent application by the USPTO or Applicant(s) or any 3rd parties. Applicant(s) also reserve its right to later amend the present application to explicitly include citations to such documents and/or explicitly include the functionally corresponding structures which were incorporate by reference above.
Thus, for any invention element(s)/structure(s) corresponding to functional claim limitation(s), in the below claims, that are interpreted under 35 USC §112 (6), which is/are not explicitly disclosed in the foregoing patent specification, Applicant(s) have explicitly prescribed which documents and material to include the otherwise missing disclosure, and have prescribed exactly which portions of such patent and/or non-patent documents should be incorporated by such reference for the purpose of satisfying the disclosure requirements of 35 USC §112 (6). Applicant(s) note that all the identified documents above which are incorporated by reference to satisfy 35 USC §112 (6) necessarily have a filing and/or publication date prior to that of the instant application, and thus are valid prior documents to incorporated by reference in the instant application.
Having fully described at least one embodiment of the present invention, other equivalent or alternative methods of implementing an engine chamber comprising an articulating inner structure according to the present invention will be apparent to those skilled in the art. Various aspects of the invention have been described above by way of illustration, and the specific embodiments disclosed are not intended to limit the invention to the particular forms disclosed. The particular implementation of the engine chamber comprising an articulating inner structure may vary depending upon the particular context or application. By way of example, and not limitation, the engine chambers described in the foregoing were principally directed to implementations using the reciprocal motion or translated rotational motion as the end product; however, similar techniques may instead be applied to converting the motion into various different outputs; for example, without limitation, connecting the chamber to a turbine to produce electricity or for pumping applications, which implementations of the present invention are contemplated as within the scope of the present invention. The invention is thus to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the following claims. It is to be further understood that not all of the disclosed embodiments in the foregoing specification will necessarily satisfy or achieve each of the objects, advantages, or improvements described in the foregoing specification.
Claim elements and steps herein may have been numbered and/or lettered solely as an aid in readability and understanding. Any such numbering and lettering in itself is not intended to and should not be taken to indicate the ordering of elements and/or steps in the claims.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed.
The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.
Number | Name | Date | Kind |
---|---|---|---|
3614277 | Kobayashi | Oct 1971 | A |
4181481 | Jordan | Jan 1980 | A |
7178502 | Okulov | Feb 2007 | B2 |
7431007 | Kamath | Oct 2008 | B2 |
8904991 | Al-Hawaj | Dec 2014 | B2 |
20060065228 | Pelrine et al. | Mar 2006 | A1 |
20110297117 | Reisser | Dec 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20160069257 A1 | Mar 2016 | US |