N/A
The present disclosure relates to an apparatus and method for an excavator.
The present disclosure relates to automatic or semi-automatic controls in the use of excavators.
Operating an excavator requires skill and experience from the operator in order to properly perform functions such as excavating flat surfaces or grading a precise guide for trenches. Operators may benefit from machine-assisted control to maintain precision without surrendering full control.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description and accompanying drawings. This summary is not intended to identify key or essential features of the appended claims, nor is it intended to be used as an aid in determining the scope of the appended claims.
An excavator may comprise a frame, a ground-engaging mechanism coupled to the frame and configured to support the frame on a surface. The excavator may also include a boom, a first actuator, a dipper stick, a second actuator, an implement, a third actuator, at least one senor, and a control architecture. The boom may be pivotally coupled to the frame. The first actuator may interconnect the boom and the frame wherein the first actuator is operable to move the boom relative to the frame. The dipper stick may be pivotally coupled to the boom for rotational movement about a pivot axis. The second actuator may interconnect the dipper stick and the boom; and be operable to move the dipper stick about the pivot axis relative to the boom. The implement may be pivotally coupled to the dipper stick. The third actuator may interconnect the implement and the dipper stick wherein the third actuator is operable move the implement relative to the dipper stick. The sensor may sense one of a dipper stick position and a direction of movement of the boom, the dipper stick, and the implement. The control architecture may include a user input interface, a storage medium having control algorithm, and a controller configured to execute the control algorithm. The control algorithm may receive a target grade request, one or more of the user input interface and the storage medium; receive a dipper stick position relative to the pivot axis from the at least one sensor, wherein the dipper stick position is one of inside the pivot axis or outside the pivot axis; receive the direction of movement of the dipper stick relative to the pivot axis from the at least one sensor, wherein the direction of movement of the dipper stick is one of arming away from the pivot axis or arming toward of the pivot axis; and operate the first actuator in an automatic mode to automatically adjust a height of the pivot axis relative to the frame when the dipper stick position and the direction of movement of the dipper stick are within an automatic control region for automatically maintaining a target grade.
The operating mode of the first actuator in an automatic mode may include moving the boom upwards when i) the dipper stick is outside the pivot axis and ii) the dipper stick is arming in; moving the boom upwards when i) the dipper stick is inside the pivot axis and ii) the dipper stick is arming away; moving the boom downwards when i) the dipper stick is outside the pivot axis and ii) the dipper stick is arming away; and moving the boom downwards when i) the dipper stick is inside the pivot axis and ii) the dipper stick is arming in. The controller may also be configured to deactivate the automatic mode of the first actuator when the dipper stick position and the direction of movement of the dipper stick are outside the automatic control region.
The control architecture may be further configured to execute instructions to activate the third actuator in the automatic mode to automatically curl or dump the implement to adjust an angle the cutting edge of the implement engages the surface when the dipper stick position and the direction of movement of the dipper stick are within the automatic control region, the automatic mode maintaining the target grade. This may comprise dumping the implement when the dipper stick is arming in; and curling the implement when dipper stick is arming away. Arming in of the dipper stick comprises extension of the second actuator. Arming away of the dipper stick comprises retraction the second actuator. The controller may further deactivate the automatic mode of the third actuator when the dipper stick position and the direction of movement of the dipper stick are outside the automatic control region.
Maintaining a target grade is sourced from feedback from one or more a global positioning system and a positioning of the dipper stick relative to the frame.
The user input interface may comprise of a first joystick and a second joystick. The first joystick arming away the dipper stick when moved forward and arming in the dipper stick when moved backward. The second joystick curling the implement when moving the joystick to the left and dumping the implement when moving the joystick to the right.
The disclosure also comprises a method for controlling an excavator. The method comprises enabling an automatic mode based on user input with a switch from a user input interface; receiving a target grade request from one or more of the user input interface and a storage medium; receiving a dipper stick position relative to a pivot axis from at least one sensor, wherein the dipper stick position is one or more of inside the pivot axis and outside the pivot axis; receiving a direction of movement of a dipper stick relative to the pivot axis from the at least one sensor, wherein the direction of movement of the dipper stick one of arming away from the pivot axis or arming toward the pivot axis; and activating the first actuator in the automatic mode to automatically adjust a height of the pivot axis relative to a frame based on the dipper stick position and the direction of movement of the dipper stick automatically maintaining a target grade.
These and other features will become apparent from the following detailed description and accompanying drawings, wherein various features are shown and described by way of illustration. The present disclosure is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the present disclosure. Accordingly, the detailed description and accompanying drawings are to be regarded as illustrative in nature and not as restrictive or limiting.
The detailed description of the drawings refers to the accompanying figures in which:
The embodiments disclosed in the above drawings and the following detailed description are not intended to be exhaustive or to limit the disclosure to these embodiments. Rather, there are several variations and modifications which may be made without departing from the scope of the present disclosure.
As used herein, unless otherwise limited or modified, lists with elements that are separated by conjunctive terms (e.g., “and”) and that are also preceded by the phrase “one or more of” or “at least one of” indicate configurations or arrangements that potentially include individual elements of the list, or any combination thereof. For example, “at least one of A, B, and C” or “one or more of A, B, and C” indicates the possibilities of only A, only B, only C, or any combination of two or more of A, B, and C (e.g., A and B; B and C; A and C; or A, B, and C).
As used herein, the storage medium comprises electronic memory, nonvolatile random access memory, an optical storage device, a magnetic storage device, or another device for storing and accessing electronic data on any recordable, rewritable, or readable electronic, optical, or magnetic storage medium.
As used herein, the term “controller” is a computing device including a processor and a memory. The “controller” may be a single device or alternatively multiple devices. The controller may further refer to any hardware, software, firmware, electronic control component, processing logic, processing device, individually or in any combination, including without limitation: application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
As used herein, the location-determining receiver may comprise a Global Positioning System Receiver (GPS) or any satellite navigation receiver for providing: (1) position data, elevation data, attitude, roll, tilt yaw, motion data, acceleration data, velocity, or speed data for a vehicle or its components, such as the boom, dipper stick, and implement. For example, the location-determining receiver may comprise a satellite navigation receiver with a secondary receiver or transceiver for receiving a differential correction signal to correct errors or enhance the accuracy of position data from received satellite signals.
Now turning to
Maintenance of the target grade 205 may be sourced from feedback from one or more of a location determining receiver 135 and a positioning of the boom assembly 163 (or its components) relative to the frame 105.
Receiving a target grade request 205 from one or more of the user input interface 155 and a storage medium 125 may comprise an absolute value target grade request 250 where the user enters and establishes the target grade 205 to be established or alternatively a program mode 255 in which the user enters, programs, or establishes a guidance program in accordance with a predetermined sequence of inputs 260 from a storage medium 125. The predetermined sequence of inputs 260 may comprise of variable target grade requests corresponding to the desired topography outlined in program mode 255. The predetermined sequence of inputs 260 from the storage medium may be, for example, a series of target grade movements, the target grade within a specified location comprising one or more an x, y, and z direction. The target grade 205 may comprise one or more of maintaining a target height of the pivot axis 175, a target implement angle relative to the ground surface 115, or an absolute value acquired from a location-determining receiver 135. The target grade 205 may comprise one or more absolute elevations or real world elevations that (1) remain constant regardless of variation (e.g. natural variation) in the raw terrain (2) vary in accordance with a substantially linear grade, a substantially curved grade or a sloped planar surface according to a mathematical relationship. For example, a mild grade and even surface may be required when excavating trenches for pipelaying. In another example, a target grade may be required to create substantially sloped planar surfaces for directing precipitation runoff towards reservoirs. In surface mining, a consistent depth of surface removal is required.
Referring to
In a first embodiment, the operator controls movement of the second actuator 180 through the user input interface 155, and upon entering the automatic control region 265, the controller 130 automatically responds in moving the pivot axis 175 by actuating the first actuator 165 to maintain the target grade 205 derived from the user input interface 155 or the storage medium 125. That is, the operator moves the boom 160 and/or implement 185 within the automatic control region 265 in one or more of an x, y, and z direction. The top portion of the frame 105 may swivel relative to the ground-engaging mechanism about the z-axis, as well.
The controller 130 may be further configured to deactivate automatic mode 220 of the first actuator when the dipper stick position and the direction of movement of the dipper stick are outside the automatic control region.
Now turning to
Now turning to
Operation of the third actuator 190 in automatic mode 220 may comprise dumping 275 the implement 185 when the dipper stick 170 is arming in 245 and curling the implement 270 when the dipper stick 170 is arming away 240.
The controller may further be configured to deactivate automatic mode of the third actuator 190 when the dipper stick position 230 and the direction of movement 235 of the dipper stick 170 are outside the automatic control region 265.
Now turning to
The terminology used herein is for the purpose of describing particular embodiments or implementations and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the any use of the terms “has,” “have,” “having,” “include,” “includes,” “including,” “comprise,” “comprises,” “comprising,” or the like, in this specification, identifies the presence of stated features, integers, steps, operations, elements, and/or components, but does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The references “A” and “B” used with reference numerals herein are merely for clarification when describing multiple implementations of an apparatus.
One or more of the steps or operations in any of the methods, processes, or systems discussed herein may be omitted, repeated, or re-ordered and are within the scope of the present disclosure.
While the above describes example embodiments of the present disclosure, these descriptions should not be viewed in a restrictive or limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope of the appended claims.