The present invention relates to digital imaging systems and methods for analyzing a person's skin, and more particularly, to a system and method for performing quantitative analysis of skin color using digital images thereof.
Colorimeters and spectrophotometers have been used to measure the color of objects by performing “point” or “spot” measurements on small (e.g., 2-10 mm2) areas of the object. For example, U.S. Pat. No. 5,945,112 discloses a method for providing a cosmetics user with a customized facial foundation by analyzing small areas of the user's skin with a spectrophotometer/colorimeter to obtain coloration values in L*, a* and b* units. Spot measurements are appropriate for small objects and/or objects whose color does not vary across the surface thereof, but multiple colorimeter/spectrophotometer measurements would be required for measuring the color(s) of a large area of the skin, which may vary in color from point to point. Colorimeters and spectrophotometers are specialized instruments which typically require the application of the instrument to the surface of the skin.
Aside from instruments for ascertaining skin color, various imaging systems have been proposed that photographically capture images of a person for analysis of the skin, such as those systems disclosed in applicants' co-pending U.S. patent application Ser. No. 10/978,284 entitled “Apparatus for and Method of Taking and Viewing Images of the Skin” which was published as United States Patent Application Publication No. US 2005/0195316 A1 (“U.S. Publication No. 2005/0195316”) and application Ser. No. 11/169,813 entitled “Skin Imaging System with Probe”, which was published as United States Application Publication No. US 2006/0092315 A1 (“U.S. Publication No. 2006/0092315”), which are incorporated by reference herein. The foregoing applications disclose the use of digital photography to obtain skin images in red, green, blue (RGB) format; It should be understood that there are other acquired formats other than RGB, such as Raw or YC-tiff to which the present invention would be equally applicable.
RGB colorspace has limitations for analyzing images because the brightness of the pixels is not represented independently of color. RGB colorspace is non-linear and unit variations are not matched to human perception, such that changes of one unit in R, G, or B values are sometimes not perceptible to human vision. For these reasons, images in RGB colorspace, such as those obtained by RGB cameras, are not optimal in certain instances for performing quantitative analysis of skin color, e.g., as would be desirable in the formulation, selection and matching of cosmetics to the skin color of a cosmetics user or measuring skin color response or changes in skin color over time.
The problems and disadvantages associated with conventional apparatus and methods used in skin color analysis and related processes, such as cosmetic design and selection are overcome by the present invention, which converts the RGB colorspace pixel values defining an image of the user's skin into L*a*b* colorspace data to achieve an alternative quantification and characterization of skin color, which can be used for a variety of purposes. For example, embodiments of the present invention may be used to select cosmetics for an individual or design a color palette of cosmetics for a population of users. Embodiments of the invention may be used to ascertain skin condition and track changes in skin condition. Other aspects, features and advantages of the present invention will be apparent from the detailed description of the invention that follows.
Since the images recorded are in digital form, i.e., in numerical pixel intensity values, the images lend themselves to quantitative analysis, such as by computer 17. For example, instead of just noting that the cheek of a subject whose image is taken at time T1 is more or less red in color in an image of the person taken at time T2, as discerned by a skilled human observer, the values of the intensity of the red pixels in the specific area of the cheek at times T1 and T2 may be quantitatively compared. Digital image quantification can be used to discern average values for the skin in specified regions, e.g., by summing the values of pixels in the specific region of interest and then dividing by the number of pixels. In this manner, a whole area of skin, e.g., of the face, may be characterized quantitatively. Various other quantified analyses may be conducted, e.g., the imaged area of skin may be tested for standard deviation in pixel intensity.
Digital images composed of a plurality of pixel intensity values in the red, green, and blue (RGB) planes may be subjected to quantitative analysis to serve a variety of objectives. The present invention recognizes that the quantitative analysis of digital images of the skin can, in certain instances, be improved by first converting RGB image data to a L*a*b* format. In the L*a*b* colorspace, the L* component represents lightness or brightness (i.e., light to dark, or white to black), and is separate from and independent of the a* and b* color components. The a* component is a measure of the amount of redness and greenness in an image (i.e., a value on the red-green color continuum). The b* component is a measure of the amount of yellowness and blueness in an image (i.e., a value on the yellow-blue color continuum). The L*, a* and b* components of the L*a*b* colorspace are represented by a light-dark axis, a red-green axis and a blue-yellow axis, respectively, so as to form a three-dimensional space. The color measurement of any pixel, or group of pixels, in an image may thus be represented in terms of its L*, a* and b* coordinates in the L*a*b* colorspace.
The benefits of L*a*b* colorspace include its amenability to linear computations in analyzing pixel color values and to assess changes in color independently of changes in brightness. L*a*b* colorspace is also uniform and consistent with human vision perception (i.e., psychophotometric), so that a change in one unit of brightness or color is generally perceptible throughout the L*a*b* colorspace. The present invention recognizes the utility of converting images acquired in RGB colorspace such as from digital cameras, scanners, etc. into L*a*b* colorspace to make quantitative measurements of changes in color or lightness, which might be related to product efficacy or functioning, or more simply to follow the change in a subject's (skin) color over time.
The conversion of RGB image data to L*a*b* colorspace is well defined and known to one of normal skill in the art. Exemplary calculations for doing the conversion can be found in Charles Poynton, A Technical Introduction to Digital Video (J. Wiley & Sons) Chapter 7 “Color Science”.
The foregoing conversion from RGB to L*a*b* is preferably conducted in a computer, such as computer 17 of the imaging apparatus 10. In one implementation of the programmatic conversion, the digital, RGB image data 16 is expressed as a byte-type memory array that may be called “rgb.” A procedure for executing the conversion process in accordance with the above-referenced method is defined and may be called “RGBtoLAB,”. RGBtoLAB operates on the RGB image data 16 to return a new, floating-type memory array which may be called “lab.” The mathematical function would appear as: lab=RGBtoLAB(rgb).
Another example of using L*a*b* colorspace for analysis is the use of the L* channel data of an image obtained by illumination in white light (and/or using cross or parallel polarizing filters on the illuminating light and/or the camera.) to assess overall skin lightness/darkness. The L* channel image data can also be utilized to identify tiny, white areas in an image representing the response of clogged pores to blue fluorescence illumination. In addition to the identification of specific responsive color shades in digital images, the intensity of response is also a useful measure for assessing skin condition. Given a specific color shade of a pixel as specified by its associated coordinate on the a*, b* plane, the L* value of that pixel can be used to determine the intensity of the specific color of that pixel.
Since color shade may be defined in the L*a*b* colorspace independently of intensity, the measurement of the color shade of a person's skin may be ascertained from her/his digital image translated to L*a*b* coordinates, independent of illumination intensity. The color of the skin may be determined by sampling and/or by averaging the color shade of pixels corresponding to the face. Accordingly, an “average color” for the person may be determined by calculating it. Alternatively, the average color may be restricted to a specific region or regions of skin, e.g., the cheek, forehead, nose and chin. In either case, the color shade of the skin ascertained by image analysis can be utilized to compare it to the color shades of a palette 22 of available cosmetics, such as foundation, in a plurality of color shades 24. The cosmetic color shades 24 may be analyzed and quantified in terms of their color as expressed in L*a*b* colorspace. In this manner, the “average color” of the individual may be quantitatively compared to the available colors in the palette 22 and the closest individual shade 24 identified. In addition to color matching, the individuals' L*a*b* image data may be compared to the available colors in the palette 22 to lighten or darken the skin by a selected, controlled amount.
Further with respect to a cosmetic palette 22, the present invention may be utilized to ascertain the color shades 24 selected for and presented in the palette 24. More particularly, as shown at the bottom of
As noted above,
The present invention recognizes that converting images acquired from devices such as digital cameras, scanners, etc., that necessarily exist in RGB colorspace into L*a*b* colorspace, provides certain advantages. For example, (1) in L*a*b* colorspace, pixel brightness is translated to its own channel (L*) and thus does not confound color measurements, (2) computations involving pixel values in the L*a*b* colorspace channels are linear unlike RGB colorspace which is non-linear, (3) changes in colors can be assessed without influence (within reason) of changes in brightness (or illumination) on acquisition, (4) a one unit change in L*, a* or b* is known to be perceptible by humans whereas a 1 unit change in R, G or B value may or may not be perceptible depending upon whether the change is from 50 to 51 or 245 to 246 for example, (5) entire digital images, or sub-regions within, may be conveniently represented as an L*a*b* triple unlike chromameter measurements which are obtained from a small spot or point area only and require multiple measurements to be made to characterize larger areas. L*a*b* values representing digital images can be stored in a database and subjected to data mining techniques, e.g., (i) to select subjects from a population that have a characteristic or characteristics of interest; (ii) to monitor subjects from a population that have desired characteristics, (iii) to monitor subjects in clinical trials for deviations from norms, or (iv) to analyze the data from subject in clinical trials to select positive or negative (adverse) responders.
It should be understood that the embodiment described herein is merely exemplary, and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. For instance, while the present has been explained in terms of facial imaging, the present invention could also be used to image and analyze other parts of the body. While the invention has been explained in terms of converting RGB data to L*a*b*, other forms of acquired data, such as Raw or YC-tiff could be converted in accordance with the teachings of the present invention. All such variations and modifications are intended to be included within the scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/848,768 filed Oct. 2, 2006, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60848768 | Oct 2006 | US |