Apparatus and method for applying parallel flared elastics to disposable products and disposable products containing parallel flared elastics

Information

  • Patent Grant
  • 9908739
  • Patent Number
    9,908,739
  • Date Filed
    Tuesday, April 23, 2013
    11 years ago
  • Date Issued
    Tuesday, March 6, 2018
    6 years ago
Abstract
A series of elastic break brakes are provided throughout a travel path of elastics in a machine operation. Elastic strands thread through each individual brake mechanism, and if an elastic strand breaks downstream, a natural snap back of the elastic, which ordinarily travels through the system under tension, drives an immediately upstream cam mechanism back, and holds the elastic thread in place at the elastic break brake immediately upstream of the break as to minimize rethreading required downstream of the elastic break brake.
Description
BACKGROUND OF THE INVENTION

The invention relates to disposable garments, and more particularly, a pants-type diaper, which is equipped with elastic strips effectively encircling the leg-holes without traversing the crotch region and to a method for producing such diapers.


Disposable diapers of the children's training pant type, or of the adult incontinence type, are typically equipped with elastic strands, which encircle the leg-holes. These strands of elastic are typically captured with adhesive between two layers of non-woven materials. Various methods are used to position these elastic strands so that they produce the desired encircling effect.


In one method of manufacture, the diapers are produced in an orientation whereby product flow is in the form of a single continuous web and the direction of travel is at a right angle with respect to what would be described as the crotch line of the diaper, i.e., the normal direction of product flow is parallel to the waist as opposed to parallel to the crotch.


One method of creating the desired effect of encircling the leg holes of the pant with elastics is to interleave two swaths of elastic strands, each curving across the face of the traveling web, encircling about one half of the leg-hole areas and crossing the path of the other. As a pair, they create a boundary around each leg-hole cutout, which resembles a circle or ellipse. In practice, however, the lateral excursions of the elastic lay-down device are speed-limited. As the traveling web is moving at some speed in one direction, and as the elastic lay-down device has speed and acceleration limits in the cross-direction, there is a limit to the steepness of the oblique angle which it is possible to form between the two. The result of this limitation is usually seen in the form of apparent incompleteness in the formation of the leg-hole-encircling pattern, particularly at the crotch line, where the two swaths cross each other.


From the point on the web at which one leg-hole pattern has been completed to the point at which the next can be begun, the elastic laydown device must reposition itself to a favorable starting point. This period of repositioning occurs as the crotch region passes the laydown device. As a result, the elastic strands must also cross this region of the product, at which they may or may not be attached by means of adhesives to the carrier webs. Various means are used to control or limit the positional relationships of the elastic strands in this region. The two sets of strands may cross over each other, creating an “X” pattern, or, they may loop back over to their respective sides, creating an “O” at the center of the crotch region. Alternatively, they may be mechanically stopped and prevented from crossing each other, creating two sets of generally parallel lines at the crotch. The lay-down pattern used at the crotch will determine the final appearance of the product in this area.


The shirring effect created by elastic strands when laminated with any flexible fabric is well known. However, to have this shirring effect applied to the crotch of a pant-type garment can be undesirable. The elastics create a contractile force, which tends to distort the garment at this location, thereby reducing the garment's aesthetic appeal, effectiveness and comfort. Thus various methods of reducing or eliminating the effects of the elastic tension normally occurring at the crotch have been attempted. These methods include the elimination of the adhesive bond between the strands and the liner materials described in U.S. Pat. No. 5,745,922 as “unsecured space” as well as various methods of cutting the strands to eliminate their effects.


As mentioned, one method of eliminating the undesired effects of the elastic strands which cross the crotch region is to sever them. This method is described in U.S. Pat. No. 5,660,657. Unfortunately, such severing usually requires the introduction of a transversely extending cut, which can result in a loss of web tension in the severed part of the carrier web. This also creates an undesirable opening in the diaper backsheet. A proposed solution for this problem is taught in U.S. Pat. No. 5,707,470, wherein an ultrasonic device is used to sever the elastic members, while the carrier webs which encapsulate the elastics are left intact. See, also, U.S. Pat. No. 5,643,396. Another problem associated with such severing lies in the tendency of the unsecured severed ends of elastic to retract to some point beyond the limits of any adhesive pattern. Thus, the elastic strands are not controlled or anchored near the ends of the adhesion pattern and may snap back to further into the adhesive pattern. This results in an incomplete elastic pattern and poor product characteristics.


One method of compensating for the incompleteness of the encircling pattern entails insertion of an additional set of elastic strips, running parallel to the crotch line and transverse to the web path. See U.S. Pat. Nos. 5,634,917 and 5,660,657. Typical products of this type are provided with an outer laminate, which is formed of an inner liner material and an outer backsheet material, between which the leg-hole elastics are disposed.


Often, leg elastics or other types of continuous ribbons are applied to running webs in a sinusoidal pattern by a roll-fed web process. Roll-fed web processes typically use a constant infeed rate, which in the case of a sinusoidal ribbon application, can result in necking, or undesirable narrowing of the ribbon toward the inner and outer portions of the sine curve in the cross-machine direction. This is because the infeed rate of the ribbon web does not match with the velocity of the substrate it is being laid upon in the machine direction. Instead, the ribbon material is stretched somewhat at the extremities of the sine curve.


Roll-fed web processes typically use splicers and accumulators to assist in providing continuous webs during web processing operations. A first web is fed from a supply wheel (the expiring roll) into the manufacturing process. As the material from the expiring roll is depleted, it is necessary to splice the leading edge of a second web from a standby roll to the first web on the expiring roll in a manner that will not cause interruption of the web supply to a web consuming or utilizing device.


In a splicing system, a web accumulation dancer system may be employed, in which an accumulator collects a substantial length of the first web. By using an accumulator, the material being fed into the process can continue, yet the trailing end of the material can be stopped or slowed for a short time interval so that it can be spliced to leading edge of the new supply roll. The leading portion of the expiring roll remains supplied continuously to the web-utilizing device. The accumulator continues to feed the web utilization process while the expiring roll is stopped and the new web on a standby roll can be spliced to the end of the expiring roll. In this manner, the device has a constant web supply being paid out from the accumulator, while the stopped web material in the accumulator can be spliced to the standby roll. Examples of web accumulators include that disclosed in U.S. patent application Ser. No. 11/110,616, which is commonly owned by the assignee of the present application, and incorporated herein by reference.


Examples of curved elastic application are disclosed in U.S. Pat. No. 6,482,278, incorporated herein by reference. Other examples include U.S. Pat. Nos. 8,100,173 and 8,025,652.


During the use of elastics in manufacturing disposable products, a continuous web of elastic is often threaded through numerous pieces of machinery upstream of a deposition point and adhesion of the elastic to another running web, such as a nonwoven material. If for some reason an elastic strand breaks during machine operation, it is necessary to re-thread the elastic through all of the machinery both upstream and downstream of the break.


SUMMARY OF THE INVENTION

Provided are methods and an apparatus for applying parallel flared elastics to a substrate used to form a disposable product, and severing elastics contained in a laminate from a leg hole opening. Other novel laydown patterns of elastics are also disclosed.


A series of elastic break brakes are provided throughout a travel path of elastics in a machine operation. Elastic strands thread through each individual brake mechanism, and if an elastic strand breaks downstream, a natural snap back of the elastic, which ordinarily travels through the system under tension, drives an immediately upstream cam mechanism back, and holds the elastic thread in place at the elastic break brake immediately upstream of the break as to minimize rethreading required downstream of the elastic break brake.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a-1c, collectively, are perspective views showing a preferred embodiment of the invention in somewhat diagrammatic fashion;



FIG. 2 is a diagrammatic view of the equipment and process shown in FIGS. 1a-1c;



FIGS. 3a-3b are, collectively, a perspective view showing in somewhat diagrammatic fashion an alternative embodiment of the invention;



FIG. 4 is a diagrammatic view further illustrating the process and equipment shown in FIGS. 3a-3b;



FIG. 5 is a top plan view of a ribbon application sequence of the present invention;



FIG. 6 is a top view of an exemplary pair of swinging arms for applying elastic in a wave (or other) pattern on a running web;



FIG. 7 is a perspective view showing a preferred embodiment of the invention in somewhat diagrammatic fashion, used to create a pant-type diaper with waist band elastics and parallel flared elastics, with a portion of the curved elastics removed by a chip in a leg opening section of the pant-type diaper;



FIG. 8 is a plan view of a pant-type diaper with waist band elastics and curved elastics, with a portion of the curved elastics removed by a chip in a leg opening section of the pant-type diaper prior to bonding a front portion of the diaper with a rear (or back) portion of the diaper;



FIG. 9 is a plan view of a portion of a pant-type diaper showing a side seam bond between and front and a rear portion of the diaper, showing parallel flared elastics extending to a die cut leg cutout area, where the parallel flared elastics are removed;



FIGS. 10-12 are in-process top views of pant type diapers with varying applications of straight and curved elastics;



FIG. 13 is a perspective view showing in somewhat diagrammatic fashion an application of the elastic break brake invention, with a series of elastic break brakes applied throughout the travel path of introduced elastic webs;



FIG. 14 is a side view of elastic break brakes of the present invention, carrying an elastic strand between a rotating cam and a base;



FIG. 15 is a side view of a series of elastic break brakes of the present invention, carrying an elastic strand;



FIG. 16 is a side view of elastic break brakes of the present invention, carrying an elastic strand between a rotating cam and a base, with a break in the elastic strand upstream of a series of the elastic break brakes, the elastic break brake immediately upstream of the break rotating counterclockwise to cinch the elastic strand between the rotating cam and the base and holding the elastic strand such that only re-threading downstream of this elastic break brake is required;



FIG. 17 is a side view similar to FIG. 16, with a break in the elastic strand between two elastic break brakes, the elastic break brake immediately upstream of the break rotating counterclockwise to cinch the elastic strand between the rotating cam and the base and holding the elastic strand such that only re-threading downstream of the first elastic break brake is required;



FIGS. 18-23 are top views of pant type diapers with varying applications of straight and parallel flared elastics.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.


Referring first to FIGS. 1a, 1b and 1c, one of the preferred embodiments of the process of this invention and related apparatus are illustrated. The process utilizes two main carrier webs; a non-woven web 11 which forms an inner liner web, while web 12 forms an outwardly facing layer in the finished diaper. In this embodiment, non-woven web 11 is slit, at slitter station 15, by rotary knives 14 along three lines. One of these, line 16, is on approximately the centerline of web 11 and two additional lines 17 and 18 are parallel to and spaced a short distance from centerline 16. The effect is twofold, first, to separate web 11 into two halves, as also seen in FIG. 5b. One half, 19, will become the inside of the front of the diaper 50 and the second half, 20, will become the inside of the back of that garment. Second, two separate, relatively narrow strips 22 and 24 are formed which are subsequently used to cover and entrap portions of the leg-hole elastics 25 and 26. Strips 22 and 24 are separated physically by an angularly disposed spreader roll 23 and aligned laterally with their downstream target positions on the inner edges of webs 19 and 20.


This invention relates particularly to a variation in the way that leg elastics 25 and 26 (which can be ribbons) are applied. In particular, the infeed rate of leg elastics or ribbons 25 and 26 is sped up at the outer extremities of the sine curve in the machine direction so that the vertical component of the velocity of the ribbon placement is at or near the velocity of the substrate web 20 to which the ribbon is applied. This results in little to no tension upon the elastics or ribbons 25 and 26.


Adhesive patterns are applied to the liner webs 20 in target areas for the leg-hole elastics 26. A spray gun assembly 29 of a type known in the art is preferably used to apply the adhesive patterns. Two sets of leg-hole, elastic strands 26 are introduced through laydown guides 30, which reciprocate from side to side past each other. The strands 26 are glued to the web sections 20, their laydown patterns following a serpentine or sinusoidal path. Laydown guides 30 then apply the strands 26, which form leg-hole elastics as the web sections 20 are carried along the face of a drum or roll 32.


In a preferred embodiment of the present invention, the elastics 25 and 26 are laid down in a smooth repetitive oscillation, with a centerline along an line in the machine, and an amplitude in the cross-machine direction. In a preferred embodiment, the infeed velocity of the elastics is increased as the waveform reaches maximum amplitude, then decreases again until the laydown passes the centerline, increasing again until minimum amplitude. This variation decreases neckdown.


Elastic laydown guides 28 and 30 are provided with the ability to make side-to side excursions, and the infeed of elastic 25 and 26 is provided with the ability of variable infeed speed. Elastic laydown guides 28 and 30 can be provided with the ability to make side-to side excursions by an arm that generally travels side to side e.g., by a swinging motion, or slides side to side. The side-to-side excursions of the leg-hole elastic laydown guides 28 and 30 result in generally arcuate segments of elastic strands extending on each side of the web centerline. After the nonwoven strips 22 and 24 have been applied to cover and entrap those parts of the elastics 26 that run nearest to and parallel to the inner edges of the webs 20, a second pair of slitter knives 34 is used to trim away a portion of the narrow nonwoven strips 22, 24, along with that part of the inner liner webs 20 to which they are laminated. This also removes those portions of the elastic strands 26 which are contained within the laminations. The resultant trimmed scrap strips 36 are removed from the process for disposal elsewhere.


The effect of the last-described step is to remove the cut away portions of the elastic, eliminating its corresponding unwanted gathering effect from the crotch region of the garments 50. The remaining portions of the curved elastic strands create a gathering effect around the leg openings of the finished garments 50.


Subsequent to the combining and trimming of the inner webs 20 and the cover strips 22, 24, the combining drum 32 carries the webs to a nip with a second combining drum 38, where the web sections 20, with their respective curved elastic patterns exposed, are transferred to and laminated adhesively against the inside face of outer liner web 12. This process entraps the curved elastic patterns 26 between the inner liners 20 and outer web 12 thereby forming a composite web 39.


The composite web 39 is then provided with a pattern of adhesive in preparation to receive an absorbent insert or patch 46. The patch 46 is cut from a provided patch web 40 by a cooperation of a cutter 41 and an anvil surface on a vacuum roll 42 and rotated into position for transfer to the composite web 39 by a patch applicator 105. If the patch 46 is to be applied to the web 39, a determination explained more fully below, the patch applicator 105 forces the web 39 against the patch 46, thereby adhering the patch 46 to the web 39.


Leg-hole materials 48, if not previously removed, are cut at a cutting station 47, thereby removing the material 48 contained within an approximate perimeter defined by the curved pattern of the elastics 26 and defining one half of a leg opening (with the other half of a leg opening provided in an adjacent leg-hole opening). The running composite chassis web 39 is folded, before or after cutting out of the leg holes, longitudinally along its centerline, thereby generally aligning its front waist edge with its back waist edge. The regions 53 which are to become the side seams 54 of the garments 50 are then welded by a sealing device 49 either ultrasonically or by heat. Note that the leg holes are preferably cut out before this point, leaving only a narrow zone for welding. The weld pattern is preferably wide enough to extend into both the left side seam of one garment and the right side seam of the adjacent garment. The garments 50 are then separated by passing through a cut-off knife assembly 55, which severs the web along the transverse axis of the side seam weld 53.


As described above, the laydown guides 30 used to apply the leg-hole elastics 26 to the liner web 20 oscillate from side to side to apply the leg-hole elastic 26 to the liner web 20 in a generally wave-like pattern. It should be understood that due to the oscillating motion of the laydown guides 28 and 30, it is desirable to change the rate at which the leg-hole elastic 25 and 26 is introduced to the liner web 20. As shown in FIG. 5, the velocity of the leg-hole elastic 26 has both a vertical (machine direction) component Vy and a horizontal (cross-machine direction) component Vx. It is contemplated that the vertical component of the velocity of the leg-hole elastic 25 and 26 is equal to, and in the same direction as, the velocity of the liner web 20 on which the leg-hole elastic 26 is being applied.


The incoming ribbon has variable speed, with the incoming ribbon increasing in velocity as the incoming ribbon is deposited in the curved pattern from the centerline to the maximum amplitude (its greatest distance from the centerline in the cross-machine direction towards a first boundary of the web), decreasing as the incoming ribbon is deposited in the curved pattern from the maximum amplitude to the centerline, and increasing as the incoming ribbon is deposited in the curved pattern from the centerline to the minimum amplitude (its greatest distance from the centerline in the cross-machine direction towards the other boundary of the web).


In a preferred elastic laydown pattern such as shown in FIG. 5, two lanes of elastic 25 and 26 are laid down in separate lanes, with both minimum amplitudes in the same position in the machine direction.


At least one web accumulator (not shown) can be located upstream of, or before, the leg-hole elastic guides 30, as shown in FIG. 1a. The accumulator can take any form, such as a servo driven roller that speeds up and slows down, an alternate roller configuration, a rocking roller configuration, or any different means of accumulating the web, such as a miniature accumulator, or a device similar to a diaper cross-folder, or a tucker blade.


In this manner, the rate at which the leg-hole elastics 26 are being fed to the liner web 20 can be altered while the rate at which the leg-hole elastics 26 is fed to a rate adjustment apparatus 314 (not shown) remains the same.


It is further contemplated that the system may include a tension control device (not shown). The tension control device is preferably sized and configured to eliminate tension in the leg-hole elastic 26 prior to applying the leg-hole elastic 26 to the liner web 20. In this manner when the leg-hole elastic 26 is applied to the liner web 20, the leg-hole elastic will not become misshapen as it would if the leg-hole elastic 26 were under tension. The tension control device can takes the form of a web accumulator, or any form known in the art capable of performing such a function.


In this manner, the leg-hole elastic 26 is accumulated in the tension control device when the rate of application of the leg-hole elastics 26 to the liner web 20 is slowed as described above. It is contemplated that the above-described system will provide active tension control and feed approach to change the feed of the leg-hole elastics 26 to the liner web 20 so that the leg-hole elastic is not under tension when it is applied to the liner web 20. This will result in leg-hole elastics 26 that are applied to the liner web 20 in an undistorted manner.


Referring now to FIG. 6, a top view of an exemplary pair of swinging arms 90 for applying elastics 25 and 26 is shown. The swinging arms can be programmed or operated to apply the elastics in a wave pattern (see, e.g., FIG. 5) on a running web such as shown in FIG. 1.


It should be understood that the above-described arrangement may be used to apply any type of material to a moving web in a curved pattern. In the illustrated example, the material is leg-hole elastics 26 taking the form of elastic strands; however it is contemplated that the material could take the form of elastic tape. It is further contemplated that the material could take the form of non-elastic strands or non-elastic tape.


Referring now to FIG. 7, a perspective view showing a preferred embodiment of an alternative embodiment of the present invention is shown. This embodiment is used to create a pant-type diaper with waist band elastics and curved elastics, with a portion of the curved elastics removed by a chip in a leg opening section of the pant-type diaper.


In this embodiment, two or more series of leg band elastics 210 and 212 are laid down. Preferably waistband elastics 210 run parallel to one another, while another sequence of leg and waist elastics 212 are laid down in a curved pattern inboard of the waistband elastics 210. Preferably, the leg and waist elastics 212 are applied in a curved fashion. At what will become the leg hole opening of the diaper, the leg and waist elastics 212 are generally parallel, and each of the independent the leg and waist elastics 212 are then curved towards absorbent insert or patch 46, and increasingly separated in distance from one another the closer the leg and waist elastics 212 get to the absorbent insert or patch 46.


As described above, sliding laydown guides 30 can be used to apply the leg and waist elastics 212 to the liner web 20, the laydown guides oscillates from side to side to apply the leg and waist elastics 212 to the liner web 20 in a generally wave-like pattern. Alternatively, a swing arm or series of swing arms 90 such as shown in FIG. 6 can be used to apply the leg and waist elastics 212. The swing arms 28 and 30, or the sliding laydown guides 30 can be programmed to move in a predetermined fashion in order to lay down a straight line of elastics 26 in a machine direction by remaining in a constant position, or can lay down a patterned shape of elastics 26 by moving from side to side as desired.


Referring now to FIGS. 8 and 9, plan views of a pant-type diaper with parallel waist band elastics 210 and flared leg and waist elastics 212 is shown.


Similar to the configuration shown in FIG. 1b, leg-hole materials 48, if not previously removed, are cut at a cutting station 47 (FIG. 7), thereby removing the material 48 and forming a leg opening contour 216 on both the left and the right sides of the product. Referring particularly to FIG. 9, it can be seen that the leg and waist elastics 212 do not occupy what later will become seam 53, but instead pass through leg opening contours 216 for removal at cutting station 47 (FIG. 7).


Referring now to FIGS. 10-12, these figures show in-process top views of pant type diapers with varying applications of straight and curved elastics.


As shown in FIG. 10, in one embodiment, parallel waist elastics 210 are applied to both the front and the back, and a series of parallel leg and waist elastics 212 are provided on a front of the product, while curved leg and waist elastics 212 are provided on the rear of the product. The curved leg and waist elastics 212 of the rear of the product would cross a secondary leg contour 216 of the product, and those elastics would not be contained within the side seam bond 53.


Referring to FIG. 11, parallel waist elastics 210 are applied to both the front and the back, and a series of parallel leg and waist elastics 212 are provided on a front of the product, while curved leg and waist elastics 212 are provided on the rear of the product. The curved leg and waist elastics 212 of the rear of the product would cross a secondary leg contour 216 of the product, and those elastics would not be contained within the side seam bond 53. Similarly, a portion of the parallel leg and waist elastics 212 of the front of the product would enter a tertiary leg contour 216, and some of those parallel leg and waist elastics 212 would be severed during chip removal.


In the embodiment shown in FIG. 12, curved leg and waist elastics 220 are provided on the front of the product, and curved leg and waist elastics 212 which do not enter the side seams 53 are provided on the rear of the product. These and other elastic lay down variations, including following the leg cut in a tight group, a combination of a flared feature on the back (or front); and the opposing sides with elastics are tightly grouped together following a leg cut die and going through the leg cut die; or no elastics in those portions, are all contemplated.


Referring now to FIGS. 13-16 generally, a series of elastic break brakes 300 are provided throughout a travel path of elastics (such as elastic 26) in a machine operation. Elastic strands thread through each individual brake mechanism 300, and if an elastic strand breaks downstream, a natural snap back of the elastic, which ordinarily travels through the system under tension, drives an immediately upstream cam mechanism back, and holds the elastic thread in place at the elastic break brake 300 immediately upstream of the break as to minimize rethreading required downstream of the elastic break brake.


Referring generally to FIGS. 13-17, an elastic break brake 300 to allow downstream travel of an elastic thread during machine operation and to stop unwanted elastic travel is disclosed. A rotating weight 310 is carried by a pin 308 coupled to a base 306. A base elastic retaining surface 312 spaced apart from said rotating cam weight 310. The rotating cam weight 310 is rotatable by the force of elastic 26 traveling under tension between said rotating cam weight 310 and said base elastic retaining surface 312. The force of the traveling elastic 26 causes the cam weight 310 to be slightly rotated in a downstream machine direction allowing passage of said elastic 26 during machine operation. If a break in the elastic 26 occurs, the elastic goes limp and therefore the force of the traveling elastic 26 is no longer enough to hold the rotating cam weight 310 in its slightly downstream rotated position. Instead, the cam weight 310 rotates back upstream due to gravity and the absence of the force from elastic 26 traveling under tension. The elastic 26 is then trapped between the cam weight 310 and the elastic retaining surface 312. This prevents unwanted elastic 26 travel, and makes the task of re-threading the elastic 26 far shorter.


Referring now to FIG. 13, a perspective view of a representative elastic travel sequence is shown in somewhat diagrammatic fashion. A series of elastic break brakes 300 are provided throughout the travel path of introduced elastic webs, and through each elastic break brake 300, the continuous web of elastic is threaded.


Referring to FIG. 14, a side view of elastic break brakes 300 of the present invention are shown carrying an elastic strand 26. A securing mechanism(s) 304 holds the elastic break brakes 300 in place. The elastic is threaded between a rotating cam weight 310 and a base elastic retaining surface 312, which is very closely spaced apart from the rotating cam weight 310. The rotating cam weight 310 is carried by pin 308 coupled to a base back 306 generally depending from base 302.


During routine operation, the elastic 26 is traveling under tension, and at speed, sufficient to cause the cam weight 310 to be slightly rotated in the downstream (machine) direction. Elastic 26 is allowed to and capable of passing between the cam weight 310 and the base elastic retaining surface 312.


Referring now to FIG. 15, should a break in the elastic strand 26 occur upstream of a series of the elastic break brakes 300, the elastic break brake immediately upstream of the break in the elastic would, due to gravity or otherwise (e.g., a spring mechanism, or motor controlled) rotate counterclockwise to cinch the elastic strand 26 between the cam weight 310 and the base elastic retaining surface 312. By maintaining control of the elastic 26 just upstream of the break point of the elastic 26, only re-threading downstream of the activated elastic break brake 300 is required.


Similarly, as shown in FIG. 16, should a break in the elastic strand 26 occur between two elastic break brakes 300, the elastic break brake 300 immediately upstream of the break would due to gravity or otherwise (e.g., controlled) rotate counterclockwise to cinch the elastic strand 26 between the cam weight 310 and the base elastic retaining surface 312. By maintaining control of the elastic 26 just upstream of the break point of the elastic 26, only re-threading downstream (in the machine direction) of the activated elastic break brake 300 would be required.


Referring now to FIGS. 18-23, top views of pant type diapers with varying applications of straight and curved elastics are shown.


Referring to FIG. 18, a series of flared elastics 400 are provided on a front and a back of a pant type diaper. On the back side, a single straight elastic strand 402 is provided, which is crossed over by the flaring elastics 400 of the back side of the pant.


In FIG. 19, multiple straight elastic strands 402 are provided on the rear of the diaper, which are crossed over by the flaring elastics 400.


Referring to FIG. 20, another novel elastic laydown pattern is shown. In this embodiment, the distance between successive strands of the flared elastics 400 on the rear side decreases towards the center of the diaper. A similar embodiment is shown in FIG. 21, but the flaring elastics 400 on the rear stop well short of a centerline CL of the product and are discontinued across the crotch portion of the product.


Referring to FIGS. 22 and 23, the elastics 400 do not fan, but instead are parallel to one another generally along a leg cutout 216, and then run parallel to each other through the centerline CL of the product. This configuration is a flared configuration. In this arrangement, the elastics 400 run from near the disposable product side areas 410 (when worn about the waist of a user) and run parallel from there, toward the crotch portion of the diaper, and particularly toward the absorbent core 46 crossing the centerline CL. In this sense, the elastics 400 generally are running in a direction that is skew to the machine direction. Each of the elastics 400 eventually turns to the centerline CL and next runs in the machine direction for a segment. At the centerline. Throughout the elastic laydown sequence, elastics 400 will be parallel, but spaced apart based on the time the elastic departs from the generally parallel to the leg cutout 216 direction, to the machine direction. At the parallel to the leg cutout 216 direction, the plurality of elastic strands 400 are considered running in parallel skew to the machine direction, that is neither in the machine direction or the cross machine direction. Still running in parallel, the elastic 400 pattern is mirrored, and the elastics return the flare to a second side area 410 of the product, resulting in a parallel flared elastic pattern. Additionally, at least one of the front or back set of elastics 400 could run entirely curved and parallel along their traverse of the front or back panel.


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

Claims
  • 1. A disposable product comprising: at least one web of material comprising a front and a back portion of a disposable product, said front and back portions of said disposable product having side areas when worn about the waist of a user, said web of material including at least one leg cutout;a plurality of elastic strands coupled to at least one of said front and said back portions of said disposable product;said plurality of elastic strands defining an elastic pattern, said elastic pattern including a first region of each of the plurality of elastic strands running in parallel to one another and parallel to said at least one leg cutout, said elastic strands separated by a first distance and skew to a machine direction from at or near a first side area of said front or said back portion of said disposable product in a first region towards a crotch portion of said disposable product;a second region of each of the elastic strands running continuously away from said first region and wherein the plurality of elastic strands run parallel to one another, separated by a second distance and in said machine direction across a second, center region of said disposable product, wherein said second distance is larger than said first distance;a third region of said plurality of elastic strands running in parallel to one another and away from said crotch portion of said disposable product to a third region towards at or near a second side area of said front or said back portion of said disposable product.
RELATED APPLICATIONS

This application claims the benefit of pending provisional application Ser. Nos. 61/637,365 filed 24 Apr. 2012 and 61/645,867 filed 11 May 2012.

US Referenced Citations (630)
Number Name Date Kind
293353 Purvis Feb 1884 A
312257 Cotton et al. Feb 1885 A
410123 Stilwell Aug 1889 A
432742 Stanley Jul 1890 A
643821 Howlett Feb 1900 A
135145 Grupe Oct 1921 A
1393524 Grupe Oct 1921 A
1431315 Le Moine Oct 1922 A
1605842 Jones Nov 1926 A
1686595 Belluche Oct 1928 A
1957651 Joa May 1934 A
2009857 Potdevin Jul 1935 A
2054832 Potdevin Sep 1936 A
2117432 Linscott May 1938 A
2128746 Joa Aug 1938 A
2131808 Joa Oct 1938 A
2164408 Joa Jul 1939 A
2167179 Joa Jul 1939 A
2171741 Cohn et al. Sep 1939 A
2213431 Joa Sep 1940 A
2254290 Joa Sep 1941 A
2254291 Joa Sep 1941 A
2282477 Joa May 1942 A
2286096 Joa Sep 1942 A
2296931 Joa Sep 1942 A
2304571 Joa Dec 1942 A
2324930 Joa Jul 1943 A
2345937 Joa Sep 1944 A
2466240 Joa Sep 1949 A
2481929 Joa Sep 1949 A
2510229 Joa Jun 1950 A
2540844 Strauss Feb 1951 A
2584002 Elser et al. Jan 1952 A
2591359 Joa Apr 1952 A
2618816 Joa Nov 1952 A
2627859 Hargrave Feb 1953 A
2695025 Andrews Nov 1954 A
2702406 Reed Feb 1955 A
2721554 Joa Oct 1955 A
2730144 Joa Jan 1956 A
2772611 Heywood Dec 1956 A
2785609 Billeb Mar 1957 A
2788786 Dexter Apr 1957 A
2780253 Joa Sep 1957 A
2811905 Kennedy, Jr. Nov 1957 A
2828745 Deutz Apr 1958 A
2839059 Joa Jun 1958 A
2842169 Joa Jul 1958 A
2851934 Heywood Sep 1958 A
2875724 Joa Mar 1959 A
2890700 Lonberg-Holm Jun 1959 A
2913862 Sabee Nov 1959 A
2939646 Stone Jun 1960 A
2939461 Joa Sep 1960 A
2960143 Joa Nov 1960 A
2990081 De Neui et al. Jun 1961 A
2991739 Joa Jul 1961 A
3016207 Comstock, III Jan 1962 A
3016582 Joa Jan 1962 A
3017795 Joa Jan 1962 A
3020687 Joa Feb 1962 A
3021135 Joa Feb 1962 A
3024957 Pinto Mar 1962 A
3053427 Wasserman Sep 1962 A
3054516 Joa Sep 1962 A
3069982 Heywood et al. Dec 1962 A
3075684 Rothmann Jan 1963 A
3086253 Joa Apr 1963 A
3087689 Heim Apr 1963 A
3089494 Schwartz May 1963 A
3091408 Schoeneman May 1963 A
3114994 Joa Dec 1963 A
3122293 Joa Feb 1964 A
3128206 Dungler Apr 1964 A
3203419 Joa Aug 1965 A
3230955 Joa Jan 1966 A
3268954 Joa Aug 1966 A
3289254 Joa Dec 1966 A
3291131 Joa Dec 1966 A
3301114 Joa Jan 1967 A
3318608 Smrekar May 1967 A
3322589 Joa May 1967 A
3336847 Durat Aug 1967 A
3342184 Joa Sep 1967 A
3356092 Joa Dec 1967 A
3360103 Joa Dec 1967 A
3391777 Joa Jul 1968 A
3454442 Heller, Jr. Jul 1969 A
3463413 Smith Aug 1969 A
3470848 Dreher Oct 1969 A
3484275 Lewicki, Jr. Dec 1969 A
3502322 Cran Mar 1970 A
3521639 Joa Jul 1970 A
3526563 Schott, Jr. Sep 1970 A
3527123 Dovey Sep 1970 A
3538551 Joa Nov 1970 A
3540641 Besnyo Nov 1970 A
3575170 Clark Apr 1971 A
3607578 Berg et al. Sep 1971 A
3635462 Joa Jan 1972 A
3656741 Macke et al. Apr 1972 A
3666611 Joa May 1972 A
3673021 Joa Jun 1972 A
3685818 Burger et al. Aug 1972 A
3728191 Wierzba et al. Apr 1973 A
3751224 Wackerle Aug 1973 A
3758102 Munn et al. Sep 1973 A
3762542 Grimes Oct 1973 A
3772120 Radzins Nov 1973 A
3776798 Milano Dec 1973 A
3796360 Alexeff Mar 1974 A
3811987 Wilkinson et al. May 1974 A
3816210 Aoko et al. Jun 1974 A
3847710 Blomqvist et al. Nov 1974 A
3854917 McKinney et al. Dec 1974 A
3883389 Schott, Jr. May 1975 A
3888400 Wiig Jun 1975 A
3901238 Geller et al. Aug 1975 A
3903768 Amberg et al. Sep 1975 A
3904147 Taitel et al. Sep 1975 A
3918968 Coast Nov 1975 A
3921481 Fleetwod Nov 1975 A
3941038 Bishop Mar 1976 A
3960646 Wiedamann Jun 1976 A
3988194 Babcock et al. Oct 1976 A
3991994 Farish Nov 1976 A
4002005 Mueller et al. Jan 1977 A
4003298 Schott, Jr. Jan 1977 A
4009626 Gressman Mar 1977 A
4009814 Singh Mar 1977 A
4009815 Ericson et al. Mar 1977 A
4053150 Lane Oct 1977 A
4056919 Hirsch Nov 1977 A
4081301 Buell Mar 1978 A
4090516 Schaar May 1978 A
4094319 Joa Jun 1978 A
4103595 Corse Aug 1978 A
4106974 Hirsch Aug 1978 A
4108584 Radzins et al. Aug 1978 A
4136535 Audas Jan 1979 A
4141193 Joa Feb 1979 A
4141509 Radzins Feb 1979 A
4142626 Bradley Mar 1979 A
4157934 Ryan et al. Jun 1979 A
4165666 Johnson et al. Aug 1979 A
4168776 Hoeboer Sep 1979 A
4171239 Hirsch et al. Oct 1979 A
4205679 Repke et al. Jun 1980 A
4208230 Magarian Jun 1980 A
4213356 Armitage Jul 1980 A
4215827 Roberts et al. Aug 1980 A
4220237 Mohn Sep 1980 A
4222533 Pongracz Sep 1980 A
4223822 Clitheroe Sep 1980 A
4231129 Winch Nov 1980 A
4234157 Hodgeman et al. Nov 1980 A
4236955 Prittie Dec 1980 A
4275510 George Jun 1981 A
4284454 Joa Aug 1981 A
4307800 Joa Dec 1981 A
4316756 Wilson Feb 1982 A
4325519 McLean Apr 1982 A
4342206 Rommel Aug 1982 A
4349140 Passafiume Sep 1982 A
4364787 Radzins Dec 1982 A
4374576 Ryan Feb 1983 A
4379008 Gross et al. Apr 1983 A
4394898 Campbell Jul 1983 A
4411721 Wishart Oct 1983 A
4426897 Littleton Jan 1984 A
4452597 Achelpohl Jun 1984 A
4479836 Dickover et al. Oct 1984 A
4492608 Hirsch et al. Jan 1985 A
4501098 Gregory Feb 1985 A
4508528 Hirsch et al. Apr 1985 A
4522853 Szonn et al. Jun 1985 A
4543152 Nozaka Sep 1985 A
4551191 Kock et al. Nov 1985 A
4578133 Oshefsky et al. Mar 1986 A
4586199 Birring May 1986 A
4589945 Polit May 1986 A
4603800 Focke et al. Aug 1986 A
4606964 Wideman Aug 1986 A
4608115 Schroth et al. Aug 1986 A
4610681 Strohbeen et al. Sep 1986 A
4610682 Kopp Sep 1986 A
4614076 Rathemacher Sep 1986 A
4619357 Radzins et al. Oct 1986 A
4625612 Oliver Dec 1986 A
4634482 Lammers Jan 1987 A
4641381 Heran et al. Feb 1987 A
4642150 Stemmler Feb 1987 A
4642839 Urban Feb 1987 A
4650530 Mahoney et al. Mar 1987 A
4663220 Wisneski et al. May 1987 A
4672705 Bors et al. Jun 1987 A
4675016 Meuli et al. Jun 1987 A
4675062 Instance Jun 1987 A
4675068 Lundmark Jun 1987 A
4686136 Homonoff et al. Aug 1987 A
4693056 Raszewski Sep 1987 A
4701239 Craig Oct 1987 A
4720415 Vander Wielen et al. Jan 1988 A
4723698 Schoonderbeek Feb 1988 A
4726874 Van Vliet Feb 1988 A
4726876 Tomsovic, Jr. Feb 1988 A
4743241 Igaue et al. May 1988 A
4751997 Hirsch Jun 1988 A
4753429 Irvine et al. Jun 1988 A
4756141 Hirsch et al. Jul 1988 A
4764325 Angstadt Aug 1988 A
4765780 Angstadt Aug 1988 A
4776920 Ryan Oct 1988 A
4777513 Nelson Oct 1988 A
4782647 Williams et al. Nov 1988 A
4785986 Daane et al. Nov 1988 A
4795451 Buckley Jan 1989 A
4795510 Wittrock et al. Jan 1989 A
4798353 Peugh Jan 1989 A
4801345 Dussaud et al. Jan 1989 A
4802570 Hirsch et al. Feb 1989 A
4826499 Ahr May 1989 A
4840609 Jones et al. Jun 1989 A
4845964 Bors et al. Jul 1989 A
4864802 D'Angelo Sep 1989 A
4880102 Indrebo Nov 1989 A
4888231 Angstadt Dec 1989 A
4892536 Des Marais et al. Jan 1990 A
4904440 Angstadt Feb 1990 A
4908175 Angstadt Mar 1990 A
4909019 Delacretaz et al. Mar 1990 A
4915767 Rajala et al. Apr 1990 A
4917746 Kons Apr 1990 A
4925520 Beaudoin et al. May 1990 A
4927322 Schweizer et al. May 1990 A
4927486 Fattal et al. May 1990 A
4927582 Bryson May 1990 A
4937887 Schreiner Jul 1990 A
4963072 Miley et al. Oct 1990 A
4987940 Straub et al. Jan 1991 A
4994010 Doderer-Winkler Feb 1991 A
5000806 Merkatoris et al. Mar 1991 A
5021111 Swenson Jun 1991 A
5025910 Lasure et al. Jun 1991 A
5029505 Holiday Jul 1991 A
5045039 Bay Sep 1991 A
5045135 Meissner et al. Sep 1991 A
5062597 Martin et al. Nov 1991 A
5064179 Martin Nov 1991 A
5064492 Friesch Nov 1991 A
5080741 Nomura et al. Jan 1992 A
5094658 Smithe et al. Mar 1992 A
5096532 Neuwirth et al. Mar 1992 A
5108017 Adamski, Jr. et al. Apr 1992 A
5109767 Nyfeler et al. May 1992 A
5110403 Ehlert May 1992 A
5127981 Straub et al. Jul 1992 A
5131525 Musschoot Jul 1992 A
5131901 Moll Jul 1992 A
5133511 Mack Jul 1992 A
5147487 Nomura et al. Sep 1992 A
5163594 Meyer Nov 1992 A
5171239 Igaue et al. Dec 1992 A
5176244 Radzins et al. Jan 1993 A
5183252 Wolber et al. Feb 1993 A
5188627 Igaue et al. Feb 1993 A
5190234 Ezekiel Mar 1993 A
5195684 Radzins Mar 1993 A
5203043 Riedel Apr 1993 A
5213645 Nomura et al. May 1993 A
5222422 Benner, Jr. et al. Jun 1993 A
5223069 Tokuno et al. Jun 1993 A
5226992 Morman Jul 1993 A
5246433 Hasse et al. Sep 1993 A
5252228 Stokes Oct 1993 A
5267933 Precoma Dec 1993 A
5273228 Yoshida Dec 1993 A
5275076 Greenwalt Jan 1994 A
5275676 Rooyakkers et al. Jan 1994 A
5308345 Herrin May 1994 A
5328438 Crowley Jul 1994 A
5334446 Quantrille et al. Aug 1994 A
5340424 Matsushita Aug 1994 A
5353909 Mukai Oct 1994 A
5368893 Sommer et al. Nov 1994 A
5389173 Merkotoris et al. Feb 1995 A
5393360 Bridges et al. Feb 1995 A
5407507 Ball Apr 1995 A
5407513 Hayden et al. Apr 1995 A
5410857 Utley May 1995 A
5415649 Watanabe et al. May 1995 A
5417132 Cox et al. May 1995 A
5421924 Ziegelhoffer et al. Jun 1995 A
5424025 Hanschen et al. Jun 1995 A
5429576 Doderer-Winkler Jul 1995 A
5435802 Kober Jul 1995 A
5435971 Dyckman Jul 1995 A
5449353 Watanabe et al. Sep 1995 A
5464401 Hasse et al. Nov 1995 A
5486253 Otruba Jan 1996 A
5494622 Heath et al. Feb 1996 A
5500075 Herrmann Mar 1996 A
5516392 Bridges et al. May 1996 A
5518566 Bridges et al. May 1996 A
5525175 Blenke et al. Jun 1996 A
5531850 Hermann Jul 1996 A
5540647 Weiermann et al. Jul 1996 A
5540796 Fries Jul 1996 A
5545275 Herrin et al. Aug 1996 A
5545285 Johnson Aug 1996 A
5552013 Ehlert et al. Sep 1996 A
5555786 Fuller Sep 1996 A
5556360 Kober et al. Sep 1996 A
5556504 Rajala et al. Sep 1996 A
5560793 Ruscher et al. Oct 1996 A
3288037 Burnett Nov 1996 A
5575187 Dieterlen Nov 1996 A
5586964 Chase Dec 1996 A
5602747 Rajala Feb 1997 A
5603794 Thomas Feb 1997 A
5624420 Bridges et al. Apr 1997 A
5624428 Sauer Apr 1997 A
5628738 Suekane May 1997 A
5634917 Fujioka et al. Jun 1997 A
5636500 Gould Jun 1997 A
5643165 Klekamp Jul 1997 A
5643396 Rajala et al. Jul 1997 A
5645543 Nomura et al. Jul 1997 A
5659229 Rajala Aug 1997 A
5660657 Rajala et al. Aug 1997 A
5660665 Jalonen Aug 1997 A
5683376 Kato et al. Nov 1997 A
5683531 Roessler et al. Nov 1997 A
5685873 Bruemmer Nov 1997 A
RE35687 Igaue et al. Dec 1997 E
5693165 Schmitz Dec 1997 A
5699653 Hartman et al. Dec 1997 A
5705013 Nease Jan 1998 A
5707470 Rajala et al. Jan 1998 A
5711832 Glaug et al. Jan 1998 A
5725518 Coates Mar 1998 A
5725714 Fujioka Mar 1998 A
5743994 Roessler et al. Apr 1998 A
5745922 Rajala et al. May 1998 A
5746869 Hayden et al. May 1998 A
5749989 Linman et al. May 1998 A
5759340 Boothe et al. Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5766411 Wilson Jun 1998 A
5779689 Pfeifer et al. Jul 1998 A
5788797 Herrin et al. Aug 1998 A
5817199 Brennecke et al. Oct 1998 A
5827259 Laux et al. Oct 1998 A
5829164 Kotischke Nov 1998 A
5836931 Toyoda et al. Nov 1998 A
5858012 Yamaki et al. Jan 1999 A
5865393 Kreft et al. Feb 1999 A
5868727 Barr et al. Feb 1999 A
5876027 Fukui et al. Mar 1999 A
5876792 Caldwell Mar 1999 A
5879500 Herrin et al. Mar 1999 A
5902431 Wilkinson et al. May 1999 A
5904675 Laux et al. May 1999 A
5932039 Popp et al. Aug 1999 A
5935367 Hollenbeck Aug 1999 A
5938193 Bluemle et al. Aug 1999 A
5938652 Sauer Aug 1999 A
5964390 Borresen et al. Oct 1999 A
5964970 Woolwine et al. Oct 1999 A
5971134 Trefz et al. Oct 1999 A
5983764 Hillebrand Nov 1999 A
6009781 McNeil Jan 2000 A
6022443 Rajala et al. Feb 2000 A
6036805 McNichols Mar 2000 A
6043836 Kerr et al. Mar 2000 A
6050517 Dobrescu et al. Apr 2000 A
6074110 Verlinden et al. Jun 2000 A
6076442 Arterburn et al. Jun 2000 A
6080909 Osterdahl et al. Jun 2000 A
6098249 Toney et al. Aug 2000 A
6123792 Samida et al. Sep 2000 A
6142048 Bradatsch et al. Nov 2000 A
6171432 Brisebois Jan 2001 B1
6179820 Fernfors Jan 2001 B1
6183576 Couillard et al. Feb 2001 B1
6193054 Henson et al. Feb 2001 B1
6193702 Spencer Feb 2001 B1
6195850 Melbye Mar 2001 B1
6210386 Inoue Apr 2001 B1
6212859 Bielik, Jr. et al. Apr 2001 B1
6214147 Mortellite et al. Apr 2001 B1
6250048 Linkiewicz Jun 2001 B1
6264639 Sauer Jul 2001 B1
6264784 Menard et al. Jul 2001 B1
6276421 Valenti et al. Aug 2001 B1
6276587 Borresen Aug 2001 B1
6280373 Lanvin Aug 2001 B1
6284081 Vogt et al. Sep 2001 B1
6287409 Stephany Sep 2001 B1
6305260 Truttmann et al. Oct 2001 B1
6306122 Narawa et al. Oct 2001 B1
6309336 Muessig et al. Oct 2001 B1
6312420 Sasaki et al. Nov 2001 B1
6314333 Rajala et al. Nov 2001 B1
6315022 Herrin et al. Nov 2001 B1
6319347 Rajala Nov 2001 B1
6336921 Kato et al. Jan 2002 B1
6336922 VanGompel et al. Jan 2002 B1
6336923 Fujioka et al. Jan 2002 B1
6358350 Glaug et al. Mar 2002 B1
6369291 Uchimoto et al. Apr 2002 B1
6375769 Quereshi et al. Apr 2002 B1
6391013 Suzuki et al. May 2002 B1
6416697 Venturino et al. Jul 2002 B1
6431038 Couturier Aug 2002 B2
6440246 Vogt et al. Aug 2002 B1
6443389 Palone Sep 2002 B1
6446795 Allen et al. Sep 2002 B1
6473669 Rajala et al. Oct 2002 B2
6475325 Parrish et al. Nov 2002 B1
6478786 Glaug et al. Nov 2002 B1
6482278 McCabe et al. Nov 2002 B1
6494244 Parrish et al. Dec 2002 B2
6514233 Glaug Feb 2003 B1
6521320 McCabe et al. Feb 2003 B2
6523595 Milner et al. Feb 2003 B1
6524423 Hilt et al. Feb 2003 B1
6533879 Quereshi et al. Mar 2003 B2
6540857 Coenen et al. Apr 2003 B1
6547909 Butterworth Apr 2003 B1
6550517 Hilt et al. Apr 2003 B1
6551228 Richards Apr 2003 B1
6551430 Glaug et al. Apr 2003 B1
6554815 Umebayashi Apr 2003 B1
6569275 Popp et al. May 2003 B1
6572520 Blumle Jun 2003 B2
6581517 Becker et al. Jun 2003 B1
6585841 Popp Jul 2003 B1
6589149 VanEperen et al. Jul 2003 B1
6596107 Stopher Jul 2003 B2
6596108 McCabe Jul 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605173 Glaug et al. Aug 2003 B2
6620276 Kuntze et al. Sep 2003 B1
6634269 Eckstein et al. Oct 2003 B2
6637583 Anderson Oct 2003 B1
6648122 Hirsch et al. Nov 2003 B1
6649010 Parrish et al. Nov 2003 B2
6656309 Parker et al. Dec 2003 B1
6659150 Perkins et al. Dec 2003 B1
6659991 Suckane Dec 2003 B2
6675552 Kunz et al. Jan 2004 B2
6682626 Mlinar et al. Jan 2004 B2
6684925 Nagate et al. Feb 2004 B2
6722494 Nakakado Apr 2004 B2
6730189 Franzmann May 2004 B1
6743324 Hargett et al. Jun 2004 B2
6750466 Song Jun 2004 B2
6758109 Nakakado Jul 2004 B2
6766817 da Silva Jul 2004 B2
6779426 Holliday Aug 2004 B1
6808582 Popp et al. Oct 2004 B2
D497991 Otsubo et al. Nov 2004 S
6811019 Christian et al. Nov 2004 B2
6811642 Ochi Nov 2004 B2
6814217 Blumenthal et al. Nov 2004 B2
6820671 Calvert Nov 2004 B2
6837840 Yonekawa et al. Jan 2005 B2
6840616 Summers Jan 2005 B2
6869494 Roessler et al. Mar 2005 B2
6875202 Kumasaka et al. Apr 2005 B2
6884310 Roessler et al. Apr 2005 B2
6893528 Middelstadt et al. May 2005 B2
6913718 Ducker Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6852186 Matsuda et al. Dec 2005 B1
6976521 Mlinar Dec 2005 B2
6978486 Zhou et al. Dec 2005 B2
7017321 Salvoni Mar 2006 B2
7017820 Brunner Mar 2006 B1
7045031 Popp et al. May 2006 B2
7047852 Franklin et al. May 2006 B2
7048725 Kling et al. May 2006 B2
7066586 da Silva Jun 2006 B2
7069970 Tomsovic et al. Jul 2006 B2
7077393 Ishida Jul 2006 B2
7130710 Shechtman Oct 2006 B2
7137971 Tanzer Nov 2006 B2
7172666 Groves et al. Feb 2007 B2
7175584 Maxton et al. Feb 2007 B2
7195684 Satoh Mar 2007 B2
7201345 Werner Apr 2007 B2
7214174 Allen et al. May 2007 B2
7214287 Akihisa May 2007 B2
7220335 Van Gompel et al. May 2007 B2
7247219 O'Dowd Jul 2007 B2
7252730 Hoffman et al. Aug 2007 B2
7264686 Thorson et al. Sep 2007 B2
7303708 Andrews et al. Dec 2007 B2
7326311 Krueger et al. Feb 2008 B2
7332459 Collins et al. Feb 2008 B2
7374627 McCabe May 2008 B2
7380213 Pesin May 2008 B2
7398870 McCabe Jul 2008 B2
7449084 Nakakado Nov 2008 B2
7452436 Andrews Nov 2008 B2
7533709 Meyer May 2009 B2
7537215 Beaudoin et al. May 2009 B2
7587966 Nakakado et al. Sep 2009 B2
7618513 Meyer Nov 2009 B2
7638014 Coose et al. Dec 2009 B2
7640962 Meyer et al. Jan 2010 B2
7695464 Fletcher et al. Apr 2010 B2
7703599 Meyer Apr 2010 B2
7708849 McCabe May 2010 B2
7770712 McCabe Aug 2010 B2
7771407 Umebayashi Aug 2010 B2
7780052 McCabe Aug 2010 B2
7793772 Schafer Sep 2010 B2
7811403 Andrews Oct 2010 B2
7861756 Jenquin et al. Jan 2011 B2
7871400 Sablone et al. Jan 2011 B2
7909956 Coose et al. Mar 2011 B2
7922983 Prokash et al. Apr 2011 B2
7935296 Koele et al. May 2011 B2
7975584 McCabe Jul 2011 B2
7987964 McCabe Aug 2011 B2
8007484 McCabe et al. Aug 2011 B2
8007623 Andrews Aug 2011 B2
8011493 Giuliani et al. Sep 2011 B2
8016972 Andrews et al. Sep 2011 B2
8025652 Hornung et al. Sep 2011 B2
8062459 Nakakado et al. Nov 2011 B2
8100173 Hornung et al. Jan 2012 B2
8172977 Andrews et al. May 2012 B2
8176573 Popp et al. May 2012 B2
8178035 Edvardsson et al. May 2012 B2
8182624 Handziak May 2012 B2
8182735 Edvardsson May 2012 B2
8182736 Edvardsson May 2012 B2
8293056 McCabe Oct 2012 B2
8381489 Freshwater et al. Feb 2013 B2
8398793 Andrews et al. Mar 2013 B2
8417374 Meyer et al. Apr 2013 B2
8460495 McCabe Jun 2013 B2
8512496 Makimura Aug 2013 B2
20010012813 Bluemle Aug 2001 A1
20010017181 Otruba et al. Aug 2001 A1
20010035332 Zeitler Nov 2001 A1
20010042591 Milner et al. Nov 2001 A1
20020040630 Piazza Apr 2002 A1
20020046802 Tachibana et al. Apr 2002 A1
20020059013 Rajala et al. May 2002 A1
20020096241 Instance Jul 2002 A1
20020125105 Nakakado Sep 2002 A1
20020162776 Hergeth Nov 2002 A1
20030000620 Herrin et al. Jan 2003 A1
20030015209 Gingras et al. Jan 2003 A1
20030115660 Hopkins Jan 2003 A1
20030051802 Hargett et al. Mar 2003 A1
20030052148 Rajala et al. Mar 2003 A1
20030066585 McCabe Apr 2003 A1
20030083638 Molee May 2003 A1
20030084984 Glaug et al. May 2003 A1
20030089447 Molee et al. May 2003 A1
20030121244 Abba Jul 2003 A1
20030121614 Tabor et al. Jul 2003 A1
20030135189 Umebayashi Jul 2003 A1
20030150551 Baker Aug 2003 A1
20040007328 Popp et al. Jan 2004 A1
20040016500 Tachibana et al. Jan 2004 A1
20040044325 Corneliusson Mar 2004 A1
20040073187 Karami Apr 2004 A1
20040087425 Tony et al. May 2004 A1
20040098791 Faulks May 2004 A1
20040112517 Groves et al. Jun 2004 A1
20040164482 Edinger Aug 2004 A1
20040167493 Jarpenberg et al. Aug 2004 A1
20040177737 Adami Sep 2004 A1
20040182213 Wagner et al. Sep 2004 A1
20040182497 Lowrey Sep 2004 A1
20040216830 Van Eperen Nov 2004 A1
20050000628 Norrby Jan 2005 A1
20050022476 Hamer Feb 2005 A1
20050056678 Nomura et al. Mar 2005 A1
20050077418 Werner et al. Apr 2005 A1
20050196538 Sommer et al. Sep 2005 A1
20050230056 Meyer et al. Oct 2005 A1
20050230449 Meyer et al. Oct 2005 A1
20050233881 Meyer Oct 2005 A1
20050234412 Andrews et al. Oct 2005 A1
20050257881 Coose et al. Nov 2005 A1
20050275148 Beaudoin et al. Dec 2005 A1
20060011030 Wagner et al. Jan 2006 A1
20060021300 Tada et al. Feb 2006 A1
20060137298 Oshita et al. Jun 2006 A1
20060201619 Andrews Sep 2006 A1
20060224137 McCabe et al. Oct 2006 A1
20060265867 Schaap Nov 2006 A1
20070074953 McCabe Apr 2007 A1
20070131343 Nordang Jun 2007 A1
20070131817 Fromm Jun 2007 A1
20080041206 Mergola et al. Feb 2008 A1
20080210067 Schlinz et al. Sep 2008 A1
20080223537 Wiedmann Sep 2008 A1
20080281286 Peterson Nov 2008 A1
20080287898 Guzman Reyes et al. Nov 2008 A1
20090020211 Andrews et al. Jan 2009 A1
20090126864 Tachibana et al. May 2009 A1
20090177176 Saito Jul 2009 A1
20090187157 Hornung Jul 2009 A1
20090198205 Malowaniec et al. Aug 2009 A1
20090212468 Edvardsson et al. Aug 2009 A1
20100078119 Yamamoto Apr 2010 A1
20100078120 Otsubo Apr 2010 A1
20100078127 Yamamoto Apr 2010 A1
20100193135 Eckstein et al. Aug 2010 A1
20100193138 Eckstein Aug 2010 A1
20100193155 Nakatani Aug 2010 A1
20100249737 Ito et al. Sep 2010 A1
20110106042 Sablone et al. May 2011 A1
20110144611 Saito Jun 2011 A1
20120079926 Long et al. Apr 2012 A1
20120123377 Back May 2012 A1
20120270715 Motegi et al. Oct 2012 A1
20120285306 Weibelt Nov 2012 A1
20120297605 Gouda Nov 2012 A1
20120310193 Ostertag Dec 2012 A1
20120312463 Ogasawara et al. Dec 2012 A1
20130184670 Back Jul 2013 A1
Foreign Referenced Citations (168)
Number Date Country
1007854 Nov 1995 BE
1146129 May 1983 CA
1153345 Sep 1983 CA
1190078 Jul 1985 CA
1210744 Sep 1986 CA
1212132 Sep 1986 CA
1236056 May 1988 CA
1249102 Jan 1989 CA
1292201 Nov 1991 CA
1307244 Sep 1992 CA
1308015 Sep 1992 CA
1310342 Nov 1992 CA
2023816 Mar 1994 CA
2330679 Sep 1999 CA
2404154 Oct 2001 CA
2541194 Oct 2006 CA
2559517 Apr 2007 CA
2337700 Aug 2008 CA
2407867 Jun 2010 CA
2699136 Oct 2010 CA
142627 Jun 2013 CA
2600432 Jul 2013 CA
101410082 Apr 2009 CN
202105105 Jan 2012 CN
60123502 Oct 2006 DE
60216550 Dec 2006 DE
102005035544 Feb 2007 DE
102005048868 Apr 2007 DE
102006047280 Apr 2007 DE
102007063209 Jun 2009 DE
0044206 Jan 1982 EP
0048011 Mar 1982 EP
0089106 Sep 1983 EP
0099732 Feb 1984 EP
0206208 Dec 1986 EP
0304140 Feb 1989 EP
0411287 Feb 1991 EP
0439897 Aug 1991 EP
0455231 Nov 1991 EP
510251 Oct 1992 EP
0589859 Mar 1994 EP
0676352 Apr 1995 EP
0652175 May 1995 EP
0811473 Dec 1997 EP
0901780 Mar 1999 EP
0990588 Apr 2000 EP
1132325 Sep 2001 EP
1035818 Apr 2002 EP
1199057 Apr 2002 EP
1366734 Dec 2003 EP
1393701 Mar 2004 EP
1415628 May 2004 EP
1433731 Jun 2004 EP
1571249 Sep 2005 EP
1619008 Jan 2006 EP
1621168 Feb 2006 EP
1707168 Oct 2006 EP
1726414 Nov 2006 EP
1302424 Dec 2006 EP
1801045 Jun 2007 EP
1941853 Jul 2008 EP
1961403 Aug 2008 EP
1994919 Nov 2008 EP
2180864 Nov 2008 EP
2211812 Nov 2008 EP
2011464 Jan 2009 EP
2103427 Sep 2009 EP
2233116 Sep 2010 EP
2238955 Oct 2010 EP
1175880 May 2012 EP
1868821 Jan 2013 EP
2036522 Mar 2013 EP
1272347 Apr 2013 EP
2032338 Aug 2013 EP
509706 Nov 1982 ES
520559 Dec 1983 ES
296211 Dec 1987 ES
200601373 Jul 2009 ES
2311349 Sep 2009 ES
2177355 Nov 1973 FR
2255961 Jul 1975 FR
1132325 Oct 2006 FR
2891811 Apr 2007 FR
191101501 Jan 1912 GB
439897 Dec 1935 GB
856389 Dec 1960 GB
941073 Nov 1963 GB
1096373 Dec 1967 GB
1126539 Sep 1968 GB
1346329 Feb 1974 GB
1412812 Nov 1975 GB
1467470 Mar 1977 GB
2045298 Oct 1980 GB
2115775 Sep 1983 GB
2288316 Oct 1995 GB
1374910 May 2010 IT
1374911 May 2010 IT
428364 Jan 1992 JP
542180 Feb 1993 JP
576566 Mar 1993 JP
626160 Feb 1994 JP
626161 Feb 1994 JP
6197925 Jul 1994 JP
0999006 Apr 1997 JP
9299398 Nov 1997 JP
10035621 Feb 1998 JP
10179635 Jul 1998 JP
10-277091 Oct 1998 JP
2001157690 Jun 2001 JP
2001258931 Sep 2001 JP
3254154 Feb 2002 JP
2005168832 Jun 2005 JP
2006014862 Jan 2006 JP
2006061681 Mar 2006 JP
2006204697 Aug 2006 JP
2006271421 Oct 2006 JP
3848559 Nov 2006 JP
2007061335 Mar 2007 JP
2007082890 Apr 2007 JP
2007105302 Apr 2007 JP
2007105303 Apr 2007 JP
3948870 Jul 2007 JP
2007195738 Aug 2007 JP
4055296 Mar 2008 JP
4056464 Mar 2008 JP
2008-161300 Jul 2008 JP
4156996 Sep 2008 JP
2008253289 Oct 2008 JP
4350791 Oct 2009 JP
4422387 Feb 2010 JP
20070003990 Jan 2007 KR
20070003992 Jan 2007 KR
100792197 Jan 2008 KR
0602047 May 2007 SE
0601003-7 Jun 2007 SE
0601145-6 Oct 2009 SE
WO08155618 Dec 1988 WO
WO9315248 Aug 1993 WO
WO9403301 Feb 1994 WO
WO9723398 Jul 1997 WO
WO9732552 Sep 1997 WO
WO9747265 Dec 1997 WO
WO9747810 Dec 1997 WO
WO9821134 May 1998 WO
WO9855298 Dec 1998 WO
WO9907319 Feb 1999 WO
WO9913813 Mar 1999 WO
WO9932385 Jul 1999 WO
WO9965437 Dec 1999 WO
WO0143682 Jun 2001 WO
WO0172237 Oct 2001 WO
WO2003031177 Apr 2003 WO
WO04007329 Jan 2004 WO
WO05075163 Aug 2005 WO
WO2006038946 Apr 2006 WO
WO07029115 Mar 2007 WO
WO07039800 Apr 2007 WO
WO2007113978 Oct 2007 WO
WO2007126347 Nov 2007 WO
WO08001209 Jan 2008 WO
WO2008015594 Feb 2008 WO
WO2008037281 Apr 2008 WO
WO2008123348 Oct 2008 WO
WO2009065497 Mar 2009 WO
WO2009065500 Mar 2009 WO
WO2010028786 Mar 2010 WO
2011093004 Aug 2011 WO
WO2011101773 Aug 2011 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Jun. 19, 2013 regarding EP Application No. 13165203.4, 5 pages.
Related Publications (1)
Number Date Country
20130281957 A1 Oct 2013 US
Provisional Applications (2)
Number Date Country
61645867 May 2012 US
61637365 Apr 2012 US