Embodiments disclosed herein are to an apparatus and method for atomizing a liquid and more particularly to an improvement to foam restrictors for wastewater treatment plants.
Wastewater treatment plants, such as those disclosed in U.S. Pat. Nos. 3,400,918, 4,505,813, 5,413,706, 5,484,524, and 5,599,452, as well as U.S. Pat. No. 6,318,705 illustrated in prior art
Disclosed embodiments provide foam restriction to a wastewater treatment plant with the additional benefit of removing undesirable dissolved gasses in the wastewater. A uniquely-shaped structure, hereinafter referred to as a “slinger,” lifts water and radially accelerates it over an increasing surface area to atomize or aerosolize the wastewater so as to increase the diffusion rate of dissolved gasses through increased surface area of the water droplets.
In other embodiments, the slinger atomizes or aerosolizes a liquid to assist in various other processes, including but not limited to, liquid vaporization, liquid coating, solution (e.g., brine) concentration, and heat exchange.
Wastewater treatment plants typically have excess ammonia, nitrogen, and some other gasses in solution in the aerobic treatment chamber. It is advantageous to remove as much of these gasses from this water as possible. By atomizing or aerosolizing a volume of water, and therefore increasing the surface area of the volume of water, the diffusion rate of dissolved gasses can be increased.
Embodiments of a slinger atomize or aerosolize a volume of water and further increase airflow in the treatment chamber. In this manner, droplets are exposed to an increased volume of atmospheric gasses. By simultaneously increasing the contact time and volume of atmospheric gasses, disclosed embodiments will, through the process of diffusion, strip the gasses that are desirable to have removed from the wastewater in the treatment plant. The exact amounts of gasses stripped by this method are based on a very complex matrix of variables, including, but not limited to, the exact geometry of the slinger itself.
As used herein, the term “trumpet-shaped” refers to an axially-symmetric shape similar to the bell of a trumpet in that it has a circular cross-section that flairs or expands increasingly along its length. The shape can be described mathematically by a conic section, such as a concave arc or curve, that is rotated about an axis.
As illustrated in
As illustrated in
In one exemplary embodiment, the slinger 30 is formed of PVC and has a 0.635 diameter axial hole for attachment to an aspirator shaft for wastewater treatment. The longitudinally-extending fins or strakes 34 are helical about the axis of the slinger at an angle of approximately 21 degrees relative to the axis, which is approximately optimized for the RPM used and viscosity of water. A bottom edge of the curve of body 32 is has a tangent at about 10-12 degrees relative to the axis of rotation and the top edge of the curve has a tangent at about 55 degrees relative to the axis. Wastewater is atomized by rotating the slinger 30 at 1750 RPM with a body 32 having dimensions of a 1.125 inch bottom diameter, 8 inch top diameter, and approximately 6 inch height. A formula approximately describing the curve is:
X
2
+Y
2+(3.723*X)+(4.872*Y)=11.5405 (1)
although this is not meant as a limitation and is provided as but one example only.
As this liquid is directed upward and outward along the increasing surface area of the slinger 30 by centrifugal force, it is accelerated and thinned sufficiently so that when the liquid reaches the edge 36 of the upper diameter of the slinger 30, it has sufficient velocity to depart from the surface of the slinger 30 as atomized or aerosolized droplets. The droplets provide an increased surface area/gas ratio. In a preferred embodiment, radial fan blades 38 are provided on the upper surface of the slinger 30 to increase the gas/droplet mixing. In the wastewater environment, the fan blades blow air radially to beat down foam and draw an increased volume of atmospheric gasses (i.e., air) into contact with the droplets. The surface area/air ratio is increased sufficiently to promote the diffusion of dissolved gasses in the droplets so as to remove undesirable dissolved gasses from (i.e., de-gas) the wastewater. The removed gases can then be vented from the system into the atmosphere.
As illustrated in
In addition to the previously-discussed improvements in de-gassing of wastewater and cooling of the drive motor, the use of the slinger unexpectedly improves the foam breaking capabilities to such an extent that aeration levels can be increased without causing problems due to increased foam production. The slinger can also allow energy savings by operating at more energy-efficient rotational speeds at which prior art foam arresting discs would be ineffective, and can be tuned to operate at the most energy-efficient rotational speed of the motor.
The slinger is not limited to use in wastewater foam restrictor applications. Embodiments have additional utility for: generally de-gassing water of carbon dioxide, hydrogen sulfide, excess nitrogen, ammonia, chlorine, and other dissolved gasses; vaporization of water for various uses, such as humidification or brine concentration; vaporization of other liquids; and stripping dissolved solids from solution via evaporative deposition through the process of diffusion, such as found in the reclamation of salts from brine solutions. In such applications, use of the radial fan blades is optional.
The principles of the disclosed embodiments can also be combined with existing technologies for: formation and delivery of metered amounts of various vaporized liquids; aerobic treatment of water in conjunction with ultraviolet light for the purpose of purification; fluid transfer and collections by condensation; evaporative cooling of other devices (cooling towers); and effecting a convective air current for use in HVAC applications.
In one embodiment, an apparatus for atomizing a liquid comprises a trumpet-shaped body having an axis, a bottom with a first diameter, a top with a second diameter larger than the first diameter, and a surface that extends between the bottom and the top and that increases smoothly in diameter at a rate greater than linear. A plurality of longitudinally-extending strakes are mounted adjacent the bottom of the body, so that when rotated about the axis at a sufficient speed, such as with a shaft through an axial hole in the body, the liquid is lifted, moved along the increasing surface area of the body and broken into droplets. Variations on this embodiment include those wherein the longitudinally-extending strakes are helical about the axis. The embodiment can also include a plurality of substantially-radial, and preferably helical, fan blades extending from the top of the body.
Another embodiment is to a foam arrestor for use in wastewater aeration that comprises a trumpet-shaped body comprising an axis, a bottom with a first diameter, a top with a second diameter larger than the first diameter, and a surface that extends between the bottom and the top and that increases smoothly in diameter at a rate greater than linear, a plurality of longitudinally-extending strakes adjacent the bottom of the body, and an axial hole dimensioned for mounting the body on an aspirator shaft. When rotated about the axis at a sufficient speed by an aspirator shaft, the wastewater is lifted, moved along the increasing surface area of the body and broken into droplets. Variations on this embodiment include those wherein the longitudinally-extending strakes are helical about the axis. The embodiment can also include a plurality of substantially-radial, and preferably helical, fan blades extending from the top of the body.
A further embodiment is to a method for atomizing a liquid. This method comprises positioning a trumpet-shaped body in a substantially vertical position with its lower end engaging the surface of the liquid, rotating the trumpet shaped body about a central axis, lifting liquid adjacent the surface with a plurality of longitudinally-extending strakes adjacent the bottom of the trumpet-shaped body, centrifugally forcing the liquid over an increasing surface area of the trumpet-shaped body to form a thin film of liquid, and breaking the thin film of liquid into droplets as they are radially thrown from an upper end of the trumpet shaped body. In a variation of this method, the droplets are blown radially outward with a plurality of substantially-radial, and preferably helical, fan blades extending from the top of the trumpet-shaped body. In another variation, the longitudinally-extending strakes are positioned helically about the axis.
In one embodiment of the method, the liquid is wastewater being aerated, and the process further comprises breaking up foam on the surface of the wastewater with a plurality of substantially-radial, and preferably helical, fan blades extending from the top of the trumpet-shaped body. The method can further comprise the removing of dissolved gasses from the wastewater by the circulation of atmospheric air to allow diffusion of the dissolved gasses from the droplets of wastewater.
An apparatus and method for atomizing a liquid, as well as the application of the apparatus and method to wastewater treatment, have been described. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the scope of the claims, and that the examples and embodiments described herein are in all respects illustrative and not restrictive. Those skilled in the art will recognize that other embodiments using the concepts described herein are also possible. Further, any reference to claim elements in the singular, such as using the articles “a,” “an,” or “the,” is not to be construed as limiting the element to the singular.
This application claims the benefit of Provisional Application Ser. No. 60/992,353, filed on Dec. 5, 2007, which hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60992353 | Dec 2007 | US |