The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
The present invention is related in general to equipment for servicing subterranean wells. Particularly, the invention relates to a cementing plug that is equipped to activate autofill float equipment.
During a cementing operation, the primary purpose of float equipment is to allow operators to pump cement slurries into the well that are heavier than the drilling fluid. After cement-slurry placement, check valves prevent the slurry from flowing from the annulus back inside the casing or liner string—a phenomenon often called “U-tubing.” Such float equipment may be float shoes or float collars
Autofill float equipment contains check valves similar to those employed in conventional float shoes and collars. However, the check valves are modified to remain in the open position to allow filling or even reverse circulating. The tubular string fills continuously as it is run downhole, saving rig time and reducing the pressure surges associated with conventional float equipment.
Autofill equipment must be activated, or converted, to begin functioning as a one-direction check or float valve. Conversion is generally performed after the tubular string is in place; however, it can also occur while running the tubular string to prevent overflow or to control the well. A thorough summary of conventional and autofill float equipment is presented in the following reference: Leugemors E, Metson J, Pessin J-L, Colvard R L, Krauss C D and Plante M: “Cementing Equipment and Casing Hardware,” in Nelson E B and Guillot D (eds.): Well Cementing—2nd Edition, Houston: Schlumberger (2006): 343-434.
A typical technique for activating autofill float equipment is depicted in
The prior art method described in the preceding paragraph is generally reliable when applied in near vertical wells, usually up to about 30° deviation. At higher deviations, up to and including horizontal wells, the rate at which the ball travels to the float collar may not be sufficiently high, or the ball may become stuck and never reach the float collar. Failure to activate the autofill collar would allow annular fluids to reenter the tubular string.
This problem has previously been mitigated by preinstalling the activation ball in a cage mechanism located above the autofill valve, where it remains until downward circulation begins. Circulation flow forces the ball into the autofill float collar, build up backpressure and activate the valve. The limiting factors are that there is less control of valve activation, and the ball may restrict fluid flow and the solids carried therein. Another option is to locate the ball in a mechanism further uphole; however, there is still no direct control of when the autofill-valve activation takes place.
It therefore remains desirable to provide improvements in the control and reliability of equipment for activating autofill equipment.
The present invention allows such improvements.
In an aspect, embodiments relate to a bottom cementing plug equipped to activate autofill float equipment. The plug contains an interior fluid-flow passage. An activation device is secured inside the flow passage, and is supported by a breakable fixing means that ruptures when fluid flow commences inside the interior passage. A pressure sensitive membrane is located at the top of the plug that isolates the interior passage during plug placement as the plug travels down a tubular string toward the autofill float collar. Suitable activation devices include, but are not limited to, balls, darts, canisters and bombs. The activation devices may also contain chemical substances that, upon exiting the bottom cementing plug, are released into the well.
In a further aspect, various embodiments aim at a method for activating autofill float equipment. The bottom cementing plug as described is launched into the tubular body and begins traveling down the tubular string toward the autofill float collar. As the plug moves through the tubular body, the breakable membrane at the top of the plug isolates the interior-flow passage and protects the activation device located therein from exposure to fluid flow. When the cementing plug lands on the float collar, continued pumping increases the differential pressure across the membrane, and the membrane ruptures. Wellbore-service fluid enters the interior-flow passage, and flow ruptures the fixing means supporting the activation device. The activation device then exits from the bottom of the cementing plug, enters the autofill float collar and becomes lodged in the orifice tube. Continued pumping increases pressure inside the float collar, causing shear pins to break and release the orifice tube. As the orifice tube is expelled from the float collar, flapper valves are exposed. The flapper valves close, thereafter restricting fluid flow to the direction leading to the annulus between the tubular string and the wellbore wall.
The method may further comprise the use of activation devices that contain a chemical substance. The chemical substance is released into the well after exiting the bottom cementing plug.
In yet a further aspect, embodiments aim at a method for cementing a subterranean well. Drilling fluid is circulated through the tubular body equipped with a float collar, passes through the float collar, exits the tubular string and continues to travel through the annulus between the tubular string and the wellbore wall. The bottom cementing plug described is launched into the tubular body and begins traveling down the tubular string toward the float collar. The cementing plug is then followed by a cement slurry. The cement slurry may be preceded behind the cementing plug by a spacer fluid, chemical wash or both. As the plug travels through the tubular body, the breakable membrane at the top of the plug isolates the interior-flow passage and protects the activation device located therein from exposure to fluid flow. When the cementing plug lands on the float collar, continued pumping increases the differential pressure across the membrane, and the membrane ruptures. The fluid comprising a cement slurry enters the interior-flow passage, and flow ruptures the fixing means supporting the activation device. The activation device then exits from the bottom of the cementing plug, enters the autofill float collar and becomes lodged in the orifice tube. Continued pumping increases pressure inside the float collar, causing shear pins to break and release the orifice tube. As the orifice tube is expelled from the float collar, flapper valves are exposed. The flapper valves close, thereafter restricting fluid flow to the direction leading to the annulus between the tubular string and the wellbore wall. The fluid comprising a cement slurry exits the float collar and the tubular string, and continues into the annulus between the tubular string and the wellbore wall. Once pumping stops, the activated float collar prevents the cement slurry from flowing back into the tubular string.
The method may further comprise the use of activation devices that contain a chemical substance. The chemical substance is released into the well after exiting the bottom cementing plug.
The apparatus and methods described above are particularly useful in deviated wells, generally at deviations above about 30° up to and including horizontal wells. The operator knows the location of the activation device at all times, thus improving activation of the autofill float collar at the correct moment.
The apparatus and methods described above may also allow operators to measure the exact internal volume of the tubular string. Knowing the pump efficiency and recording the wellbore-service volume pumped between the time at which the bottom plug is launched, and the time at which the bottom plug lands on the autofill float equipment, it is possible to calculate the exact internal volume of the tubular string. Landing of the bottom plug on the autofill float equipment will be indicated by a pressure surge arising from rupture of the membrane on the bottom plug and breakage of shear pins in the float equipment. Knowledge of the exact internal volume gives the operator the ability to more accurately displace subsequent plugs, ensuring their timely arrival at the correct location.
When cementing the annular space between tubulars and the walls of a subterranean wellbore, it is usually necessary to minimize or prevent the commingling of the drilling fluid, spacer fluid and cement slurry. Commingling may result in adverse rheological effects, dilution of the cement slurry and compromised zonal isolation. One way to minimize commingling involves using wiper plugs to separate fluids as they travel down the tubulars. Wiper plugs also have the advantage of cleaning the inner surface of the tubulars.
After cement-slurry placement it is also desirable to prevent the cement slurry from flowing back into the tubular string. Such flowback could result in poor coverage of productive subterranean zones, compromising zonal isolation. Autofill float equipment is commonly employed to prevent such occurrences. Autofill float shoes or collars, installed at the lower end of a tubular string, allow wellbore-service fluids to flow freely inside the tubular string, in either direction, as the tubular string is lowered into the well. During the cementing process, the autofill float equipment is activated—that is, converted from a two-direction flow system to a one-direction flow system. Fluid is allowed to exit the tubular string and enter the annulus, but cannot flow backward. The activation device is usually a weighted ball that travels through the tubular string towards the autofill float equipment. The ball enters the float equipment, becomes lodged therein and causes the activation of check valves. Other activation devices that can be used in this context include, but are not limited to, darts, canisters and bombs. The activation devices may also contain chemical substances that, upon exiting the bottom cementing plug, are released into the well.
The inventor is disclosing a new apparatus for conveying the activation device to the autofill float equipment, a method by which the new apparatus is employed to effect the activation of autofill float equipment and a method by which the new apparatus is employed during a primary cementing treatment.
As mentioned herein, embodiments relate to a bottom cementing plug equipped to activate autofill float equipment. The plug contains an interior fluid-flow passage. An activation device is secured inside the flow passage, and is supported by a breakable fixing means that ruptures when fluid-flow commences inside the interior passage. A pressure sensitive membrane is located at the top of the plug that isolates the interior passage during plug placement as the plug travels down a tubular string toward the autofill float collar.
Further embodiments aim at a method for activating autofill float equipment. The bottom cementing plug described is launched normally and begins traveling down the tubular string toward the autofill float collar. As the plug travels through the tubular body, the breakable membrane at the top of the plug isolates the interior-flow passage and protects the activation device located therein from exposure to fluid flow. When the cementing plug lands on the float collar, continued pumping increases the differential pressure across the membrane, and the membrane ruptures. Wellbore-service fluid enters the interior-flow passage, and flow ruptures the fixing means supporting the activation device. The activation device then exits from the bottom of the cementing plug, enters the autofill float collar and becomes lodged in the orifice tube. Continued pumping increases pressure inside the float collar, causing shear pins to break and release the orifice tube. As the orifice tube is expelled from the float collar, flapper valves are exposed. The flapper valves close, thereafter restricting fluid flow to the direction leading to the annulus between the tubular string and the wellbore wall. A detailed description of the disclosed method is given in the following paragraph.
The method by which the new bottom cementing plug is applied to activate autofill float equipment is depicted in
The method described may further comprise the use of activation devices that contain a chemical substance. The chemical substance is released into the well after exiting the bottom cementing plug.
In yet a further aspect, embodiments aim at methods for cementing a subterranean well. Drilling fluid is circulated through the tubular body equipped with a float collar, passes through the float collar, exits the tubular string and continues to travel through the annulus between the tubular string and the wellbore wall. The bottom cementing plug is launched into the tubular body and begins traveling down the tubular string toward the float collar. The cementing plug is then followed by a cement slurry. The cement slurry may be preceded behind the cementing plug by a spacer fluid, chemical wash or both. As the plug travels through the tubular body, the breakable membrane at the top of the plug isolates the interior-flow passage and protects the activation device located therein from exposure to fluid flow. When the cementing plug lands on the float collar, continued pumping increases the differential pressure across the membrane, and the membrane ruptures. The fluid comprising a cement slurry enters the interior-flow passage, and flow ruptures the fixing means supporting the activation device. The activation device then exits from the bottom of the cementing plug, enters the autofill float collar and becomes lodged in the orifice tube. Continued pumping increases pressure inside the float collar, causing shear pins to break and release the orifice tube. As the orifice tube is expelled from the float collar, flapper valves are exposed. The flapper valves close, thereafter restricting fluid flow to the direction leading to the annulus between the tubular string and the wellbore wall. The fluid comprising a cement slurry exits the float collar and the tubular string, and continues into the annulus between the tubular string and the wellbore wall. Once pumping stops, the activated float collar prevents the cement slurry from flowing back into the tubular string.
The method described may further comprise the use of activation devices that contain a chemical substance. The chemical substance is released into the well after exiting the bottom cementing plug.
The apparatus and methods described above are particularly useful in deviated wells, generally at deviations above about 30° up to and including horizontal wells. The operator knows the location of the activation device at all times, thus improving activation of the autofill float collar at the correct moment.
The apparatus and methods described above may also allow operators to measure the exact internal volume of the tubular string. Knowing the pump efficiency and recording the wellbore-service volume pumped between the time at which the bottom plug is launched, and the time at which the bottom plug lands on the autofill float equipment, it is possible to calculate the exact internal volume of the tubular string. Landing of the bottom plug on the autofill float equipment will be indicated by a pressure surge arising from rupture of the membrane on the bottom plug and breakage of shear pins in the float equipment. Knowledge of the exact internal volume gives the operator the ability to more accurately displace subsequent plugs, ensuring their timely arrival at the correct location.
The preceding description has been presented with reference to presently preferred embodiments of the invention. Persons skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the described structures and methods of operation can be practiced without meaningfully departing from the principle, and scope of this invention. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
Number | Date | Country | Kind |
---|---|---|---|
09290634 | Jul 2010 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3730267 | Scott | May 1973 | A |
3759281 | Falcuta | Sep 1973 | A |
3995692 | Seitz | Dec 1976 | A |
4532995 | Kaufman | Aug 1985 | A |
4872510 | Lehr et al. | Oct 1989 | A |
4953622 | Lehr et al. | Sep 1990 | A |
5829523 | North | Nov 1998 | A |
5890538 | Beirute et al. | Apr 1999 | A |
6390200 | Allamon et al. | May 2002 | B1 |
6491103 | Allamon et al. | Dec 2002 | B2 |
6497291 | Szarka | Dec 2002 | B1 |
6679336 | Musselwhite et al. | Jan 2004 | B2 |
6684957 | Allamon | Feb 2004 | B2 |
6712145 | Allamon | Mar 2004 | B2 |
6715541 | Pedersen et al. | Apr 2004 | B2 |
6725917 | Metcalfe | Apr 2004 | B2 |
6742591 | Metcalfe | Jun 2004 | B2 |
6752209 | Mondelli et al. | Jun 2004 | B2 |
6776228 | Pedersen et al. | Aug 2004 | B2 |
6802372 | Budde | Oct 2004 | B2 |
6848511 | Jones et al. | Feb 2005 | B1 |
7143831 | Budde | Dec 2006 | B2 |
7182135 | Szarka | Feb 2007 | B2 |
7357181 | Webb et al. | Apr 2008 | B2 |
7484559 | Vert et al. | Feb 2009 | B2 |
7503398 | LoGiudice et al. | Mar 2009 | B2 |
7527104 | Branch et al. | May 2009 | B2 |
7533728 | Winslow et al. | May 2009 | B2 |
20010045288 | Allamon | Nov 2001 | A1 |
20020033262 | Musselwhite et al. | Mar 2002 | A1 |
20030047314 | Allamon | Mar 2003 | A1 |
20030047315 | Allamon | Mar 2003 | A1 |
20030155114 | Pedersen | Aug 2003 | A1 |
20030155115 | Pedersen | Aug 2003 | A1 |
20030230405 | Allamon | Dec 2003 | A1 |
20040007354 | Allamon et al. | Jan 2004 | A1 |
20040020641 | Budde | Feb 2004 | A1 |
20040231836 | Budde | Nov 2004 | A1 |
20050103492 | Szarka | May 2005 | A1 |
20070095533 | Rogers et al. | May 2007 | A1 |
20080283244 | Barbee | Nov 2008 | A1 |
20080283251 | Barbee | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1380721 | Oct 2006 | EP |
2457285 | Aug 2009 | GB |
20060051321 | May 2006 | WO |
Entry |
---|
Leugemors E., Metson J., Colvard RL., Krauss CD and Plante M.: “Cementing Equipment and Casing Hardware”, in Nelson EB and Guillot D (eds): Well Cementing 2nd Edition, Houston: Schlumberger (2006): 343-434. |
Number | Date | Country | |
---|---|---|---|
20120024546 A1 | Feb 2012 | US |