The subject matter disclosed herein relates to appliances such as washing machines, and more particularly to cleaning cycles and the like.
With washers, especially front-load washers, an issue can exist with respect to the washing machine developing an odor over time. If, for instance, you wash a set of clothes, the tub (which holds the water for the basket and acts as a strainer for the clothes, and is generally a part of the machine that a user cannot see) and the back of the basket include dark and wet areas that can develop odors (for example, as a result of an accumulation of fats used in the detergent chemistry that stick to surfaces). Consequently, existing approaches to remedy this issue include the creation of basket cleaner/washer cleaner cycles. These are special cycles on front-load and top-load washers that use bleach or a solid chemical and a large amount of water, and the cycle generates mechanical action with the water to attempt to knock the accumulated material off the basket and the tub. Such approaches, however, are manual processes and involve significant and repeated action on the part of the user.
As described herein, the example embodiments of the present invention overcome one or more disadvantages known in the art.
One aspect of the present invention relates to a method of operating a washing machine. The washing machine includes one or more storage tanks and a user interface wherein the user interface enables a user to schedule an automatic recurring self-cleaning wash cycle. The method includes enabling the washing machine to automatically run the self-cleaning wash cycle according to schedule, wherein enabling the washing machine to automatically run the self-cleaning wash cycle comprises automatically dispensing an amount of self-cleaning additive from one of the one or more storage tanks into the cycle.
Another aspect relates to an apparatus comprising: a clothes basket rotatable about an axis; a motor coupled to the clothes basket; one or more storage tanks; one or more conveyance mechanisms between the each of the one or more storage tanks and a washing chamber; a user interface; a sensor; and a processor coupled to the motor, the one or more conveyance mechanisms, the user interface, and the sensor. The processor is operative to carry out one or more of the aforementioned methods.
One or more embodiments of the invention or elements thereof can be implemented in the form of a computer product including a tangible computer readable storage medium with computer useable program code for performing the method steps indicated.
These and other aspects and advantages of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. Moreover, the drawings are not necessarily drawn to scale and, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
In the drawings:
One or more embodiments of the invention provide a method and/or apparatus for automatic self-washing.
Reference should now be had to block diagram 100 of
The skilled artisan will be familiar with conventional washer systems and given the teachings herein will be enabled to make and use one or more embodiments of the invention; for example, by programming a microprocessor 116 with suitable software or firmware.
As used herein, a clothes washer refers to a system with a rotating clothes container. The axis of rotation of the clothes container may be vertical (e.g., top load), substantially horizontal (e.g., front load), or may even have an intermediate value. Typically, the system will include washing and spinning cycles, but one or more embodiments are applicable to systems with only a spin cycle; e.g., an extraction machine. As noted, the rotational speed (angular velocity) of the basket (clothes container) 112 and/or the motor 108 is a significant parameter. It may be specified in RPM, radians per second, and so on.
One or more embodiments can be implemented in the software or firmware that controls microprocessor 116 and drives the motor 108 for the washing machine.
As described herein, one or more embodiments of the invention include techniques and apparatuses for an automatic self-wash system.
One or more embodiments of the invention include using a smart dispense system, which utilizes one or more tanks that can hold multiple cycles' worth of washer additive (for example, detergent, fabric softener, etc.). Accordingly, when a user runs the machine, the user will only periodically (for example, every 3-6 months) need to put in more additive. Additionally, in one or more embodiments of the invention, the washing machine can dispense the additive based on characteristics such as, for example, how dirty the clothes are, the size of the load, etc. As such, one or more embodiments of the invention include storing liquid in a bulk quantity, and dispensing portions of the liquid based on certain characteristics of the load that the machine senses.
Further, one or more embodiments of the invention include using a different chemical (for example, bleach, or specific liquid chemicals for cleaning the washing machine), storing that chemical, and setting up the machine controls to make use of a calendar function (in conjunction with, for example, a user interface, LCD screen, touch-screen, etc. on the machine) to schedule an automatic recurring washer-clean cycle (for a specific time/day/recurrence to have the machine clean itself). Accordingly, a user has the benefit of being able to schedule the washer-clean cycles for times that do not coincide or interfere with normal wash times. Additionally, users do not have to manually set up and run each self-wash/self-clean cycle in connection with one or more embodiments of the invention.
Accordingly, as detailed herein, one or more embodiments of the invention include providing a washing machine with the capability to clean itself automatically, and on a repeated basis. The washer can include one or more internal tanks to store a washing machine cleaning agent (for example, a liquid agent). A pump can be used to convey the cleaning agent to the washing compartment. Also, as described herein, a control board is programmable by the user to set the date and time of cleaning. Thus, the washer can run a specialized machine cleaning cycle on a schedule, set up by the user, on a repeated basis.
Also, one or more embodiments of the invention include enabling the setting up of an automatic cycle that runs a washer self-cleaning cycle with the ability to automatically dispense the correct amount of cleaning agent from a storage tank inside the machine. Accordingly, an example embodiment of the invention can include a front-loading washing machine with a self cleaning cycle and bleach dispenser (or dispenser for other disinfecting cleaning agent) for automatic addition of bleach/disinfecting agent to the washing basin during the self cleaning cycle. A bleach dispenser (or disinfecting cleaning agent dispenser) will allow the controlled addition of bleach/disinfecting agent to the washing drum of a washing machine (for example, a front-loading washing machine) during a self-cleaning cycle.
In one or more embodiments of the invention, a separate and/or additional tank would be implemented in a washing machine to hold the additive/bleach/washer self-cleaning agent (separate and/or additional from the tank(s) holding detergent, fabric softener, etc.) as well as a separate and/or additional fluid conveyance system within the machine to move the fluid from the tank to the wash chamber.
Also, unlike existing systems that allow a user to schedule automatic clothes washing cycles, one or more embodiments of the invention enable a user to schedule and run separate wash cycles after a recurring self-wash cycle has been scheduled and/or programmed into the machine. In other words, in existing systems, if a user set a delayed start cycle, and if the user subsequently came back to the machine before that cycle began and decided that he or she did not want to wait to run that cycle but rather wanted to run a separate cycle right now, then the user would have to erase the settings previously input into the machine, make new settings and begin again. For example, if a user wanted to run a self-clean cycle on a washing machine, he or she could put into the machine a fresh cleaning tablet, let it sit in the basket, and possibly set the machine for a delayed start. However, in existing approaches, the thing that the user cannot do is run a different cycle. If the user wanted to run a clothes load, then he or she would have to erase the basket self-clean cycle that was previously set up, take the fresh tablet back out, put the clothes in and run the new cycle to clean the clothes, and then afterwards, re-set the system back up to go into the basket clean cycle. With one or more embodiments of the invention, however, a user can set up a recurring delay start (for self-cleaning) and still be able to run other cycles in between the self-cleaning cycles without affecting the cycle set up for the basket clean operation.
The conveyance system can include a set of hoses (such as, for example, 814) that contain the cleaning agent while moving from the storage tank to the wash chamber. Movement of the fluid is forced by use of a pump 816 mounted in the washing machine. As an example, a peristaltic pump can be used to provide a suction force to move the fluid out of the storage tank and then push the fluid into the wash chamber.
A suction hose or line can be assembled to the storage tank and sufficiently placed as to remove all of the fluid in the storage tank over the course of a multitude of wash cycles. The suction tube would then be connected through a peristaltic pump or other type of pump. The fluid line would then leave the pump and be connected to a port on the wash chamber allowing the fluid to enter the wash chamber and be mixed with the wash water (for example, from water inlet 812). The pump would be in electrical communication with the controller of the washing machine.
In addition, the storage tank can be equipped with a liquid level sensor 818 in communication with the controller that would indicate when the fluid level was low. This would serve to warn the user of the washing machine that additional cleaning agent would need to be placed into the fluid storage tank.
The user interface of one or more embodiments can depend on how calendar functionality is arranged. User interfaces in some embodiments can include touch-screens, while others can include knobs and/or buttons on the side of a screen/display. In one or more embodiments of the invention, a user can scroll through the options on the interface (for example, either by swiping finger across touch-screen or turning a knob to scroll through options) to select a self-clean cycle, which can bring up a separate screen to set-up, for example, frequency, timing, etc. of the cycle. This can, for example, bring up a calendar on the screen/display, or bring up a day and/or recurrence options and/or time of day selection. The user can make his or her selections, and those recurrence selections can be locked in by the system software. By way of example, one or more embodiments of the invention, in implementing an automatic recurring self-wash/clean cycle, can include three selection screens: a main cycle selection screen, an options screen for that cycle, and a screen for setting up the specific details of the chosen option.
Also,
One advantage that may be realized in the practice of some embodiments of the described systems and techniques is the ability to store more than one cycle's worth of a washer additive in the system. Another advantage that may be realized in the practice of some embodiments of the described systems and techniques is enabling a user to automatically set up a calendar with which at some frequency, determined by the user, the machine with automatically clean itself. Yet another advantage that may be realized in the practice of one or more embodiments of the invention include cost savings for consumers in the ability to use bleach as a more accessible, lower cost alternative to costly existing odor eliminating products.
Reference should now be had to the flow chart of
Step 1106 includes enabling the washing machine to automatically run the self-cleaning wash cycle according to schedule, wherein enabling the washing machine to automatically run the self-cleaning wash cycle comprises automatically dispensing an amount of self-cleaning additive (for example, bleach) from one of the one or more storage tanks into the cycle. In one or more embodiments of the invention, the amount of self-cleaning additive dispensed from one of the one or more storage tanks into the cycle can be based on one or more characteristics of the cycle (for example, dirtiness of the wash chamber, etc.).
Also, enabling the washing machine to automatically run the self-cleaning wash cycle according to schedule can include, at a scheduled time, automatically adjusting the user interface to self-cleaning wash cycle and beginning the cycle. One or more embodiments of the invention can include saving an automatic recurring self-cleaning wash cycle schedule entry in the user interface.
The techniques depicted in
Furthermore, given the discussion thus far, it will be appreciated that, in general terms, an example apparatus, according to still another aspect of the invention, includes a clothes basket 112 rotatable about an axis 28; a motor 108 coupled to the clothes basket; one or more storage tanks (e.g., tanks 806, 808, 810 or alternative); one or more conveyance mechanisms (e.g., 812, 814, 816, 818) between the each of the one or more storage tanks and a washing chamber; a user interface (e.g., 902 or alternative); a sensor 114; and a processor (e.g., microprocessor 116 or alternative) coupled to the motor, the one or more conveyance mechanisms, the user interface and the sensor. The processor is operative to control the motor, conveyance mechanism(s) and user interface to implement one or more techniques as described herein. The axis 28 can have any orientation; in some cases, such as
In one or more embodiments of the invention, the user interface can include a touch-screen, and/or a combination of one or more knobs, one or more buttons and a display. Additionally, one or more embodiments of the invention can include a liquid level sensor incorporated in the one or more storage tanks, wherein the status of the liquid level sensor is displayed on the user interface.
Aspects of the invention (for example, microprocessor 116 or other computer system to carry out design methodologies) can employ hardware and/or hardware and software aspects. Software includes but is not limited to firmware, resident software, microcode, etc.
As is known in the art, part or all of one or more aspects of the methods and apparatus discussed herein may be distributed as an article of manufacture that itself comprises a tangible computer readable recordable storage medium having computer readable code means embodied thereon. The computer readable program code means is operable, in conjunction with a computer system or microprocessor, to carry out all or some of the steps to perform the methods or create the apparatuses discussed herein. A computer-usable medium may, in general, be a recordable medium (e.g., floppy disks, hard drives, compact disks, EEPROMs, or memory cards) or may be a transmission medium (e.g., a network comprising fiber-optics, the world-wide web, cables, or a wireless channel using time-division multiple access, code-division multiple access, or other radio-frequency channel). Any medium known or developed that can store information suitable for use with a computer system may be used. The computer-readable code means is any mechanism for allowing a computer (e.g., processor 116) to read instructions and data, such as magnetic variations on a magnetic media or height variations on the surface of a compact disk. The medium can be distributed on multiple physical devices (or over multiple networks). As used herein, a tangible computer-readable recordable storage medium is intended to encompass a recordable medium, examples of which are set forth above, but is not intended to encompass a transmission medium or disembodied signal. Processor 116 may include and/or be coupled to a suitable memory.
The computer system can contain a memory that will configure associated processors to implement the methods, steps, and functions disclosed herein. The memories could be distributed or local and the processors could be distributed or singular. The memories could be implemented as an electrical, magnetic or optical memory, or any combination of these or other types of storage devices. Moreover, the term “memory” should be construed broadly enough to encompass any information able to be read from or written to an address in the addressable space accessed by an associated processor. With this definition, information on a network is still within a memory because the associated processor can retrieve the information from the network.
Accordingly, it will be appreciated that one or more embodiments of the present invention can include a computer program comprising computer program code means adapted to perform one or all of the steps of any methods or claims set forth herein when such program is run on a computer, and that such program may be embodied on a computer readable medium. Further, one or more embodiments of the present invention can include a computer comprising code adapted to cause the computer to carry out one or more steps of methods or claims set forth herein, together with one or more apparatus elements or features as depicted and described herein.
It will be understood that processors or computers employed in some aspects may or may not include a display, keyboard, or other input/output components.
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to example embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. Moreover, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Furthermore, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.