The invention relates to carry out multiplexed bioassay with hundreds or thousands of digital magnetic barcode microbeads for proteins, nucleic acids, and molecular diagnostics; and more particularly an optical image decoding algorithm and method to rapidly and simultaneously analyze the barcodes of beads in a small microwell, such as a microplate. The digital magnetic bead is a non-spherical, non-traditional latex microsphere allowing a high density optical pattern to be imaged and identified accurately.
As current research in genomics and proteomics require multiplexed data, there is a need for technologies that can rapidly screen a large number of targets, such as nucleic acids and proteins, in a very small volume of samples. Microarray, DNA chips, and protein chips, with the ability to screen thousands or millions of targets on a planar platform, require a large volume of sample to cover the large surface. The typical surface area is 1 cm×1 cm or on a microslide. Distributing a small volume of liquid samples over a relatively large chip surface often encounters the disadvantages of slow diffusion of molecules and non-uniform mixing or distribution over the chip surface. These are the reasons microarray assays require a very long reaction time. Furthermore, a microarray chip, once it is printed and fabricated, is impossible to add one more test into a multiplexed assay.
Micro bead technology potentially overcomes many of the problems of microarray technology and provides flexibility of library content and amount of beads or bead type in an analysis. Due to its small volume (in the range of picoliter per bead), thousands of beads can be incubated with a very small amount of sample. A number of encoding strategies have been demonstrated include particles with spectrally distinguishable fluorophore, fluorescent semiconductor quantum dots, and metallic rods with either bar coded color (absorption) stripes or black and white strips. Both fluorescence and barcode color strip beads are identified by optical detection in reflective or emissive configuration. The difficulties of reflection configuration are (1) the optical reflection yield is low, especially when the beads are in micrometer scale, (2) the light collection efficiency is poor, and (3) for fluorescence-based encoded beads, the fluorescence bands are very broad and overlapped, thus limit the potential code number. Another drawback of fluorescence-based bead is that most bead-based assay rely on fluorescence readout, thus creating more fluorescence spectral or intensity interference. In the case of multi-metal (Au, Pt, Ni, Ag, etc) color micro rods, the encoding scheme suffers from the difficulty of manufacturing and the number of colors, based on different metal materials, is limited.
U.S. Pat. No. 6,773,886 issued on Aug. 10, 2004, entire contents of which are incorporated herein by reference, discloses a form of bar coding comprising 30-300 nm diameters by 400-4000 nm multilayer multi metal rods. These rods are constructed by electrodeposition into an alumina mold; thereafter the alumina is removed leaving these small multilayer objects behind. The system can have up to 12 zones encoded, in up to 7 different metals, where the metals have different reflectivity and thus appear lighter or darker in an optical microscope depending on the metal type whereas assay readout is by fluorescence from the target, and the identity of the probe is from the light dark pattern of the barcodes.
U.S. Pat. No. 6,630,307 issued on Oct. 7, 2003, entire contents of which are incorporated herein by reference, discloses semiconductor nano-crystals acting as a barcode, wherein each semiconductor nano-crystal produces a distinct emissions spectrum. These characteristic emissions can be observed as colors, if in the visible region of the spectrum, or may be decoded to provide information about the particular wavelength at which the discrete transition is observed.
U.S. Pat. No. 6,734,420 issued on May 11, 2004, entire contents of which are incorporated herein by reference, discloses an identification system comprising a plurality of identifiable elements associated with labels, the labels including markers for generating wavelength/intensity spectra in response to excitation energy, and an analyzer for identifying the elements from the wavelength/intensity spectra of the associated labels.
U.S. Pat. No. 6,350,620 issued on Feb. 26, 2002, discloses a method of producing a micro carrier by placing a bead between a nickel plate on which the barcode has been electroformed and a second plate, and compressing the barcode onto the surface of the bead to form a microcake-like particle with a barcode.
U.S. Pub. No. US2005/0003556 A1, entire contents of which are incorporated herein by reference, discloses an identification system using optical graphics, for example, bar codes or dot matrix bar codes and color signals based on color information signal for producing the affinity reaction probe beads. The color pattern is decoded in optical reflection mode.
U.S. Pub. No. US2005/0244955. entire contents of which are incorporated herein by reference, discloses a micro-pallet which includes a small flat surface designed for single adherent cells to plate, a cell plating region designed to protect the cells, and shaping designed to enable or improve flow-through operation. The micro-pallet is preferably patterned in a readily identifiable manner and sized to accommodate a single cell to which it is comparable in size.
Magnetic beads are used widely in high throughput automated operation. The magnetic beads, are paramagnetic, that is, they have magnetic property when placed within a magnetic field, but retain no residual magnetism when removed from the magnetic field. This allows magnetic collection of microbeads and resuspension of the beads when the magnetic field is removed. Collection and resuspension of the digital magnetic beads can be repeated easily and rapidly any number of times. The common robotic automation is simply putting a 96-well, 384-well or 1536-well microplate on a magnetic stand facilitated with magnetic pins to activate the magnetic field. This enables washing of unbound molecules from the beads, changing buffer solution, or removing any contaminant in the solution. For example, in the case of DNA or RNA assay, the unbound or non-specific nucleotides can be removed after hybridization. While in the case of protein assay, the unbound or non-specific antibodies or antigens can be removed after the antibody-antigen reaction. Extensive washing often required during molecular biology applications to be conducted swiftly, efficiently, and with minimal difficulty. While magnetic beads are widely used in the bioassays, no magnetic beads with high density barcode are available.
Applicant's prior PCT Patent Application No. PCT/US08/08529 discloses a digitally encoded magnetic micro bead that provides high optical contrast and high signal-to-noise for reliable decoding, and also provides magnetic property for high-throughput automated washing in the microplate format. Such application also discloses a decoding method including a data process that is relatively simple, robust, rapid and accurate. The present invention further improves on the disclosed beads, method and processes.
The present disclosure is particularly useful to efficiently analyze a plurality of microbeads, each having an indicia representing a digital code, wherein the image obtained by the imaging device include the plurality of beads, including the indicia on each bead, and wherein the decoding system is configured to analyze the image to recognize and isolate the plurality of beads, and determining the digital code represented by the indicia provided on each bead. By recognizing and isolating each bead from each other and the background in the overall image of the plurality of beads, the digital code represented on each bead can be determined.
In one aspect, a disclosed embodiment is directed to an image processing method for decoding digitally coded beads used in bioassays, which conduct imaging of the beads in their steady or static state. A plurality of beads can be distributed on a planar surface (e.g., a glass microslide), and imaged simultaneously in two dimension with an imaging device (e.g., a wide viewing image camera), thereby allowing a plurality of beads to be decoded to improve detection throughput. The digital encoding may be observable by imaging based on emission, reflection and/or transmission of light with respect to the beads.
In another aspect of the present disclosure, the digital coding of the beads comprises a bar code pattern. The bar code pattern with a series of narrow and wide bands provides an unambiguous signal and differentiation for O's and l's. In one embodiment, the position of the slits on the pallet will determine which of the bits is the least significant (LSB) and most significant bit (MSB). The LSB will be placed closer to the edge of the pallet to distinguish it from the MSB at the other, longer end.
In another embodiment, the bars in the barcode are left aligned for effective barcode decoding. This will help in the improved algorithm design for barcode decoding. The barcode is divided in to sets of bar and space combination. The barcode digits ‘1’ or ‘0’ are computed using the ratio of bar and space in their sets. On the other hand, the center aligned bars of barcode system is also considered.
In the illustrated embodiments, the present disclosure is directed to a Light Transmitted Assay Beads (I,ITAB) or micropallet that is digitally coded as represented by an image that provides for high contrast and high signal-to-noise optical detection to facilitate identification of the bead. The image is implemented by a physical structure having a pattern that is partially substantially transmissive (e.g., transparent, translucent, and/or pervious to light), and partially substantially opaque (e.g., reflective and/or absorptive to light) to light. The pattern of transmitted light is determined (e.g., by scanning or imaging), the code represented by the image on the coded bead can be decoded. In one embodiment, the coded bead comprises a body having a series of alternating light transmissive and opaque sections, with relative positions, widths and spacing resembling a 1D or 2D bar code image (e.g., a series of narrow slits (e.g., 5 microns in width) representing a “0” code and wide slits (e.g., 10 microns in width) representing a “1” code, or vice versa). To decode the image, the alternating transmissive and opaque sections of the body are scanned and imaged (e.g., with a CCD sensor) to determine the code represented by the image determined from the transmitted light.
In a further aspect of the present disclosure, the digital barcode beads have paramagnetic property, that is, they have magnetic property when placed within a magnetic field, but retain no residual magnetism when removed from the magnetic field. Magnetic beads allow washing in a microplate by collection of beads with an external magnet, and resuspension of beads when the magnetic field is removed. Multiple digital magnetic beads allow multiplexed assays to be performed in a single well. Microplate is a standard high throughput format in clinical diagnostics; each plate has 96, 384, or 1,536 patient samples.
In a further aspect of the present disclosure, a digital magnetic microbead analytical system comprises: (a) a slide or microplate with a plurality of wells; (b) at least one digital magnetic bead on the surface of the slide or settled at the bottom of the wells of the microplate, (c) an optical detector, located above or under the slide or the microplate, imaging the at least one magnetic microbead; and (d) a digital processing system implemented with an image software to process the image pattern of at least one magnetic microbead. In one embodiment, the number of wells is between about 96, 384, or 1536 wells.
In a further aspect of the present disclosure, both bar-code image and fluorescence image are taken under a microscope and camera simultaneously. Therefore, the whole bead experiment can be performed in the microplate without taking the beads out. The barcode is used to identify which molecular probe is immobilized on the bead, while the fluorescence is used to detect the positive or negative reaction. A large number of targets can be analyzed simultaneously.
In a further aspect of the present disclosure, the digital magnetic microbeads comprise a first layer; a second layer; and an intermediate layer between the first layer and the second layer, the intermediate layer having an encoded pattern defined thereon, wherein the intermediate layer is partially substantially transmissive and partially substantially opaque to light, representing a code corresponding to each of the microbeads.
In a further aspect of the present disclosure, the first layer and the second layer of the digital magnetic beads are functionalized with a material selected from the group consisting of proteins, nucleic acids, small molecules, chemicals, and combinations thereof.
In one embodiment, the body of the coded bead may be configured to have at least two orthogonal cross sections that are different in relative geometry and/or size. Further, the geometry of the cross sections may be symmetrical or non-symmetrical, and/or regular or irregular shape. In one embodiment, the longest orthogonal axis of the coded bead is less than 1 mM.
In a further aspect of the present disclosure, the light transmissive sections are defined by slits through the intermediate layer, and the light opaque sections are defined by a light reflective material and/or a light absorptive material. The slits comprise slits of a first width and slits of a second width, and wherein the first width represents a “0” and the second width represents a “1” in a binary code. The first width is about 1 to 10 microns and the second width is about 1 to 50 microns, and wherein the first width is narrower than the second width. The binary codes can be decoded by image software.
In another aspect of the present disclosure, instead of the above “negative” beads in which slits are used to define the barcodes in an opaque background, “positive” beads may provide additional advantage. Positive beads have barcodes defined by opaque bars (e.g., defined by reflective surfaces) in a transparent background. Given the opacity of the bars and the transparent background, a constant width “path” region is defined around the bar region, where fluorescence is measured. This region does not have interference of reflectance of excited light. The MSB and LSB of the barcode are introduced as separate bars for smaller and larger width. In this definition of barcode, no beads will have the same width of bars at both ends.
In another aspect of the present disclosure, to minimize the bead overlap and aggregation on the bottom of the microwell, a detection buffer solution was developed. The detection bulkr is composed of (a) bulky polymer is chosen from natural polysaccharides. or synthetic polymers or copolymers. (b) the compatibilizer is chosen from copolymers containing N-vinyl pyrrolidone (or 1-vinyl-2-pyrrolidone). and (c) surfactant is chosen from silicone surfactants. nuorosurfactants. anionic surfactants, cationic surfactants. or nonionic surfactants or their combination.
In another aspect of the present disclosure, a bright field light source (e.g. a white light 1 . . . [D) is incident from the top of the 96-well plate via a diffuser film or plate to provide uniform illumination. All current 1.+:1)s have speckle patterns or non-uniform light pattern. which cause the non-uniform light distribution and illumination. The situation becomes worse when the light is illuminated near the edge or the wall of the microwell. A light diffuser film has been made and implemented on top of the microwell as a plate sealer or attached on the microplate cover. The diffuser film homogenizes the I . . . , ED light pattern. thus every image frame has uniform background. which leads to much improved decoding accuracy.
In another aspect of the present disclosure is to overlap and image a plurality (5×6=30) of image frames together in order to decode the barcode with high spatial resolution (1 pixel/urn), and also image plurality of beads distributed over a relatively large area (7 mm diameter) on the bottom of a microwell. Furthermore, if two neighboring images after imaged are slightly off in either X or Y direction, the barcode may not be recognizable. Therefore, a novel bead image overlapping method is used. This method is to overlap the each neighboring frame with an overlap of 120 pm (the long axis of the bead+margin) on X and Y direction. Therefore. all heads will “fall fully—in at least one of the frames. instead of lying between the two frames.
In another aspect of the present disclosure two different image processing approaches are implemented for decoding the beads. One is based on segmentation of the bars of the bead and the other is based on a grid search scheme to track the set of bars and the bead. The segmentation based algorithm comprises of five main sub-processes (1) Enhancement of bright field image (2) Grayscale threshold (3) Segmentation and area filtering of bars (4) Dilation and area filtering of beads, and (5) Pattern search and decoding of barcodes. The ‘grid search’ based routine searches the bars in the beads in an image frame in reference to a grid.
For a fuller understanding of the scope and nature of the invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings. In the following drawings, like reference numerals designate like or similar parts throughout the drawings.
a) is a top view of a LITAB in accordance with one embodiment of the present invention;
a) is a schematic flow diagram of the image process undertaken by the system instrumentation for bead decoding and fluorescence detection, including overlapping and stitching image frames;
b) is a flow chart illustrating an example method 200 of imaging and decoding a bead;
c) illustrates an exemplary flowchart of a segmentation based algorithm 250;
d) is an exemplary flowchart 260 illustrating an enhancement routine;
e) is an exemplary flowchart 280 illustrating a possible grayscale processing routine;
f) is an exemplary flowchart 300 illustrating a routine for performing segmentation and area filter of bars;
g) is an exemplary flowchart 320 illustrating a routine for performing dilation and area filtering of beads;
h) is an exemplary flowchart 340 illustrating a routine for performing a pattern search and decoding of barcodes;
a is a diagram illustrating barcode decoding using a grid search routine in accordance with one embodiment of the present invention;
b is a diagram illustrating bead image determination using a grid search routine in accordance with one embodiment of the present invention;
c is a diagram illustrating bar image determination using a grid search routine in accordance with one embodiment of the present invention;
The detailed descriptions of the process of the present invention are presented largely in terms of methods or processes, symbolic representations of operations, functionalities and features of the invention. These method descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. A software implemented method or process is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. These steps require physical manipulations of physical quantities. Often, but not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated.
Useful devices for performing the software implemented operations of the present invention include, but are not limited to, general or specific purpose digital processing and/or computing devices, which devices may be standalone devices or part of a larger system. The devices may be selectively activated or reconfigured by a program, routine and/or a sequence of instructions and/or logic stored in the devices, to accomplish the features and functions of image detection and decoding of the present invention described herein. In short, use of the methods described and suggested herein is not limited to a particular processing configuration.
For purposes of illustrating the principles of the present invention and not by limitation, the present invention is described herein below by reference to a micro bead that is in the shape of a pallet, and by reference to bioanalysis. However, it is understood that the present invention is equally applicable to micro beads of other overall geometries, and which are applied for other applications requiring identification based on the identity of the beads, without departing from the scope and spirit of the present invention. To facilitate discussion below, the micro bead of the present invention is referred to as a LITAB, which stands for a Light Transmitted Assay Beads.
LITAB is digitally coded as represented by an image that provides for high contrast and high signal-to-noise optical detection to facilitate identification of the bead. The image is implemented by a physical structure having a pattern that is partially substantially transmissive (e.g., transparent, translucent, and/or pervious to light), and partially substantially opaque (e.g., reflective and/or absorptive to light) to light. The pattern of transmitted light is determined (e.g., by scanning or imaging), and the code represented by the image on the coded bead can be decoded. Various barcode patterns, such as circular, square, or other geometrical shapes, can be designed as long as it represented a “1” or “0” and can be recognized by the decoder. However, LITAB is not spherical shape; it is different from the conventional latex-based spherical beads.
In one embodiment, the coded bead comprises a generally rectangular body having a series of alternating light transmissive and opaque sections, with relative positions, widths and/or spacing resembling a 1D or 2D bar code image (e.g., a series of narrow slits (e.g., about I to 5 microns in width) representing a “0” code and wide slits (e.g., about 1 to 10 microns in width) representing a “1” code, or vice versa, to form a binary code).
In an alternate embodiment of the present embodiment, it is more advantageous to decode the beads by detecting the structure defining the barcode without considering the boundaries of the beads. This approach of decoding is best implemented with “positive” type (
The LITAB may be fabricated using conventional methods used in thin film formation in a clean room microfabrication facility. The structure of the LITAB may be obtained using processes that may include conventional photo-lithography, printing, silk-screening, curing, developing, etching (e.g., chemical etching, ion etching, and/or other removing processes), plating, dicing, and other process steps well known in the art for such types of structure and the material involved. Referring to
For example, the slits 23 and 24 may be defined by UV-light irradiation using a photomask defining the desired pattern of wide and narrow slits, and the planar shape of the LITAB body 25. An array of LITABs may be formed on a single substrate, each having a different slit pattern representing a different code. The photomask may also define the periphery of the array of LITAB bodies, such that the LITAB bodies are separated from one another at the end of the same photolithographic process that defines the slits. Because SU-8 is transparent, an e-beam evaporator is utilized to deposit a metal layer, such as gold (Au, 0.1 um) top layer 22 on the SU-8 layer 21 supported on the substrate 50.
A paramagnetic material is imbedded in the intermediate layer in the LITAB, and thus sandwiched between the first layer and second layer of polymer films. Paramagnetic materials include magnesium, molybdenum, lithium, aluminum, nickel, tantalum, Fe203, and Fe304. It is noted that the paramagnetic material on the LITAB would also function as a light blocking material, so a reflective layer is not necessary. The present invention would allow decoding based on transmitted light, even in the presence of the paramagnetic material. However, for prior art, there are magnetic beads and barcode beads, no magnetic material has been incorporated into the barcode microbeads. This is because the magnetic material being inherently dark brown, would not be compatible with the reflective bar code, which requires alternating dark and white lines.
Both bar-code image and fluorescence image can be constructed on a conventional microscope or an inverted fluorescence microscope. One embodiment illustrated in
Referring to the flow diagram in
The randomly oriented microbeads can be decoded on a support, such as a slide or in the bottom of a microplate by imaging processing method. When beads are finally settled down and distributed on the bottom of a planar surface in a microplate, multiple beads can be decoded simultaneously with a wide viewing or scanning image camera. Microplate is a standard format for high throughput clinical assays. Each well is used for one sample; each plate holds 96, 384, or 1,536 patient samples for 96-well, 384-well, and 1,536-well, respectively. Therefore, an experiment can be performed in the microplate without taking the beads out, the image of the microbeads can be taken in the steady state with a better accuracy and sensitivity for decoding. The accuracy of decoding is very important for clinical diagnostics, because any false identification can lead to mis-diagnosis and mis-therapy. Due to the small bead size, hundreds or even thousands of beads can be displayed in the bottom of a microwell with minimal overlap. To minimize bead overlap, depend on the area of the microwell, the total number of beads is limited to a certain number. Furthermore. the non-spherical beads are tended to overlap spatially. To minimize the bead overlap and aggregation. a detection buffer solution was developed.
The detection buffer is composed of
b) is a flow chart illustrating an example method 200 of imaging and decoding a microbead. When the bead is illuminated (block 202) with a light beam, based on the either the “total intensity” of the transmission peak or the “bandwidth” of the transmission peak from the slit, the digital barcode either 0 or 1 can be determined by an imaging camera and a digital signal processor. As shown in the
The preferred configuration is to take a large image (for example, 6-8 mm in diameter of a microwell) with sufficient optical resolution to resolve the barcode pattern (5 pm and 10 pm). If a 4× objective is used, more area can be covered. However, spatial resolution is not as good as when a 10× objective is used. If a 10× objective is used for a microwell with a diameter of 6.0-7.0 mm, it needs to be indexed to scan 5×6 frames (
If two neighboring images after being patched are slightly off in either the X or Y direction, the barcode may not be recognizable and decoding will be difficult. Therefore, a novel bead image overlapping method is used. This method is to overlap each neighboring frame FRa, FRb and FRc with an overlap of 120 pm, for example, (the long axis of the bead+margin) on X and Y direction (
Image processing is carried out in parallel to the movement of the XY stage (block 208). The separate frames with bead patterns are sent to the image-processing module as soon as they are imaged (
As soon as a barcode image is obtained from the CCD, the image data is rapidly processed by the barcode decoding software. They are many implementations of the image-decoding algorithms. Depend on the image patterns, different algorithms may vary in terms of decoding speed or accuracy. For detection of the bars in beads, two different approaches may be implemented. One approach is to reconstruct the periphery of the bars by eroding and filling the images, using an approach based on tracking object similar to tracking the bead body discussed in the earlier embodiment. Another approach is to rely on a ‘grid search’ based routine which searches the bars in the beads in an image frame through a grid.
c) illustrates an exemplary flowchart of a segmentation based algorithm 250. The algorithm includes five main sub-processes: (1) Enhancement of bright field image (block 260); (2) Grayscale threshold (block 280); (3) Segmentation and area filtering of bars (block 300); (4) Dilation and area filtering of beads (block 320); and (5) Pattern search and decoding of barcodes (block 340). Some of these processing are carried out using the mathematical software, such as toolkits available from “The Mathworks, Inc.” (e.g., MATLAB® Version 7.4.0.287 (R2007a); Jan. 29, 2007), NI Machine Vision/Labview/NI Developer Suite 2009 and Visual Studio 2009 softwares. The functions of these processes are explained in the following sections and are shown in
(1) Enhancement of image: The performance of the decoding of beads depends heavily upon the quality of the image. The accuracy of the decoding process can be improved by imaging enhancement, shown using exemplary flowchart 260 IN
(2) Grayscale threshold:
(3) Segmentation and Area Filtering of bars:
(4). Dilation and Area Filtering of beads:
(5). Pattern search and decoding of barcodes:
In other words, the routine 340 may include calculating the orientation of the bead (block 342), averaging the pixel intensity along the bead length (block 344), calculating the bars and spaces array within a bead (block 346), computing a ratio between bars and spaces (block 348), decoding the ratios 1.5-2.5 as ‘1’ and .r-1.4 as ‘0’ (block 350), extracting indices of a ‘path’ around the bead (block 352) and averaging the fluorescent intensity from the fluorescent image (block 354).
In order to reduce the amount of computational time for the image processing, a number of attempts have been made to improve the algorithm. The image resolution is reduced from 1 p.m/pixel to 10 μm/pixel in order to do the initial processing for segmentation of the beads. When the beads are segmented, the barcodes are extracted using the high resolution image. Another attempt is to convert the image decoding algorithm from MATLAe to C and pre-compile the C program before execution. This tremendously improves the speed of execution of the image decoding software. Finally the decoding program is run with a co-processor such as NVIDIA and using a CUDA library to couple the program with the co-processor. This system has as many as 128 co-processors to execute the program in a parallel fashion.
Two different image processing approaches for decoding the “positive” and negative barcode beads may be implemented. One is based on object tracking of the bars of the beads in case of positive barcode beads and the other is based on detecting the body of the beads in the case of negative barcode beads. The object tracking based on detecting the set of bars is described earlier. The method of tracking the bead body is for the negative beads where the bead is detected using the boundary of the beads. The image processing steps involves a combination of routines such as dilation, erosion, edge detection, mask creation.
Grid search algorithm for barcode decoding: Grid search routine in and by itself is a known technique, which with the disclosure herein, can be effectively applied for bead decoding. The grid search routine used for decoding the beads discretizes the image frame into grids on x and y directions as shown in
Alternatively, the above grid search routine can be adapted for decoding the set of bars directly. In this case the grid search algorithm searches for the bars at each grid points and construct the contour of the bars in order to decode the bead. The grid pitch is half the width of the smallest bars/slits. In the illustrated example, the grid pitch is 2.5 1.1M.
There are four major steps in the grid search algorithm (shown in
Fluorescence of the beads is calculated using the area between the two concentric rectangles in dotted lines illustrated in
As was in the case of the earlier embodiment, the surface of the bead is prepared to provide a probe surface that can immobilize, hybridize, react and/or bond with a target sample carrying a fluorophore. The planar surface of the bead is continuous and uniform, without surface pits. However, at the opaque metal region, the fluorescence intensity is not uniform and so the fluorescence region 106 (path region) is the region from which the result of molecular immobilization is detected, even though immobilization takes place over the entire planar surface of the bead including the central bar region 105. By integrating the total fluorescence signal obtained from the area 106, confined within the dash line, as shown in
The strategy for the image processing for different types of bead designs is summarized in the following.
1. Negative Beads without Border
Negative beads, as shown in
In accordance with this embodiment, a watershed algorithm in Matlab is applied to isolate the beads. Because the higher density of black pixels (due to opaque area) correspond to edges of the beads, the watershed transform finds ridgelines in an image and treat the surfaces enclosed by dense pixels as beads. Normally the beads have constant area and therefore each bead is separated from the image after filtering using their areas. In addition, the beads are recognized based on the slits (bars) present in the beads. The outline of the slits set is extracted using structure element transformation and filtration. With the good clarity of the slits, any noise in the background of the image is removed. The watershed algorithm in Matlab works for black and white images and so the image is first converted to black and white image.
In these positive beads, as shown
In a first step (
These beads, as shown in
The bar segments in the bead consists of a ‘transparent space’ component and a ‘black bar component. In one case the bar is aligned at the center of the bead segment so that the spaces are divided equally on either side of the bar. This is termed as centre aligned bars in bead. One advantage of left aligned bars system, as shown
5. Shortened Bead with No Spaces Between Code Segment
In order to reduce the length of the beads further, a 5 um space that exists in between bar segments (in the previous design) are removed as shown in
Referring again to the flowcharts described above, at least some of the blocks may be implemented utilizing the controller illustrated in
Components of the computer 610 may include, but are not limited to a processing unit 620, a system memory 630, and a system bus 621 that couples various system components including the system memory to the processing unit 620. The system bus 621 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (USA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.
Computer 610 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 610 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, FLASH memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computer 610. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
The system memory 630 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 631 and random access memory (RAM) 632. A basic input/output system 633 (BIOS), containing the basic routines that help to transfer information between elements within computer 610, such as during start-up, is typically stored in ROM 631. RAM 632 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 620. By way of example, and not limitation,
The computer 610 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 610 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 680. The remote computer 680 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 610, although only a memory storage device 681 has been illustrated in
When used in a LAN networking environment, the computer 610 is connected to the LAN 671 through a network interface or adapter 670. When used in a WAN networking environment, the computer 610 typically includes a modem 672 or other means for establishing communications over the WAN 673, such as the Internet. The modem 672, which may be internal or external, may be connected to the system bus 621 via the input interface 660, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 610, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
The communications connections 670, 672 allow the device to communicate with other devices. The communications connections 670, 672 are an example of communication media. The communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. A “modulated data signal” may be a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Computer readable media may include both storage media and communication media.
This application claims the benefit of U.S. Provisional Application No. 61/224,020 filed Jul. 8, 2009, and is entirely incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61224020 | Jul 2009 | US |