This invention relates to an apparatus and method for heat bending and/or tempering glass sheets. More particularly, this invention relates to an apparatus and method for bending and/or tempering glass sheets by directing infrared (IR) radiation at the glass sheet(s) in order to heat the same, wherein the IR radiation is filtered or otherwise adjusted so as to have more radiation in the mid-IR and/or far-IR ranges than in the near IR-range.
Devices and methods for heat bending glass sheets are well known in the art. For example, see U.S. Pat. Nos. 5,383,990; 6,240,746; 6,321,570; 6,318,125; 6,158,247; 6,009,726; 4,364,766; and 5,443,669.
Referring to
After being heat bent in such a manner, the bent glass substrates 1, 5 (with solar control coating 3 still on substrate 1) are separated from one another and a polymer inclusive interlayer sheet (e.g., PVB) is interposed therebetween. The glass substrates 1, 5 are then laminated to one another via the polymer inclusive interlayer 9 in order to form the resulting vehicle windshield shown in
Different vehicle windshield models require different shapes. Some shapes require more extensive bending than others. As windshields requiring extensive bending are becoming more popular, the need for high performance solar control coatings (e.g., including one or more IR reflecting Ag layers) has also increased. An example high performance solar control coating 3 is disclosed in WO 02/04375 (and thus counterpart U.S. Ser. No. 09/794,224, filed Feb. 28, 2001), both hereby incorporated herein by reference.
Unfortunately, it has been found that when using conventional glass bending techniques, certain solar control coatings cannot on a regular basis withstand the bending process(es) sometimes used. Set forth below is an explanation as to why certain solar control coatings have a hard time withstanding conventional heat bending processes without suffering undesirable damage such as reduced transmission.
Conventional glass bending heating elements emit IR radiation 8 in the near, mid and far IR ranges. By this we mean that heating elements 7 emit each of near-IR (e.g., 700–4,000 nm; or 0.7 to 4.0 μm), mid-IR (4,000–8,000 nm; or 4–8 μm), and far-IR (>8,000 nm; or > 8 μm) radiation. In certain instances, the near-IR range may be considered from 0.7 to 3.0 μm and the mid-IR range from 3–8 μm. Herein, IR radiation is defined as wavelengths of 0.7 μm and above with known constraints.
Each of these different types (i.e., wavelengths) of IR radiation impinges upon the glass substrates 1, 5 to be heated and bent. Certain IR radiant heaters work in a manner such that turning up the power for the same results in significantly more near-IR radiation being emitted. In any event, much of the IR radiation from conventional heaters that reaches the glass to be bent is in the near-IR range, as the peak of this IR radiation is often in the near-IR range. In certain example instances, at least about 50% of the IR radiation that reaches the glass to be bent is in the near-IR range, sometimes 70% or higher. For instance, a heater with black body properties operating at 538 degrees C. emits 32.8% of its energy from 0.7 to 4 μm, 44.7% from 4 to 8 μm and 22.5% in wavelengths greater than 8 μm. A heater with black body properties operating at 871 degrees C. emits 57.6% of its energy from 0.7 to 4 μm, 31.9% from 4 to 8 μm and 10.5% in wavelengths greater than 8 μm. A heater with black body properties operating at 1,094 degrees C. emits 68.7% of its energy from 0.7 to 4 μm, 24.4% from 4 to 8 μm and 6.9% in wavelengths greater than 8 μm. The total power emitted increases with temperature proportional to the absolute temperature raised to the fourth power. For the three temperatures listed above, the total emitted power is approximately 15, 63 and 125 watts/inch square, respectively. The power for 0.7 to 4 μm is 4.9, 36.3, and 85.9 watts/inch square, respectively.
U.S. Pat. No. 6,160,957 discloses a heating element including a resistor element mounted on a ceramic fiber material such as aluminosilicate in spaced relation thereto. However, in the '957 Patent it is the resistor element (not the ceramic fiber) which emits the IR radiation toward the product to be heated.
As shown in
Unfortunately, certain of this near-IR radiation which is not absorbed by the glass substrate and thus reaches solar control coating 3, is absorbed by the coating 3 (e.g., by Ag layer(s) of the coating) thereby causing the coating 3 to heat up. This problem (significant heating of the coating) is compounded by: (a) certain solar control coatings 3 have a room temperature absorption peak (e.g., of 20–30% or more) at wavelengths of approximately 1 μm in the near IR range, at which wavelengths the underlying glass is substantially transmissive, and (b) the absorption of many solar control coatings 3 increases with a rise in temperature thereof (e.g., sheet resistance Rs of Ag layer(s) increase along with rises in temperature). In view of (a) and (b) above, it can be seen that the peak absorption of certain solar control coatings 3 at near-IR wavelengths of about 1 μm can increase from the 20–30% range to the 40–60% range or higher when the coating temperature increases from room temperature to 500 degrees C. or higher, thereby enabling the coating to heat up very quickly when exposed to significant amounts of near-IR wavelengths. The temperature of the coating may be mitigated by conduction of the absorbed energy into the bulk glass, but the rate of this process is finite. If energy is applied to the coating faster than it can be dissipated into the bulk, a thermal gradient is created leading to substantial overheating of the coating which leads to coating damage. The potential for coating overheating is often highest in the later stages of the bending process when the glass and coating are near the softening point, e.g., due to the higher amounts of near-IR heat being generated by the heating element(s) and due to absorption of the coating being higher.
Coating 3 is more susceptible to being damaged when it is unnecessarily heated up during the glass bending process. When coating 3 is damaged (e.g., visible transmittance drops significantly), the bent glass substrate 1 with the damaged coating thereon is typically discarded and cannot be commercially used.
This problem (i.e., coating overheating) also affects the shapes that can be attained in the bending process. If heat is applied only from one side (e.g., from the top in
It can be seen that certain solar control coatings 3 have a narrow thermal stability range that can limit the shape (i.e., degree of bending) of glass attainable in a bending process. Highly bent windshields often require higher bending temperatures and/or long bending times which certain coatings 3 cannot withstand given conventional glass bending techniques.
An object of this invention is to minimize the time at and/or peak temperature attained by a solar control coating 3 during a heat bending process for bending and/or tempering a glass substrate that supports the coating.
Another object of this invention is to provide an apparatus and/or method for heat bending and/or tempering glass substrates/sheets, designed to reduce the amount of near-IR radiation that reaches the glass substrate(s) to be bent.
Another object of this invention is to provide a filter (or baffle) for filtering out at least some near-IR radiation before it reaches a glass substrate to be bent and/or tempered. This can enable a solar control coating supported by the glass substrate to reach a lesser temperature than if the filter was not provided.
By enabling the maximum coating temperature to be reduced (and/or the time at which the coating is at a maximum temperature to be lessened), certain embodiments of this invention can realize one or more of the following advantages: (a) the solar control coating is less likely to be damaged during the bending and/or tempering process of an underlying glass substrate, (b) higher degrees of bending of an underlying glass substrate can be achieved without damaging the solar control coating; (c) heating time and/or maximum coating temperature can be reduced without reducing the amount of glass bend, and/or (d) power consumption of the heater may be reduced in certain instances.
In certain example embodiments of this invention, a filter (e.g., baffle or the like) of or including a ceramic (e.g., a silicate such as aluminosilicate) is used which reduces the amount near-IR radiation which reaches the glass substrate and/or coating to be bent and/or tempered.
Another object of this invention is to fulfill one or more of the above-listed objects.
In certain example embodiments of this invention, one or more of the above-listed objects is/are fulfilled by providing an apparatus for bending and/or tempering a glass substrate, the apparatus comprising: a heating element for generating energy; and a near-IR filter comprising a ceramic radiating surface located between the heating element and the glass substrate, the near-IR filter for reducing the amount of near-IR radiation that reaches the glass substrate to be bent and/or tempered.
In other example embodiments of this invention, one or more of the above-listed objects is/are fulfilled by providing a method of bending glass, the method comprising: providing a glass substrate having a solar control coating thereon; directing IR radiation at the glass substrate from a heating layer comprising ceramic in order to heat the glass substrate to a temperature of at least about 550 degrees C. for bending; and wherein less than about 30% of the IR radiation reaching the glass substrate is at wavelengths from 0.7 to 3.0 μm.
Referring now more particularly to the accompanying drawings in which like reference numerals refer to like parts throughout the several views.
Referring to
Example solar control coatings 3 are disclosed in U.S. Ser. No. 09/794,224 filed Feb. 28, 2001 (see WO 02/04375), and in U.S. Pat. Nos. 5,229,194; 5,298,048; 5,557,462; 3,682,528; 4,898,790; 5,302,449; 6,045,896; and 5,948,538, all hereby incorporated herein by reference. While these are examples of solar control coatings 3 which may be used, this invention is not so limited as any other suitable solar control coating may instead be used. In certain embodiments of this invention, solar control coating 3 includes at least one IR reflecting layer (e.g. Ag, Au or NiCr) sandwiched between at least first and second dielectric layers. In certain embodiments, the solar control coating 3 includes first and second IR reflecting layers (e.g., of or including Ag, Au or the like), and a first dielectric layer (e.g., of or including silicon nitride, silicon oxide, titanium oxide or the like) provided between the underlying glass substrate 1 and the first IR reflecting layer, a second dielectric layer provided between the two IR reflecting layers, and a third dielectric layer provided over both IR reflecting layers (e.g., see WO 02/04375 and 09/794,224). In certain embodiments of this invention, coating 3 may be deposited onto glass substrate 1 in any suitable manner (e.g., via sputtering as described in any of the aforesaid patents/patent applications).
Referring to
In certain embodiments of this invention, near-IR filter(s) 12 filters out at least about 10% of the near-IR radiation from radiation 8, more preferably at least about 30%, even more preferably at least about 50%, and most preferably at least about 70%. In certain embodiments of this invention, the radiation 10 which reaches glass substrates 1, 5 for heating the same includes IR radiation of which less than about 50% is in the near-IR range, more preferably less than about 30%, even more preferably of which less than about 20% is in the near-IR range, still more preferably of which less than about 10% is in the near-IR range, and most preferably of which from about 0–5% is in the near-IR range.
The ratio of near-IR to far-IR emitted from heating element(s) 7 in radiation 8, for example, may be a function of heating element temperature as discussed above. As explained above, this ratio of near to far-IR emitted from heating element(s) 7 may be about 1.4 at 538 degrees C., about 5.5 at 871 degrees C. and about 10 at 1093 degrees C. In certain embodiments of this invention, the near-IR filter(s) reduces this ratio at a given temperature to less than 85%, more preferably less than 50%, and most preferably less than 35% of its original value. In certain embodiments, the filter(s) does not attenuate the mid and/or far IR radiation by more than 50% of its original value, more preferably not more than 20% of its original value. This enables a significant amount of near-IR to be filtered out, while maintaining a relatively high power output in the mid and/or far IR bands.
Because of the reduced amount of near-IR radiation reaching glass substrates 1, 5, the substrates can absorb more of the IR radiation (i.e., since the glass absorbs significant IR radiation in the mid and far-IR regions) and less IR radiation reaches coating 3. Because less IR radiation reaches coating 3, the coating 3 is not heated as much as it would have been if filter(s) 12 were not provided. Stated another way, by heating the glass substrate 1 from the non-coated side thereof using predominantly mid and/or far IR wavelengths (and less or little near-IR), the coating 3 can be kept at a lower temperature and/or the time period that the coating is at higher temperatures can be reduced. The ability to keep coating 3 at a lower temperature during bending of the underlying glass substrate 1 enables the coating 3 to be less susceptible to damage. Moreover, it will be appreciated that glass is more efficiently heated using mid-IR and/or far-IR radiation (as opposed to near-IR) since the glass absorbs and is heated by radiation in the mid and far-IR ranges. As a result, yields increase and more extreme bending can be conducted. In other words, selecting how the glass is heated by predominantly using mid-IR and/or far-IR wavelengths (i.e., wavelengths that the glass is substantially opaque to and absorbs) heats that glass in an efficient manner while simultaneously protecting the coating 3.
During the bending process, the glass substrates 1, 5 are heated to a processing temperature(s) near a softening point of the glass (e.g., from about 550 to 850 degrees C., more preferably from about 580 to 750 degrees C.) in order to soften the overlapping glass substrates 1, 5. Upon softening, the glass substrates 1, 5 (including any solar control coating 3 thereon) are bent by their deadweight (i.e., sagging) along a shaping surface of a bending mold (not shown) or other suitable structure into the desired curved shape. The glass sheets may optionally be press bent after reaching an appropriate temperature. After being heat bent in such a manner, the bent glass substrates 1, 5 (with solar control coating 3 still on substrate 1) are separated from one another and a polymer inclusive interlayer sheet 9 (e.g., of or including polyvinyl butyral (PVB) or any other suitable laminating material) is interposed therebetween. The bent glass substrates 1, 5 are then laminated to one another via the polymer inclusive interlayer 9 in order to form a vehicle windshield or any other suitable structure (e.g., see
While
As heating layer 20 is heated up, it in turn heats up layer 22 (e.g., via conduction heating when layers 20 and 22 are in contact with one another). Layer 22 is chosen to be of a material that has a low emittance (low-E) in the near-IR range. In certain embodiments of this invention, layer 22 has an emissivity of no greater than about 0.5 in the near IR range, more preferably no greater than about 0.3 in the near IR range, still more preferably no greater than about 0.2 in the near IR range, and even more preferably no greater than about 0.1 in the near IR range. These example ranges in certain instances, may assume an emissivity of the unfiltered heater being from about 0.9 to 1.0. It can be seen that near-IR range radiation reaching the glass to be heated can be reduced when at a given wavelength the filter has an emissivity less than that of the heating element(s) 7. In certain embodiments of this invention, the emissivity of the total filter (e.g., layers 22, 24) is less than 80%, more preferably less than 50%, and most preferably less than 35% of the unfiltered heating element 7's emissivity. Layer 22 may be of or include Au (gold), Ag (silver), Al (aluminum), or any other suitable material in different embodiments of this invention. In certain example embodiments, layer 22 is opaque and comprises Au from about 200–20,000 Å thick. In alternative embodiments of this invention, layers 20 and 22 may be combined in a single layer of a single material (e.g., Au or any other suitable material).
High emissivity layer 24 (e.g., of or including fused silica) is heated up by layer 22 via conduction, convective, and/or radiative heating. In certain example embodiments, layer 24 may include at least about 75% SiO2, more preferably at least about 80% SiO2. Layer 24 may also include material such as aluminum oxide or the like. In certain embodiments, layer 24 has a rather high transparency of near-IR and a high emissivity in the mid and far IR regions; this may be achieved by a single layer or multiple layers. Some absorption can be tolerated in the near IR spectrum of layer 24. Upon being heated by layer 22, layer 24 emits IR radiation (mostly in the mid and/or far-IR regions) 10 toward the glass to be bent; layer 24 has a rather high emittance for long IR wavelengths. In certain example embodiments of this invention, layer 24 has an emissivity of at least about 0.4 at IR wavelengths of from 5 to 8 μm, more preferably of at least about 0.45 at IR wavelengths of from 5 to 8 μm, and even as high as 0.8 or higher for some wavelengths in the range of from 5 to 8 μm.
“Emissivity” is known as the measure of a material's ability to absorb and/or emit radiation. For example, if a material has an emissivity of 0.8 (out of 1.0), it radiates 80% of the energy that a perfect radiator at the same temperature would radiate. Likewise, if a material has an emissivity of 0.1, it radiates only 10% of the energy that a perfect radiator at the same temperature would radiate. As for absorbtion, if a material reflects 20% of the electromagnetic energy striking it and absorbs the other 80%, it has an emissivity of 0.8. Likewise, if a material reflects 90% of the electromagnetic energy striking it and absorbs the other 10%, it has an emissivity of 0.1. If a material has an emissivity of 0.5, it will absorb 50% of the energy it intercepts and the other 50% will either be reflected by it or transmitted through it.
As can be seen from the above, the near-IR filter of
The aforesaid embodiments illustrate first and second heating elements provided on the top and bottom sides, respectively, of glass to be bent. However, this invention is not so limited, as in certain embodiments of this invention only a single heating element need by provided (either above or below the glass to be bent).
It is noted that the heating element 7 is certain example embodiments may include a heater (e.g., metal or metal alloy coil/wire) mounted in a material such as a ceramic 7a, coated with a black body or generally black coating 7b as is known in the art. Example heating elements 7 are provided in U.S. Pat. Nos. D452,561, 6,308,008, D449,375, 6,160,957, 6,125,134, 5,708,408, 5,278,939, 4,975,563, 4,602,238, and 4,376,245, all incorporated herein by reference. However, any other suitable type of heating element 7 may also be used, and this invention is not limited to those listed above.
In the
Referring to
The filter(s) 12 in the
In certain embodiments of this invention, ceramic fibers are particularly useful as a material at the ceramic inclusive radiating surface shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This is a continuation-in-part (CIP) of U.S. patent application Ser. No. 10/101,516, filed Mar. 20, 2002, the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4017967 | Wells et al. | Apr 1977 | A |
4336412 | Thomander | Jun 1982 | A |
4364766 | Nitschke | Dec 1982 | A |
4376245 | Lindskog et al. | Mar 1983 | A |
4474831 | Downey | Oct 1984 | A |
4547650 | Arditty et al. | Oct 1985 | A |
4602238 | Furtek | Jul 1986 | A |
4778507 | Aruga et al. | Oct 1988 | A |
4882852 | Kautto | Nov 1989 | A |
4898790 | Finley | Feb 1990 | A |
4975563 | Roebuck et al. | Dec 1990 | A |
4986842 | Peltonen | Jan 1991 | A |
5059233 | Miihkinen et al. | Oct 1991 | A |
5176733 | Koss | Jan 1993 | A |
5229194 | Lingle et al. | Jul 1993 | A |
5233464 | Costich | Aug 1993 | A |
5278939 | Boes et al. | Jan 1994 | A |
5298048 | Lingle et al. | Mar 1994 | A |
5302449 | Eby et al. | Apr 1994 | A |
5383990 | Tsuji | Jan 1995 | A |
5443669 | Tunker | Aug 1995 | A |
5472720 | Rakhimov et al. | Dec 1995 | A |
5473141 | Makris et al. | Dec 1995 | A |
5543628 | Chow et al. | Aug 1996 | A |
5557562 | Hartig et al. | Sep 1996 | A |
5607609 | Sakuyama et al. | Mar 1997 | A |
5709408 | Sundberg | Jan 1998 | A |
5864144 | Laine | Jan 1999 | A |
5915072 | Campbell et al. | Jun 1999 | A |
5946341 | Bizzarri | Aug 1999 | A |
5948538 | Brochot et al. | Sep 1999 | A |
5966204 | Abe | Oct 1999 | A |
5986244 | Jonsson et al. | Nov 1999 | A |
6009726 | Funk | Jan 2000 | A |
6045896 | Boire et al. | Apr 2000 | A |
6056434 | Champetier | May 2000 | A |
6072821 | Axelsson | Jun 2000 | A |
6125134 | Jonsson et al. | Sep 2000 | A |
6158247 | Didelot | Dec 2000 | A |
6160957 | Johansson | Dec 2000 | A |
6172336 | Vehmas | Jan 2001 | B1 |
6240746 | Maeda et al. | Jun 2001 | B1 |
6252220 | Jedlicka et al. | Jun 2001 | B1 |
D449375 | Andersson et al. | Oct 2001 | S |
6297511 | Syllaios et al. | Oct 2001 | B1 |
6308008 | Johansson et al. | Oct 2001 | B1 |
6318125 | Diederen et al. | Nov 2001 | B1 |
6321570 | De Vries et al. | Nov 2001 | B1 |
D452561 | Andersson et al. | Dec 2001 | S |
6408649 | Sklyarevich et al. | Jun 2002 | B1 |
6542292 | Onomichi et al. | Apr 2003 | B2 |
6776008 | Vehmas et al. | Aug 2004 | B1 |
20020062662 | Fotheringham et al. | May 2002 | A1 |
20030229131 | Sessler et al. | Dec 2003 | A1 |
Number | Date | Country |
---|---|---|
299 05 385 | Aug 2000 | DE |
199 38 808 | Sep 2000 | DE |
100 29 522 | Jan 2002 | DE |
2 606 866 | May 1988 | FR |
2001-155637 | Jun 2001 | JP |
WO 9953237 | Oct 1999 | WO |
WO 0204375 | Jan 2002 | WO |
WO 03080521 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030177792 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10101516 | Mar 2002 | US |
Child | 10245719 | US |