To maximize skiing enjoyment, proficiency, and safety, all skiers should have their equipment anatomically adjusted. One of the most critical anatomical adjustments is referred to as “canting”.
Canting alters the lateral tilt or “cant angle” at which a boot supports a skier's foot and lower leg, relative to the longitudinal running surface or bottom plane of an attached ski. Optimizing the cant angle improves skeletal alignment and allows the skier to tilt or “edge” the ski with the least amount of muscular effort.
In the 1993 book “The Athletic Skier”, authors Warren Witherell and David Evrard wrote that, “Only when properly canted can our bodies and skis work as efficiently as possible. By tilting or canting our boots, we can precisely control the geometry of our legs and establish an ideal position over our skis. Canting is the final step in the alignment process that makes efficient and balanced skiing possible for all skiers.”
Recent changes in equipment design have only magnified the importance of optimizing a skier's cant angle. Some of these changes include the lateral stiffening of boot shells, the increased elevation or stand-height of binding systems, and the exaggerated sidecut or shape of modern skis.
Unfortunately most ski shops still do not offer canting services, therefore, only a small percentage of skiers ever have their cant angle tested or altered. There are numerous reasons for this which will become apparent in the review of prior art.
Various prior art exists for altering the cant angle at which a boot supports a skier's foot and lower leg, relative to the longitudinal running surface or bottom plane of an attached ski. All methods to date have been based on a universal belief that canting must include modifications under both the toe and heel support portions of a boot or binding.
The classic method is to mount wedge-shaped shims or “cants” between the top surface of the ski and the under surface of both the toe and heel units of the binding. Some skiers have used strips of tape on both the toe and heel as temporary or test cants, as depicted in “The Athletic Skier”, Chapter 34.
Another well-known method for altering the cant angle is to permanently grind or plane the bottom toe and heel sole portions of the boot.
A reversible variation of this technique is to use interchangeable “canted soles” as described in U.S. Pat. Nos. 4,078,322 and 4,945,659.
Another approach is to utilize a ski boot with an adjustable sole that can pivot along a longitudinal axis as depicted in U.S. Pat. No. 5,615,901.
Each of the above listed approaches suffer from a number of disadvantages:
(a) While the classic method of using wedge-shaped shims or “cants” can be effective for altering a skier's cant angle, it requires a time intensive process of custom mounting or remounting the binding on each pair of the customer's skis. In most cases, a technician must first cut and drill the appropriate cant shim material to match the shape and screw hole pattern of the particular binding being used. Next, the technician must carefully choose longer length screws to install the binding with the cants to meet International Standard ISO 8364 for screw depth and binding retention forces. If the screws chosen are a little too long, an expensive ski can easily be ruined. If screws are too short, the binding can pull out leading to potential skier injury. Because screw head shapes are often specific to particular binding brands and models, screws must be stocked in a multitude of styles and various lengths.
(b) The above procedure also creates a specific left and right ski due to the angular orientation of the cant shims installed. This prevents a skier from reversing his left and right skis out on the hill which is desirable as edges become dull or damaged, especially for performance minded skiers like instructors, patrollers and racers.
(c) There is also a growing retail trend towards selling more integrated ski-binding systems. On many of these systems, the binding is not attached to the ski with screws, but by various other means such as sliding the binding onto rails or tracks integrated into the ski construction. In these cases, the classic method of installing cant shims is not possible.
(d) An ever increasing number of skiers want to rent skis versus own, or at least “demo” various models before they buy. Due to the time requirement and cost of installing cant shims, canted rentals are simply not practical. Yet proper canting can make the difference between a great skiing experience and never wanting to ski again.
(e) Due to the above problems and limitations on installing cant shims, a small percentage of ski shops and skiers prefer to permanently grind or plane the bottom toe and heel sole portions of the boot. This method is known as “sole planing”. Unfortunately, sole planing is often an imprecise operation that requires the use of dangerous machinery by ski shop employees. Because its irreversible, a slight mistake can ruin an expensive pair of boots. It also requires that the boot toe and heel sole portions be built back up to meet International Standard ISO 5355 for boot sole thickness and shape dimensions.
(f) The use of interchangeable canted soles, as described in U.S. Pat. Nos. 4,078,322 and 4,945,659, requires that a special boot be purchased and that the ski shop stock an assortment of canted soles only useful for the particular boot that supports the feature. Due to the cost of producing interchangeable canted soles, they have only been available in gross cant angle increments of I degree or greater. Only a limited number of boot models on the market accept this feature.
(g) The production and use of the ski boot design in U.S. Pat. No. 5,615,901 with a pivoting adjustable sole has not proven to be practical because of mechanical problems of implementation and the added weight and cost to produce the boot. This patented product is no longer on the market.
Accordingly, a need exists for a simple canting solution to overcome all of the problems of the prior art above. Several objects and advantages of the present invention are:
(a) to provide an apparatus and method for canting a skier that is fast and efficient, that doesn't require the custom mounting or remounting of each pair of skis by a skilled or highly trained technician, or have the potential for damaging the ski, or cause the binding to pull out which could lead to potential injury, nor the need to stock a multitude of screw styles in various lengths to meet International ISO Standards;
(b) to provide an apparatus and method for canting a skier that allows the left and right skis and any canting to be reversed or changed out on the hill as desired;
(c) to provide an apparatus and method for canting a skier on integrated ski-binding systems;
(d) to provide an apparatus and method for canting a skier on rental or “demo” skis, both quickly and cost effectively, to enhance the skier's experience and increase the desire to continue in the sport;
(e) to provide an apparatus and method for canting a skier that is accurate and reversible, and that doesn't require dangerous grinding or planing of the bottom toe and heel sole portions of the boot, nor any building up of these sole portions to meet any International ISO Standards;
(f) to provide an apparatus and method for canting a skier that can be used with any boot and produced cost effectively in cant angle increments finer than 1 degree; and
(g) to provide an apparatus and method for canting a skier that is practical, lightweight, inexpensive and widely available.
Still further objects and advantages are to provide an apparatus and method for canting a skier that only has to include a modification under the heel support portion of a boot or binding, that is designed to induce a prescribed cant angle prescribed for a particular skier, that can be designed compatible with the majority of bindings and skis on the market, and manufactured cost effectively out of well known materials, in various colors, and with visible labeling in a desired location to identify the cant angle. Still further objects and advantages will become apparent from a consideration of the ensuing description and drawings.
Reference will now be made in detail to various embodiments of the invention. Examples of these embodiments are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that it is not intended to limit the invention to any embodiment. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. However, the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order to not unnecessarily obscure the present invention.
The inventor has discovered through analysis of current ski binding function, the biomechanics of skiing, and extensive experimental testing of hundreds of skiers, that a skier can be effectively canted by making modifications under only the heel support portion of a boot or binding. This has allowed the design of a novel system of canting that eliminates all of the problems listed above for actual and proposed canting systems. In the following, various embodiments of an apparatus and method for canting a skier are described that are extremely effective in altering the cant angle at which a boot supports a skier's foot and lower leg, relative to the longitudinal running surface or bottom plane of an attached ski. Optimizing the cant angle improves skeletal alignment and allows the skier to tilt or “edge” the ski with the least amount of muscular effort.
Referring now to the drawings where like numerals are used throughout the several views to indicate like or corresponding parts,
The binding 20 includes a toe unit 22, a heel unit 24, and an integrated brake system 26. All ski and binding systems are required by ski areas to include a leash or integrated brake system 26 which usually comprises a brake compressor plate 28, a brake arm 30 on either side of the ski, and a brake heel bearing surface 32.
Different embodiments of a cant angle plate (CAP) 60 are designed either to mate with a standard heel bearing surface 32, to replace a standard heel bearing surface 32, or to mate with a modified heel bearing surface 32, as described in detail later.
As depicted in
In
A detailed description of a preferred lock on embodiment of a CAP, designed for a particular commercial binding, will be described in detail below with reference to
In
In practice, the removal of the standard outer structure 72 and installation of replacement CAP 60r is a simple operation that can be performed quickly by ski shop personnel.
In each embodiment that includes a CAP, a CAP having a τ of 0° can be utilized initially or in the case where the skier does not require any tilt to be properly canted. For example, manufacturers could ship bindings with a 0° CAP 60 attached to an adaptor part 74 (
Additionally, the left and right shrouds 90 and 92 and additional center shrouds 104 and 106 (seen in
To better understand the operation and effectiveness of the invention, it is helpful to understand at least basic binding function. Most modern bindings include a toe unit and a heel unit that attach the boot to the ski in two separate places, and that function in different ways to provide effective retention of the boot to the ski for control, and effective release of the boot from the ski in various directions for safety, as in the case of a fall.
The toe unit captures or retains the toe portion of the boot sole for control, and provides primarily lateral release in twisting falls and sometimes vertical release in backward falls. Since twisting falls and backward falls can be quite dangerous, a lower retention force is provided in the toe unit to allow these directions of release. Furthermore, mechanical play or elasticity is purposefully designed into the toe unit. The first reason is to accommodate for allowable boot sole shape tolerances and expected wear. Another reason is to enhance release when needed by minimizing or reducing friction between the boot sole and toe unit. Due to the combined affect of the lower retention force and mechanical play or elasticity, the toe unit does not capture or hold the boot down against the ski, relative to the longitudinal running surface, as aggressively as the heel unit.
The heel unit captures or retains the heel portion of the boot sole for control, and provides primarily vertical release in forward falls. Due to a skier's forward momentum and the desire to prevent a premature vertical release while skiing, a much higher retention force is designed into the heel unit. Therefore, it is the heel unit of the binding that most securely holds the boot down against the ski, relative to the longitudinal running surface, with the highest degree of retention force. Thus, the strong downward retention force of the heel unit combined with the mechanical play or elasticity of the toe unit, provide that a cant angle change at only the heel bearing surface of the binding, with no similar cant angle change at the toe bearing surface, is sufficient to alter the cant angle at which a boot supports a skier's foot and lower leg, relative to the longitudinal running surface or bottom plane of an attached ski.
Accordingly, various embodiments of an apparatus and method for canting a skier have now been described which are compatible with existing binding systems, that can be used to modify existing binding systems, or can be manufactured into existing binding systems by binding manufacturers. All of these embodiments provide a fast, accurate, reversible, safe and inexpensive means to alter a skier's cant angle, and can be easily applied by any ski shop personnel or by the skier himself.
While the above description contains much specificity, this should not be construed as limitations on the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of the invention. Many alternatives and substitutions will now be apparent to persons of skill in the art.
Thus the scope of the invention should be determined by the following their legal equivalents, not by the examples given.
This application claims priority from a provisional application filed Nov. 12, 2005 entitled SYSTEM AND METHOD FOR CANTING A SKIER, Application No. 60/736,470 which is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3786580 | Dalebout | Jan 1974 | A |
3828448 | Leonildo | Aug 1974 | A |
3917298 | Haff | Nov 1975 | A |
3922800 | Miller | Dec 1975 | A |
3950000 | Sittmann | Apr 1976 | A |
4074446 | Eisenberg | Feb 1978 | A |
4078322 | Dalebout | Mar 1978 | A |
4141570 | Sudmeier | Feb 1979 | A |
4314411 | Hanson | Feb 1982 | A |
4351120 | Dalebout | Sep 1982 | A |
4358904 | Guild | Nov 1982 | A |
4499674 | Olivieri | Feb 1985 | A |
4500108 | Johnson, III | Feb 1985 | A |
4523395 | Borsoi | Jun 1985 | A |
4543738 | Mower | Oct 1985 | A |
4665576 | Limbach | May 1987 | A |
4694684 | Campbell | Sep 1987 | A |
4765070 | Chemello | Aug 1988 | A |
4791736 | Phillips | Dec 1988 | A |
4945659 | De Marchi et al. | Aug 1990 | A |
5005301 | Mabboux | Apr 1991 | A |
5090139 | Germann | Feb 1992 | A |
5135250 | Abondance et al. | Aug 1992 | A |
5188386 | Schweizer | Feb 1993 | A |
5293702 | Miyoshi | Mar 1994 | A |
5297812 | Dogat et al. | Mar 1994 | A |
5344176 | Trimble | Sep 1994 | A |
5348335 | Dasarmaux | Sep 1994 | A |
5360229 | Arduin | Nov 1994 | A |
5413371 | Trimble | May 1995 | A |
5474321 | Pritz | Dec 1995 | A |
5492356 | Astier | Feb 1996 | A |
5501483 | Stepanek | Mar 1996 | A |
5538271 | Abondance | Jul 1996 | A |
5558356 | Challande | Sep 1996 | A |
5560634 | Challande | Oct 1996 | A |
5566968 | Challande | Oct 1996 | A |
5611559 | Luitz | Mar 1997 | A |
5615901 | Piotrowski | Apr 1997 | A |
5647605 | Arduin | Jul 1997 | A |
5671939 | Pineau | Sep 1997 | A |
5803467 | Piotrowski | Sep 1998 | A |
5884934 | DeRocco | Mar 1999 | A |
5915718 | Dodge | Jun 1999 | A |
5992861 | Piortrowski | Nov 1999 | A |
6290251 | Chatillon et al. | Sep 2001 | B1 |
6328328 | Finiel | Dec 2001 | B1 |
6371506 | DeNicola | Apr 2002 | B1 |
6609313 | Orso | Aug 2003 | B2 |
6715782 | Sosin | Apr 2004 | B2 |
7097195 | Orr et al. | Aug 2006 | B2 |
20050029757 | Fiebing | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
33 33 318 | Mar 1985 | DE |
2086994 | Dec 1971 | FR |
2953208 | Oct 1980 | GE |
WO 9818528 | May 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20070108734 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60736470 | Nov 2005 | US |