In some surgical procedures (e.g., colorectal, bariatric, thoracic, etc.), portions of a patient's digestive tract (e.g., the gastrointestinal tract and/or esophagus, etc.) may be cut and removed to eliminate undesirable tissue or for other reasons. Once the tissue is removed, the remaining portions of the digestive tract may be coupled together in an end-to-end anastomosis. The end-to-end anastomosis may provide a substantially unobstructed flow path from one portion of the digestive tract to the other portion of the digestive tract, without also providing any kind of leaking at the site of the anastomosis.
One example of an instrument that may be used to provide an end-to-end anastomosis is a circular stapler. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the clamped layers of tissue to substantially seal the layers of tissue together near the severed ends of the tissue layers, thereby joining the two severed ends of the anatomical lumen together. The circular stapler may be configured to sever the tissue and seal the tissue substantially simultaneously. For instance, the circular stapler may sever excess tissue that is interior to an annular array of staples at an anastomosis, to provide a substantially smooth transition between the anatomical lumen sections that are joined at the anastomosis. Circular staplers may be used in open procedures or in endoscopic procedures. In some instances, a portion of the circular stapler is inserted through a patient's naturally occurring orifice.
Examples of circular staplers are described in U.S. Pat. No. 5,205,459, entitled “Surgical Anastomosis Stapling Instrument,” issued Apr. 27, 1993; U.S. Pat. No. 5,271,544, entitled “Surgical Anastomosis Stapling Instrument,” issued Dec. 21, 1993; U.S. Pat. No. 5,275,322, entitled “Surgical Anastomosis Stapling Instrument,” issued Jan. 4, 1994; U.S. Pat. No. 5,285,945, entitled “Surgical Anastomosis Stapling Instrument,” issued Feb. 15, 1994; U.S. Pat. No. 5,292,053, entitled “Surgical Anastomosis Stapling Instrument,” issued Mar. 8, 1994; U.S. Pat. No. 5,333,773, entitled “Surgical Anastomosis Stapling Instrument,” issued Aug. 2, 1994; U.S. Pat. No. 5,350,104, entitled “Surgical Anastomosis Stapling Instrument,” issued Sep. 27, 1994; and U.S. Pat. No. 5,533,661, entitled “Surgical Anastomosis Stapling Instrument,” issued Jul. 9, 1996; and U.S. Pat. No. 8,910,847, entitled “Low Cost Anvil Assembly for a Circular Stapler,” issued Dec. 16, 2014. The disclosure of each of the above-cited U.S. Patents is incorporated by reference herein.
Some circular staplers may include a motorized actuation mechanism. Examples of circular staplers with motorized actuation mechanisms are described in U.S. Pub. No. 2015/0083772, entitled “Surgical Stapler with Rotary Cam Drive and Return,” published Mar. 26, 2015, now abandoned; U.S. Pub. No. 2015/0083773, entitled “Surgical Stapling Instrument with Drive Assembly Having Toggle Features,” published Mar. 26, 2015, issued as U.S. Pat. No. 9,936,949 on Apr. 10, 2018; U.S. Pub. No. 2015/0083774, entitled “Control Features for Motorized Surgical Stapling Instrument,” published Mar. 26, 2015, issued as U.S. Pat. No. 9,907,552 on Mar. 6, 2018; and U.S. Pub. No. 2015/0083775, entitled “Surgical Stapler with Rotary Cam Drive,” published Mar. 26, 2015, issued as U.S. Pat. No. 9,713,469 on Jul. 25, 2017. The disclosure of each of the above-cited U.S. Patent Publications is incorporated by reference herein.
While various kinds of surgical stapling instruments and associated components have been made and used, it is believed that no one prior to the inventor(s) has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
A. Exemplary Tissue Engagement Features of Circular Stapling Instrument
As best seen in
Stapling head assembly (300) is located at the distal end of shaft assembly (200). As shown in
Trocar (330) is positioned coaxially within inner core member (312) of tubular casing (310). Trocar (330) is operable to translate distally and proximally relative to tubular casing (310) in response to rotation of a knob (130) located at the proximal end of handle assembly (100). Trocar (330) comprises a shaft (332) and a head (334). Head (334) includes a pointed tip (336) and an inwardly extending proximal surface (338). Head (334) and the distal portion of shaft (332) are configured for insertion in bore (422) of anvil (420). Proximal surface (338) is configured to complement features of latch members (430) to provide a snap fit between anvil (400) and trocar (330).
Staple driver member (350) is operable to actuate longitudinally within tubular casing (310) in response to activation of motor (160) as will be described in greater detail below. Staple driver member (350) includes two distally presented concentric annular arrays of staple drivers (352). Staple drivers (352) are arranged to correspond with the arrangement of staple forming pockets (414) described above. Thus, each staple driver (352) is configured to drive a corresponding staple into a corresponding staple forming pocket (414) when stapling head assembly (300) is actuated. Staple driver member (350) also defines a bore (354) that is configured to coaxially receive core member (312) of tubular casing (310).
A cylindraceous knife member (340) is coaxially positioned within staple driver member (350). Knife member (340) includes a distally presented, sharp circular cutting edge (342). Knife member (340) is sized such that knife member (340) defines an outer diameter that is smaller than the diameter defined by the inner annular array of staple drivers (352). Knife member (340) also defines an opening that is configured to coaxially receive core member (312) of tubular casing (310).
A deck member (320) is fixedly secured to tubular casing (310). Deck member (320) includes a distally presented deck surface (322) defining two concentric annular arrays of staple openings (324). Staple openings (324) are arranged to correspond with the arrangement of staple drivers (352) and staple forming pockets (414) described above. Thus, each staple opening (324) is configured to provide a path for a corresponding staple driver (352) to drive a corresponding staple through deck member (320) and into a corresponding staple forming pocket (414) when stapling head assembly (300) is actuated. It should be understood that the arrangement of staple openings (322) may be modified just like the arrangement of staple forming pockets (414) as described above. It should also be understood that various structures and techniques may be used to contain staples within stapling head assembly (300) before stapling head assembly (300) is actuated. Deck member (320) defines an inner diameter that is just slightly larger than the outer diameter defined by knife member (340). Deck member (320) is thus configured to allow knife member (340) to translate distally to a point where cutting edge (342) is distal to deck surface (322).
Shaft assembly (200) further includes a trocar actuation rod (220) and a trocar actuation band assembly (230). The distal end of trocar actuation band assembly (230) is fixedly secured to the proximal end of trocar shaft (332). The proximal end of trocar actuation band assembly (230) is fixedly secured to the distal end of trocar actuation rod (220), such that trocar (330) will translate longitudinally relative to outer sheath (210) in response to translation of trocar actuation band assembly (230) and trocar actuation rod (220) relative to outer sheath (210). Trocar actuation band assembly (230) is configured to flex such that trocar actuation band assembly (230) may follow along the preformed curve in shaft assembly (200) as trocar actuation band assembly (230) is translated longitudinally relative to outer sheath (210). However, trocar actuation band assembly (230) has sufficient column strength and tensile strength to transfer distal and proximal forces from trocar actuation rod (220) to trocar shaft (332). Trocar actuation rod (220) is rigid. A clip (222) is fixedly secured to trocar actuation rod (220) and is configured to cooperate with complementary features within handle assembly (100) to prevent trocar actuation rod (220) from rotating within handle assembly (100) while still permitting trocar actuation rod (220) to translate longitudinally within handle assembly (100). Trocar actuation rod (220) further includes a coarse helical threading (224) and a fine helical threading (226).
Shaft assembly (200) further includes a stapling head assembly driver (240) that is slidably received within outer sheath (210). The distal end of stapling head assembly driver (240) is fixedly secured to the proximal end of staple driver member (350). The proximal end of stapling head assembly driver (240) is secured to a drive bracket (250) via a pin (242). It should therefore be understood that staple driver member (350) will translate longitudinally relative to outer sheath (210) in response to translation of stapling head assembly driver (240) and drive bracket (250) relative to outer sheath (210). Stapling head assembly driver (240) is configured to flex such that stapling head assembly driver (240) may follow along the preformed curve in shaft assembly (200) as stapling head assembly driver (240) is translated longitudinally relative to outer sheath (210). However, stapling head assembly driver (240) has sufficient column strength to transfer distal forces from drive bracket (250) to staple driver member (350).
B. Exemplary User Input Features of Circular Stapling Instrument
As shown in
It should be understood that when anvil (400) is coupled with trocar (330), rotation of knob (130) will provide corresponding translation of anvil relative to stapling head assembly (300). It should also be understood that knob (130) may be rotated in a first angular direction (e.g., clockwise) to retract anvil (400) toward stapling head assembly (300); and in a second angular direction (e.g., counterclockwise) to advance anvil (500) away from stapling head assembly (300). Knob (130) may thus be used to adjust the gap distance between opposing surfaces (412, 322) of anvil (400) and stapling head assembly (300) until a suitable gap distance has been achieved.
Firing trigger (150) is operable to activate motor (160) to thereby actuate stapling head assembly (300). Safety trigger (140) is operable to selectively block actuation of firing trigger (150) based on the longitudinal position of anvil (400) in relation to stapling head assembly (300). Handle assembly (100) also includes components that are operable to selectively lock out both triggers (140, 150) based on the position of anvil (400) relative to stapling head assembly (300). When triggers (140, 150) are locked out, firing trigger (150) is prevented from initiating actuation of stapling head assembly (300). Thus, trigger (150) is only operable to initiate actuation of stapling head assembly (300) when the position of anvil (400) relative to stapling head assembly (300) is within a predefined range.
In the present example, firing trigger (150) of the present example includes an integral actuation paddle, such as the paddle shown and described in U.S. patent application Ser. No. 14/751,231, entitled “Surgical Stapler with Reversible Motor,” filed Jun. 26, 2015, published as U.S. Pub. No. 2016/0374666 on Dec. 29, 2016, issued as U.S. Pat. No. 10,456,134 on Oct. 29, 2019, the disclosure of which is incorporated by reference herein. The paddle is configured to actuate a switch of motor activation module (180) (
Battery pack (120) is operable to provide electrical power to a motor (160) as noted above. Battery pack (120) may be removably coupled with handle assembly (100) through a snap fit or in any other suitable fashion. It should be understood that battery pack (120) and handle assembly (100) may have complementary electrical contacts, pins and sockets, and/or other features that provide paths for electrical communication from battery pack (120) to electrically powered components in handle assembly (100) when battery pack (120) is coupled with handle assembly (100). It should also be understood that, in some versions, battery pack (120) is unitarily incorporated within handle assembly (100) such that battery back (120) cannot be removed from handle assembly (100).
C. Exemplary Anastomosis Procedure with Circular Stapling Instrument
As shown in
In the example shown, endocutter staplers (1000) are inserted into the body laparoscopically via respective trocars. Endocutter stapler (1000) comprises a shaft (1120) and an end effector (1110) extending from the shaft (1120). End effector (1110) comprises a first jaw (1112) and a second jaw (1114). First jaw (1112) comprises a staple cartridge (1140). Staple cartridge (1140) is insertable into and removable from first jaw (1112), though some variations may provide a staple cartridge that is not removable from (or at least readily replaceable from) first jaw (1112). Second jaw (1114) comprises an anvil (1130) that is configured to deform staples ejected from staple cartridge (1140). Second jaw (1114) is pivotable relative to first jaw (1112), though some variations pay provide first jaw (1112) as being pivotable relative to the second jaw (1114). Endocutter staplers (1000) may be configured ad operable in accordance with at least some of the teachings of U.S. Pub. No. 2013/0168435, entitled “Surgical Stapling Instrument with an Articulatable End Effector,” published Jul. 4, 2013, issued as U.S. Pat. No. 9,138,225 on Sep. 22, 2015, the disclosure of which is incorporated by reference. While end effector (1110) is straight and is thus configured to apply a straight line of staples (185) in the present example, in other examples end effector (1110) may be curved and may thus apply a curved line of staples (185).
Anvil (1130) of endocutter stapler (1000) can be opened such that anvil (1130) and staple cartridge (1140) of endocutter stapler (1000) are positioned relative to the patient's colon (C). When anvil (1130) is moved into a closed position, anvil (1130) clamps the colon (C) against staple cartridge (1140). Turning now to
Referring again to
The operator may then draw anvil (400) toward stapling head assembly (300), in the manner described above (e.g., utilizing knob (130), thus also drawing the upper colon portion (UC) toward the lower colon portion (LC). The operator may then retract trocar (330) until the tissue of the upper colon portion (UC) and the lower colon portion (LC) are compressed against deck (320) as shown in
As discussed above, stapling head assembly (300) is configured to apply annular arrays of staples (385) in the tissue captured between anvil (400) and stapling head assembly (300). Knife member (340) is advanced toward anvil (440) to sever the tissue positioned radially inwardly with respect to the annular arrays of staples (385) applied by circular stapling instrument (10). After the staples (385) have been fired and tissue has been severed, anvil (400) and stapling head assembly (300) may together be withdrawn from the patient's rectum (R). The incision that was used to insert anvil (400) into the upper portion (UC) of the colon (C) may be closed via suturing or using any other suitable technique.
As shown in
In some instances, staples (385) that were deployed by circular stapling instrument (10) may overlap with at least some of staples (285) that were deployed by endocutter stapler (1000) in the procedure described above with reference to
A. Exemplary Alternative Staple Cartridge Including Suture and Suture Retainers
In the example shown, at least a portion of suture assembly (580) is removably adhered to cartridge deck (541). However, in other examples, suture assembly (580) may be affixed to cartridge deck (541) according to other suitable methods. As shown, each suture (582) extends along cartridge deck (541) in a wave-like configuration such that the suture (582) extends over alternating staple cavities (545) nearest the outer edges of jaw (1112). Suture (582) slidably extends through proximal and distal suture retainers (584, 584c), with the free ends (586) of suture (582) passing through middle suture retainer (584b) in a crisscross configuration. Suture (582) thus forms a loop. It should be understood that only one half of the loop formed by suture (582) passes through middle suture retainer (584b) to reach distal suture retainers (584, 584c); while the other half of the loop formed by suture (582) does not pass through middle suture retainer (584b) to reach distal suture retainers (584, 584c). This relationship is best seen in
Middle suture retainer (584b) includes internal features that allow free ends (586) to be pulled away from middle suture retainer (584), thereby allowing an operator to reduce the length of the loop formed by suture (582); yet those internal features of middle suture retainer (584b) prevent the free ends (586) to be pulled back through middle suture retainer (584). In other words, middle suture retainer (584b) provides one-way passage for each free end (586), only allowing the length of the loop formed by suture (582) to be reduced; without allowing the length of the loop formed by suture (582) to be increased. Various suitable forms that may be used to form the internal structures of middle suture retainer (584b) in order to provide such functionality will be apparent to those of ordinary skill in the art in view of the teachings herein.
As end effector (1100) containing staple cartridge (540) is actuated, drivers of staple cartridge (540) eject staples (585) out of cavities (545) toward anvil (1130), causing portions of suture (582) overlying cavities (545) to be captured by crowns of staples (585). Thus, as staples (585) are formed, portions of suture (582) are captured amongst the formed staples (585) and coupled to the severed and stapled tissue, as shown in
After staples (585), and suture assembly (580) have been applied to tissue as shown in
The operator then connects shank (420) to trocar (330) in the manner discussed above. Alternatively, the operator may draw the tissue of lower colon portion (LC) and the line of staples (585) radially inwardly after shank (420) and trocar (330) are coupled to one another. Referring to
The operator may then actuate trigger (150) to actuate stapling head assembly (300), resulting in the stapling and severing of tissue in a similar manner as shown in
Middle suture retainer (594b) includes one-way passage features just like middle suture retainer (584b) described above. Thus, middle suture retainer (594b) allows free ends (596, 597) to be pulled outwardly to allow the length of strands (592, 593) to be shortened between middle suture retainer (594b) and corresponding suture retainers (594a, 594c); yet middle suture retainer (594b) prevents free ends (596, 597) from being pulled inwardly to increase the length of strands (592, 593) between middle suture retainer (594b) and corresponding suture retainers (594a, 594c). It should therefore be understood that suture assembly (590) may be deployed and operated just like suture assembly (580), to create a bunched-up tissue configuration to ensure that staples (585) and flap regions (FR) are located within the cylindrical plane defined by knife member (340).
B. Exemplary Alternative Staple Cartridge Including Suture and Staple Weave
As shown in the present example, suture (682) extends in a zig-zag pattern from a proximal portion of cartridge deck (641) toward distal end of cartridge deck (641). Particularly, suture (682) on each side of slot (660) passes over each staple cavity (645) once. As shown, starting at the proximal-most cavity (645), each suture (682) extends in a repeating pattern distally and medially (toward slot (660)) such that the suture (682) extends over an adjacent cavity (645), and distally and laterally (away from slot (660)) back over the adjacent cavity (645). In the example shown, at least a portion of suture (682) is removably adhered to cartridge deck (641). However, in other examples, suture (582) may be affixed to cartridge deck (641) by other suitable methods. Other suitable configurations of suture (682) will be apparent to persons skilled in the art in view of the teachings herein.
Anvil (400) is shown to be positioned in the upper portion (UC) of the colon (C), with shank (420) extending through an opening of the upper colon portion (UC). As shown, ends (686) of suture (682) are pulled to cause the stapled tissue to bunch up, such that flap regions (FR) are brought toward each other and such that the tissue defines an effective width (d) that is smaller than the diameter (b) of knife member (340). Thus, staples (685), suture (682), and flap regions (FR) are all positioned within the cylindrical plane defined by knife member (340). The operator then pulls ends (686) of suture (682) through lateral aperture (1331) of trocar (1330), and secures ends (686) relative to trocar (1330) by tying a knot (688). Knot (688) thus cooperates with trocar (1330) to hold the tissue in the bunched up configuration, thereby maintaining the effective width (d). Other suitable ways in which suture (682) may be secured relative to trocar (1330) will be apparent to persons skilled in the art in view of the teachings herein.
The operator then connects shank (420) to trocar (1330) in the manner discussed above. Alternatively, the user may draw the tissue of lower colon portion and the line of staples (585) radially inwardly and couple suture (682) relative to trocar (1330) after shank (420) and trocar (1330) are coupled to one another. The operator may then draw anvil (400) toward stapling head assembly (300), in the manner described above (e.g., utilizing knob (130)), thus also drawing the upper colon portion (UC) toward the lower colon portion (LC). The operator may then retract trocar (1330) until the tissue of the upper colon portion (UC) and the lower colon portion (LC) are compressed against the deck member (320) to achieve a desirable gap distance, in a similar manner as shown in
The operator may then actuate trigger (150) to actuate stapling head assembly (300), resulting in the stapling and severing of tissue in a similar manner as shown in
C. Exemplary Alternative Staple Cartridge Including Buttress with Integral Sutures for Securing Stapled Tissue to Trocar
Buttress (750) includes an integral pair of proximal sutures (782a) and an integral pair of distal sutures (782b). Sutures (782a, 782b) are formed as strands having free ends that may be manipulated in the manner described below. In the example shown, buttress (750) is removably adhered to deck (741), but in other examples buttress (750) may be associated with or coupled to cartridge (740) in a different manner (e.g., via clips, via hook and loop fasteners, etc.). When an end effector (1110) that incorporates staple cartridge (740) is actuated, buttress (750) will be severed along slot (760) and stapled onto tissue along with staples (785), as shown best in
Anvil (400) is shown to be positioned in the upper portion (UC) of the colon (C), with shank (420) extending through an opening of the upper colon portion (UC). The operator then connects shank (420) to trocar (2330) in a similar manner as discussed above with respect to shank (420) and trocar (330). Before or after the shank (420) and trocar (2330) are coupled to one another, the operator may couple the distal and proximal sutures (782a, 782b) to trocar (2330) via aperture (2331). In the example shown, aperture (2331) is in an accessible distal position (
The operator may then actuate trigger (150) to actuate stapling head assembly (300), resulting in the stapling and severing of tissue in a similar manner as shown in
It should be understood that the foregoing example provides cinching of tissue, and thus drawing-in of flap regions (FR) based on the proximal retraction of anvil (400) toward stapling head assembly (300). As another merely illustrative variation, as shown in
D. Exemplary Alternative Staple Cartridge Including Buttress with Integral Grommets for Securing Stapled Tissue to Trocar
Buttress (850) includes an integral pair of proximal grommets (890a) and an integral pair of distal grommets (890b). Grommets (890a, 890b) are formed as reinforced openings through the body of buttress (850). In the example shown, buttress (850) is removably adhered to deck (841), but in other examples buttress (750) may be associated with or coupled to cartridge (840) in a different manner (e.g., via clips, via hook and loop fasteners, etc.). When an end effector (1110) that incorporates staple cartridge (840) is actuated, buttress (850) will be severed along slot (860) and stapled onto tissue along with staples (885), as shown best in
Anvil (400) is shown to be positioned in the upper portion (UC) of the colon (C), with shank (420) extending through an opening of the upper colon portion (UC). The operator then connects shank (420) to trocar (2330) in a similar manner as discussed above with respect to shank (420) and trocar (330). Before or after the shank (420) and trocar (2330) are coupled to one another, the operator may engage the distal and proximal grommets (890a, 890b) with respective hooks (3332) of trocar (3330). Alternatively, grommets (890a, 890b) may be engaged with only one hook (3332) of trocar (3330). As shown in
After the operator has drawn in the tissue at the severed end of lower colon section (LC), and after the operator has clamped tissue with an appropriate gap between anvil (400) and stapling head assembly (300), the operator may actuate trigger (150) to actuate stapling head assembly (300), resulting in the stapling and severing of tissue in a similar manner as shown in
The following examples relate to various non-exhaustive ways in which the teachings herein may be combined or applied. It should be understood that the following examples are not intended to restrict the coverage of any claims that may be presented at any time in this application or in subsequent filings of this application. No disclaimer is intended. The following examples are being provided for nothing more than merely illustrative purposes. It is contemplated that the various teachings herein may be arranged and applied in numerous other ways. It is also contemplated that some variations may omit certain features referred to in the below examples. Therefore, none of the aspects or features referred to below should be deemed critical unless otherwise explicitly indicated as such at a later date by the inventors or by a successor in interest to the inventors. If any claims are presented in this application or in subsequent filings related to this application that include additional features beyond those referred to below, those additional features shall not be presumed to have been added for any reason relating to patentability.
An apparatus comprising a staple cartridge, wherein the staple cartridge comprises: (i) a plurality of staples, (ii) a deck, wherein the deck defines a plurality of openings, wherein each opening of the plurality of openings is associated with a corresponding staple of the plurality of staples, such that each staple is configured to pass through a corresponding opening of the plurality of openings, and (ii) a cinching feature positioned on the deck, wherein the cinching feature is configured to be coupled to tissue in response to actuation of the staple cartridge, wherein the cinching feature is configured to cinch a portion of stapled tissue toward an inwardly cinched position.
The apparatus of Example 1, wherein the cinching feature comprises at least one suture positioned over at least some of the staple openings.
The apparatus of Example 2, wherein the at least one suture extends over each of the staple openings.
The apparatus of any one or more of Examples 2 through 3, wherein the cinching feature further comprises a plurality of suture retainers operably coupled to the suture.
The apparatus of any one or more of Examples 2 through 4, wherein the deck comprises a slot, wherein the at least one suture comprises a first suture positioned on a first side of the slot and a second suture positioned on a second side of the slot.
The apparatus of any one or more of Examples 1 through 5, wherein the cinching feature is adhered to the deck.
The apparatus of any one or more of Examples 1 through 6, wherein the cinching feature comprises a buttress disposed on the deck.
The apparatus of Example 7, wherein the buttress comprises at least one suture coupled thereto.
The apparatus of any one or more of Examples 7 through 8, wherein the buttress comprises a proximal end and a distal end, wherein the proximal end includes a pair of opposing sutures and the distal end includes a pair of opposing sutures.
The apparatus of any one or more of Examples 7 through 9, wherein the buttress is configured to be severed in response to activation of the severing and stapling assembly.
The apparatus of any one or more of Examples 7 through 10, wherein the buttress comprises at least one aperture.
The apparatus of any one or more of Examples 7 through 11, wherein the buttress comprises a proximal end and a distal end, wherein the proximal end includes a pair of opposing apertures and the distal end includes a pair of opposing apertures.
The apparatus of any one or more of Examples 1 through 12, further comprising a circular stapler, wherein the circular stapler comprises: (i) an anvil, and (ii) a stapling head assembly, wherein the stapling head assembly comprises: (A) a rod configured to engage the anvil, (B) a knife member configured to form a circular cut line in tissue, and (C) a staple driver, wherein the anvil and stapling head assembly are configured to cooperate to clamp and staple tissue; wherein the cinching feature is configured to be coupled to the rod when the circular stapler is associated with tissue stapled and severed by the apparatus.
The apparatus of Example 13, wherein the rod includes an aperture configured to receive a portion of the cinching feature.
The apparatus of any one or more of Examples 13 through 14, wherein the rod includes at least one hook configured to engage a portion of the cinching feature
A method of operating on tissue using a circular stapler, wherein the circular stapler comprises an anvil and a stapling head assembly, wherein the stapling head assembly comprises a rod, a knife member, and a staple driver, wherein the knife member defines a circular cut line, wherein the anvil and stapling head assembly are configured to cooperate to clamp and staple tissue, wherein the method comprises: (a) severing and stapling a first portion of anatomical structure using a non-circular stapler, thereby leaving a plurality of staples on a severed end portion of the first portion of an anatomical structure; (b) inserting the anvil of the circular stapler into a second portion of the anatomical structure; (c) inserting the stapling head assembly into the first portion of the anatomical structure until at least a portion of the rod extends past the severed end portion of the first portion of the anatomical structure; (d) drawing the severed end portion inwardly toward the rod such that the plurality of staples on the severed end portion lie inward of the circular cut line of the knife member; (e) coupling the rod and the anvil; (f) clamping the first and second portions of the anatomical structure together; and (g) driving the knife member toward the anvil, thereby severing the severed end portion and the staples from the first portion of the anatomical structure and at least part of the second portion of the anatomical structure; and (h) stapling the first and second portions of the anatomical structure together.
The apparatus of Example 16, wherein the first portion of the anatomical structure comprises a first portion of a colon, wherein the second portion of the anatomical structure comprises a second portion of the colon.
A method of forming an anastomosis between two portions of a colon using a circular stapler, wherein the circular stapler comprises an anvil and a stapling head assembly, wherein the stapling head assembly comprises a rod, a knife member, and a staple driver, wherein the knife member defines a circular cut line, wherein the anvil and stapling head assembly are configured to cooperate to clamp and staple tissue, wherein the method comprises: (a) severing and stapling a first portion of the colon using a non-circular stapler, thereby leaving a first plurality of staples on a first severed end portion of the first portion of the colon; (b) severing and stapling a second portion of the colon using a non-circular stapler, thereby leaving a second plurality of staples on a second severed end portion of the second portion of the colon; (c) inserting the anvil of the circular stapler into the second portion of the patient's colon; (d) inserting the stapling head assembly into the first portion of the colon until at least a portion of the rod extends past the severed end portion of the first anatomical structure; (e) drawing the first severed end portion inwardly toward the rod such that the first plurality of staples and the first severed end portion lie radially inwardly of the circular cut line of the knife member; (f) driving the knife member toward the anvil, thereby severing the first severed end portion and the first plurality of staples from the first portion of the patient's colon and at least part of the second portion of the patient's colon; and (g) stapling the first and second portions of the colon together.
The method of Example 18, wherein drawing the first severed end portion inwardly toward the rod further comprises cinching the first severed end portion toward the rod.
The system of any one or more of Examples 18 through 19, wherein severing and stapling the first portion of the colon further comprises implanting a suture onto the first severed end portion such that the suture is configured to act as a purse string, wherein the act of drawing the first severed end portion inwardly toward the rod comprises pulling the implanted suture.
It should also be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The above-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
At least some of the teachings herein may be readily combined with one or more teachings of U.S. Pat. No. 7,794,475, entitled “Surgical Staples Having Compressible or Crushable Members for Securing Tissue Therein and Stapling Instruments for Deploying the Same,” issued Sep. 14, 2010, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0151429, entitled “Trans-Oral Circular Anvil Introduction System with Dilation Feature,” published Jun. 5, 2014, issued as U.S. Pat. No. 9,572,573 on Feb. 21, 2017, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0144968, entitled “Surgical Staple with Integral Suture retainer for Tip Deflection,” published May 29, 2014, issued as U.S. Pat. No. 9,289,207 on Mar. 22, 2016, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0158747, entitled “Surgical Stapler with Varying Staple Widths along Different Circumferences,” published Jun. 12, 2014, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0144969, entitled “Pivoting Anvil for Surgical Circular Stapler,” published May 29, 2014, issued as U.S. Pat. No. 9,498,222 on Nov. 22, 2016, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0151430, entitled “Circular Anvil Introduction System with Alignment Feature,” published Jun. 5, 2014, issued as U.S. Pat. No. 9,724,100 on Aug. 8, 2017, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0166717, entitled “Circular Stapler with Selectable Motorized and Manual Control, Including a Control Ring,” published Jun. 19, 2014, issued as U.S. Pat. No. 9,532,783 on Jan. 3, 2017 the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2014/0166728, entitled “Motor Driven Rotary Input Circular Stapler with Modular End Effector,” published Jun. 19, 2014, issued as U.S. Pat. No. 9,597,081 on Mar. 21, 2017, the disclosure of which is incorporated by reference herein; and/or U.S. Pub. No. 2014/0166718, entitled “Motor Driven Rotary Input Circular Stapler with Lockable Flexible Shaft,” published Jun. 19, 2014, issued as U.S. Pat. No. 9,463,022 on Oct. 11, 2016, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
While the examples herein have been provided in the context of a circular stapling instrument, it should be understood that the various teachings herein may be readily applied to various other kinds of surgical instruments. By way of example only, the various teachings herein may be readily applied to linear stapling devices (e.g., endocutters). For instance, various teachings herein may be readily combined with various teachings of U.S. Pub. No. 2012/0239012, entitled “Motor-Driven Surgical Cutting Instrument with Electric Actuator Directional Control Assembly,” published Sep. 20, 2012, issued as U.S. Pat. No. 8,453,914 on Jun. 4, 2013, the disclosure of which is incorporated by reference herein, and/or U.S. Pub. No. 2010/0264193, entitled “Surgical Stapling Instrument with An Articulatable End Effector,” published Oct. 21, 2010, issued as U.S. Pat. No. 8,408,439 on Apr. 2, 2013, the disclosure of which is incorporated by reference herein, as will be apparent to those of ordinary skill in the art. As another merely illustrative example, the various teachings herein may be readily applied to a motorized electrosurgical device. For instance, various teachings herein may be readily combined with various teachings of U.S. Pub. No. 2012/0116379, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” published May 10, 2012, issued as U.S. Pat. No. 9,161,803 on Oct. 20, 2015, the disclosure of which is incorporated by reference herein, as will be apparent to those of ordinary skill in the art. Other suitable kinds of instruments in which the teachings herein may be applied, and various ways in which the teachings herein may be applied to such instruments, will be apparent to those of ordinary skill in the art.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures. By way of example only, various teachings herein may be readily incorporated into a robotic surgical system such as the DAVINCI™ system by Intuitive Surgical, Inc., of Sunnyvale, Calif.
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application is a continuation of U.S. patent application Ser. No. 14/863,999, filed Sep. 24, 2015 and issued as U.S. Pat. No. 10,492,790 on Dec. 3, 2019.
Number | Name | Date | Kind |
---|---|---|---|
4805823 | Rothfuss | Feb 1989 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5292053 | Smith et al. | Mar 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5415334 | Williamson et al. | May 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5902312 | Frater et al. | May 1999 | A |
6024748 | Manzo | Feb 2000 | A |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7367485 | Shelton, IV et al. | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7766937 | Ravikumar | Aug 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
8408439 | Huang et al. | Apr 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8640940 | Ohdaira | Feb 2014 | B2 |
8910847 | Nalagatla et al. | Dec 2014 | B2 |
9033204 | Shelton, IV | May 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9289207 | Shelton, IV | Mar 2016 | B2 |
9463022 | Swayze et al. | Oct 2016 | B2 |
9498222 | Scheib et al. | Nov 2016 | B2 |
9629624 | Hessler | Apr 2017 | B2 |
9775617 | Carter et al. | Oct 2017 | B2 |
10307165 | Henderson | Jun 2019 | B2 |
10492790 | DiNardo et al. | Dec 2019 | B2 |
11109866 | Shelton, IV | Sep 2021 | B2 |
20040087977 | Nolan | May 2004 | A1 |
20040138525 | Saadat | Jul 2004 | A1 |
20040225305 | Ewers | Nov 2004 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050251165 | Vaughan | Nov 2005 | A1 |
20060229643 | Nolan | Oct 2006 | A1 |
20070010866 | Dann et al. | Jan 2007 | A1 |
20070021737 | Lee | Jan 2007 | A1 |
20070246505 | Pace-Floridia | Oct 2007 | A1 |
20070282356 | Sonnenschein | Dec 2007 | A1 |
20070299387 | Williams | Dec 2007 | A1 |
20080045803 | Williams | Feb 2008 | A1 |
20080097487 | Pool | Apr 2008 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100320252 | Viola | Dec 2010 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110118707 | Burbank | May 2011 | A1 |
20110152900 | Regadas | Jun 2011 | A1 |
20120024934 | Shelton, IV | Feb 2012 | A1 |
20120024935 | Shelton, IV | Feb 2012 | A1 |
20120029547 | Shelton, IV | Feb 2012 | A1 |
20120053406 | Conlon | Mar 2012 | A1 |
20120150206 | Barikosky et al. | Jun 2012 | A1 |
20120234900 | Swayze | Sep 2012 | A1 |
20120238823 | Hagerty | Sep 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130193186 | Racenet et al. | Aug 2013 | A1 |
20130193190 | Carter et al. | Aug 2013 | A1 |
20130231681 | Robinson | Sep 2013 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140151429 | Scheib et al. | Jun 2014 | A1 |
20140151430 | Scheib et al. | Jun 2014 | A1 |
20140158747 | Measamer et al. | Jun 2014 | A1 |
20140166717 | Swayze et al. | Jun 2014 | A1 |
20140166728 | Swayze et al. | Jun 2014 | A1 |
20150083772 | Miller et al. | Mar 2015 | A1 |
20150083773 | Measamer et al. | Mar 2015 | A1 |
20150083774 | Measamer et al. | Mar 2015 | A1 |
20150083775 | Leimbach et al. | Mar 2015 | A1 |
20150126977 | Azarbarzin | May 2015 | A1 |
20150305743 | Casasanta et al. | Oct 2015 | A1 |
20150351761 | Shelton, IV et al. | Dec 2015 | A1 |
20150351764 | Shelton, IV | Dec 2015 | A1 |
20160100837 | Huang | Apr 2016 | A1 |
20160324525 | Scheib | Nov 2016 | A1 |
20160374666 | DiNardo et al. | Dec 2016 | A1 |
20160374670 | Fox et al. | Dec 2016 | A1 |
20170086822 | Scheib | Mar 2017 | A1 |
20170086825 | Henderson | Mar 2017 | A1 |
20170086833 | Eckert | Mar 2017 | A1 |
20170086848 | Miller | Mar 2017 | A1 |
20180049741 | Harris | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
201519170 | Jul 2010 | CN |
104434252 | Mar 2015 | CN |
0770356 | May 1997 | EP |
2008595 | Dec 2008 | EP |
2452634 | May 2012 | EP |
2614786 | Jul 2013 | EP |
2954857 | Dec 2015 | EP |
H05-337120 | Dec 1993 | JP |
WO 2014139419 | Sep 2014 | WO |
WO 2015146548 | Apr 2017 | WO |
Entry |
---|
Chinese Office Action and Search Report dated Jun. 1, 2020 for Application No. 201680056066.X, 11 pages. |
European Search Report, Extended, and Written Opinion with Annex dated Feb. 22, 2017 for Application No. 16190334.9, 51 pages. |
European Examination Report dated May 18, 2018 for Application No. 16190334.9, 5 pages. |
International Search Report and Written Opinion dated Dec. 8, 2016 for International Application No. PCT/US2016/052116, 16 pages. |
Brazilian Examination Report dated Jun. 15, 2020 for Application No. BR 112018005773-8, 4 pgs. |
European Examination Report dated Apr. 4, 2019 for Application No. EP 16190334.9, 6 pgs. |
Indian Examination Report dated Jan. 29, 2021 for Application No. IN 201817010488. 5 pgs. |
Japanese Office Action, Notification of Reasons for Refusal, dated Jul. 7, 2020 for Application No. JP 2018-515653, 6 pgs. |
Japanese Office Action, Notice of Reasons for Refusal, Final, dated Mar. 23, 2021, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20200100790 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14863999 | Sep 2015 | US |
Child | 16590965 | US |