The present invention relates to an apparatus and method for coating stents.
Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a stent. Stents act as scaffolding, functioning to physically hold open and, if desired, to expand the wall of affected vessels. Typically stents are capable of being compressed, so that they can be inserted through small lumens via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents include U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at a diseased site. Local delivery of a therapeutic substance is a preferred method of treatment because the substance is concentrated at a specific site and thus, smaller total levels of medication can be administered in comparison to systemic dosages that often produce adverse or even toxic side effects, for the patient.
One method of medicating a stent involves the use of a polymeric carrier coated onto the surface of the stent. A composition including a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent by immersing the stent in the composition or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent surfaces a coating of the polymer and the therapeutic substance impregnated in the polymer.
A shortcoming of the above-described method of medicating a stent is the potential for coating defects due to the nature of the composition applied to the stent. For solvents that evaporate slowly, or “non-volatile” solvents, the liquid composition that is applied to a relatively small surface of the stent can flow, wick and collect during the coating process. As the solvent evaporates, the excess composition hardens, leaving clumps or pools of polymer on the struts or “webbing” between the struts. For solvents that evaporate very fast, or “volatile solvents,” the coating can be rough with a powder like consistency.
For slow evaporating solvents, heat treatment has been implemented to induce the evaporation of the solvent. For example, the stent can be placed in an oven at an elevated temperature (e.g., 60 deg. C. to 80 deg. C.) for a duration of time, for example, at least 30 minutes, to dry the coating. Such heat treatments have not reduced pooling or webbing of the polymer. Moreover, prolonged heat treatment can adversely affect drugs that are heat sensitive and may cause the warping of the stent. The manufacturing time of the stent is also extending for the time the stent is treated in the oven.
An apparatus and method is needed to address these problems. The embodiments of this invention address these and other problems associated with coating stents.
An apparatus to support a stent during the application of a coating composition to a stent, is provided comprising: a mandrel to support a stent during application of a coating composition to the stent; and a temperature element integrated with the mandrel to adjust the temperature of the mandrel. In one embodiment, the inner surface of the stent is in contact with the outer surface of the mandrel. Alternatively, the outer surface of the mandrel is not in contact with the inner surface of the stent or with a majority of the inner surface of the stent. The temperature element can increase or decrease the temperature of the stent to a temperature other than room temperature. In one embodiment, the temperature element includes a heating coil or heating pin disposed within the mandrel. Alternatively, the temperature element can be a lumen or conduit disposed inside of the mandrel for receiving a fluid or a gas. The temperature of the fluid or gas can be adjusted to vary the temperature of the mandrel. A temperature controller can also be provided to adjust the temperature of the temperature element.
A method of coating a stent is provided comprising: positioning a stent on a mandrel assembly; applying a coating composition to the stent; adjusting the temperature of the mandrel assembly to change the temperature of the stent. The mandrel assembly can include a temperature element integrated therewith to allow a user to adjust the temperature of the stent. In one embodiment, the temperature of the mandrel assembly is adjusted prior to the application of the coating composition to the stent. The temperature can be maintained at the same level or adjusted during the coating process. In an alternative embodiment, the temperature of the mandrel assembly can be adjusted subsequent to the termination of the application of the composition to the stent. In yet another embodiment, the temperature of the mandrel is adjusted during the application of the coating composition to the stent. The temperature can be maintained at a constant level or adjusted at anytime as the user sees fit.
A method of coating a stent is also provided, comprising: applying a coating composition to the stent; and inserting a temperature adjusting element within the longitudinal bore of the stent to change the temperature of the stent. The temperature adjusting element does not contact the inner surface of the stent during this process. Alternatively, a user can touch the inner surface of the stent with the temperature adjusting element.
Lock member 26 is coupled to a temperature control device or temperature controller 34 via a conduit 36. A coupler 38 allows the stent mandrel fixture 20 to rotate with respect to conduit 36 and temperature controller 34. Temperature controller 34 can be in communication with a CPU for allowing a user to adjust and determine the temperature of mandrel 24 during the coating process. Sensors could be positioned anywhere along the length of mandrel 24, preferably where mandrel 24 is in contact with the stent for measuring the temperature of the stent structure and providing feedback to the CPU. A temperature element 40, disposed or embedded within, on the exterior surface mandrel 24, or coupled or connected to mandrel, is in communication with temperature controller 34 via a connecting line 42. Temperature element 40 can be, for example, a heating coil pin or any other suitable mechanism capable of heating mandrel 24 to a desired temperature. The temperature element 40 should extend along the length of mandrel 24 so as to provide an even application of heat along the length of a stent. Mandrel 24 should be made from a material that conducts heat efficiently, such as stainless steel, and can be coated with a non-stick material such as TEFLON.
Support member 22 is coupled to a first end 44 of mandrel 24. Mandrel 24 can be permanently affixed to support member 22. Alternatively, support member 22 can include a bore for receiving first end 44 of mandrel 24. First end 44 of mandrel 24 can be threaded to screw into the bore. Alternatively, a non-threaded first end 44 of mandrel 24 can be press-fitted or friction-fitted within the bore. The bore should be deep enough so as to allow mandrel 24 to securely mate with support member 22. The depth of the bore can be over-extended so as to allow a significant length of mandrel 24 to penetrate the bore. This would allow the length of mandrel 24 to be adjusted to accommodate stents of various sizes.
Lock member 26 includes a flat end that can be permanently affixed to a second end 46 of mandrel 24 if end 44 of mandrel 24 is disengagable from support member 22. Mandrel 24 can have a threaded second end 46 for screwing into a bore of lock member 26. A non-threaded second end 46 and bore combination can also be employed such that second end 46 of mandrel 24 is press-fitted or friction-fitted within the bore of lock member 26. Lock member 26 can, therefore, be incrementally moved closer to support member 22 to allow stents of any length to be securely pinched between flat ends of the support and lock members 22 and 26. A stent need not, however, be pinched between these ends. A stent can be simply crimped tightly on mandrel 24. Should the design include a mandrel that is disengagable from lock member 26, electrical components need be used to allow connecting line 42 to be functionally operable when all the components are assembled.
In
In accordance with another embodiment of the invention, in lieu of or in addition to using stent mandrel fixture 20, a heating pin 54 (e.g., a TEFLON covered electrical heating element), as illustrated by
A coating composition can be applied to a stent, for example by spraying. The stent can be rotated about its longitudinal axis and/or translated backward and forward along its axis to traverse a stationery spray nozzle. In one embodiment, prior to the application of the coating composition, the temperature of mandrel 24 can be adjusted either below or above room temperature. If the solvent has a vapor pressure greater than, for example, 17.54 Torr at ambient temperature, the temperature of mandrel 24 can be adjusted to inhibit evaporation of the solvent. If the solvent has a vapor pressure of less than, for example, 17.54 Torr at ambient temperature, the temperature of mandrel 24 can be adjusted to induce the evaporation of the solvent. For example, temperature of mandrel 24 can be adjusted to anywhere between, for example 40 deg. C. to 120 deg. C. for non-volatile solvents. Temperatures of less than 25 deg. C. can be used for the more volatile solvents.
The temperature can be adjusted prior to or during the application of the coating composition. The temperature of mandrel 24 can be maintained at a generally steady level through out the application of the composition or the coating process, or until a significant amount to the solvent is removed such that the coating is in a completely dry state or a semi-dry state. By way of example, the temperature of mandrel 24 can be set to 60 deg. C. prior to the application of the coating composition and maintained at 60 deg. C. during the application of the composition. In one embodiment, the temperature of the mandrel can be incrementally increased or decreased during the coating process to another temperature. Alternatively, the temperature of mandrel 24 can be adjusted, i.e., increased or decreased, subsequent to the termination of the application of the coating composition, such that during the application of the coating composition, temperature of mandrel 24 is at, for example, room temperature. In the embodiment that heating pin 54 is used, obviously the pin 54 needs to be inserted into the bore of the stent and the heat applied subsequent to the application of the coating composition. In one embodiment, heating pin 54 can be contacted with the inner surface of the stent during the drying process.
The coating composition can include a solvent and a polymer dissolved in the solvent and optionally a therapeutic substance or a drug added thereto. Representative examples of polymers that can be used to coat a stent include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(hydroxyvalerate); poly(L-lactic acid); polycaprolactone; poly(lactide-co-glycolide); poly(hydroxybutyrate); poly(hydroxybutyrate-co-valerate); polydioxanone; polyorthoester; polyanhydride; poly(glycolic acid); poly(D,L-lactic acid); poly(glycolic acid-co-trimethylene carbonate); polyphosphoester; polyphosphoester urethane; poly(amino acids); cyanoacrylates; poly(trimethylene carbonate); poly(iminocarbonate); copoly(ether esters) (e.g. PEO/PLA); polyalkylene oxalates; polyphosphazenes; biomolecules, such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid; polyurethanes; silicones; polyesters; polyolefins; polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrilestyrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.
A “Solvent” is defined as a liquid substance or composition that is compatible with the polymer and is capable of dissolving the polymer at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide, chloroform, acetone, water (buffered saline), xylene, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, isopropanol admixed with water, N-methyl pyrrolidinone, toluene, and mixtures and combinations thereof.
The therapeutic substance or drug can be for inhibiting the activity of vascular smooth muscle cells. More specifically, the active agent can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The active agent can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. For example, the agent can be for enhancing wound healing in a vascular site or improving the structural and elastic properties of the vascular site. Examples of agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The active agent can also fall under the genus of antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. TAXOTERE®, from Aventis S.A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. ADRIAMYCIN® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. MUTAMYCIN® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as ANGIOMAX™ (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. CAPOTEN® and CAPOZIDE® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. PRINIVIL® and PRINZIDE® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name MEVACOR® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, dexamethasone, rapamycin, and derivatives or analogs thereof.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3882816 | Rooz et al. | May 1975 | A |
4459252 | MacGregor | Jul 1984 | A |
4629563 | Wrasidlo | Dec 1986 | A |
4733665 | Palmaz | Mar 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4865879 | Finlay | Sep 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4906423 | Frisch | Mar 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
5037427 | Harada et al. | Aug 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5112457 | Marchant | May 1992 | A |
5163952 | Froix | Nov 1992 | A |
5171445 | Zepf | Dec 1992 | A |
5188734 | Zepf | Feb 1993 | A |
5229045 | Soldani | Jul 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5306286 | Stack et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5455040 | Marchant | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5514154 | Lau et al. | May 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5537729 | Kolobow | Jul 1996 | A |
5558900 | Fan et al. | Sep 1996 | A |
5569295 | Lam | Oct 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5603721 | Lau et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5611775 | Machold et al. | Mar 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5628786 | Banas et al. | May 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5713949 | Jayaraman | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5718861 | Andrews et al. | Feb 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5772864 | Møller et al. | Jun 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5795318 | Wang et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5823996 | Sparks | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5833659 | Kranys | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843172 | Yan | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5855598 | Pinchuk | Jan 1999 | A |
5855600 | Alt | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5891507 | Jayaraman | Apr 1999 | A |
5895407 | Jayaraman | Apr 1999 | A |
5897911 | Loeffler | Apr 1999 | A |
5922393 | Jayaraman | Jul 1999 | A |
5928279 | Shannon et al. | Jul 1999 | A |
5935135 | Bramfitt et al. | Aug 1999 | A |
5948018 | Dereume et al. | Sep 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6010573 | Bowlin | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6030371 | Pursley | Feb 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6045899 | Wang et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120847 | Yang et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6156373 | Zhong et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6171334 | Cox | Jan 2001 | B1 |
6203569 | Wijay | Mar 2001 | B1 |
6206915 | Fagan et al. | Mar 2001 | B1 |
6214115 | Taylor et al. | Apr 2001 | B1 |
6245099 | Edwin et al. | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273910 | Limon | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6279368 | Escano et al. | Aug 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6322847 | Zhong et al. | Nov 2001 | B1 |
6358567 | Pham et al. | Mar 2002 | B2 |
6364903 | Tseng et al. | Apr 2002 | B2 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6416543 | Hilaire et al. | Jul 2002 | B1 |
6447835 | Wang et al. | Sep 2002 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6521284 | Parsons et al. | Feb 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6534112 | Bouchier et al. | Mar 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
20030050687 | Schwade et al. | Mar 2003 | A1 |
20040061261 | Gonzalez et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
0 665 023 | Aug 1995 | EP |
0 850 651 | Jul 1998 | EP |
0 875 218 | Nov 1998 | EP |
0 970 711 | Jan 2000 | EP |
11299901 | Nov 1999 | JP |
WO 9001969 | Mar 1990 | WO |
WO 9112846 | Sep 1991 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9823228 | Jun 1998 | WO |
WO 9916386 | Apr 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0100112 | Jan 2001 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0145763 | Jun 2001 | WO |