Yariv, A., et al., "Compensation for Channel Dispersion by Nonlinear Opical Phase Conjugation," Optics Letters, vol. 4, No. 2, Feb. 1979, pp. 52-54. |
Watanabe, S., et al., "Compensation of Chromatic Dispersion in a Single-Mode Fiber by Optical Phase Conjugation," IEEE Photonics Technology Letters, vol. 5, No. 1, Jan. 1993, pp. 92-95. |
Gnauck, A. H., et al., "10-Gb/s 360-km Transmission Over Dispersive Fiber Using Midsystem Spectral Inversion," Photon. Technol. Lett., vol. 5, No. 6, Jun. 1993, pp. 663-666. |
Tatham, M. C., et al., "Compensation of Fibre Chromatic Dispersion by Mid-Way Spectral Inversion in a Semiconductor Laser Amplifier," ECOC '93 Postdeadline Digest, Montreaux, Sep. 1993, pp. 61-64. |
Gnauck, A. H., et al., "Transmission of Two Wavelength-Multiplexed 10-Gb/s Channels Over 560 km of Dispesive Fibre," Electron. Lett., vol. 30, No. 9, Apr. 28, 1994, pp. 727-728. |
Pepper, D. M., and Yariv, A., "Compensation for Phase Distortions in Nonlinear Media by Phase Conjugation," Opt. Lett., vol. 5, No. 2, Feb. 1980, pp. 59-60. |
Kikuchi, K., and Lorrattanasane, C., "Compensation for Pulse Waveform Distortion in Ultra-Long Distance Optical Communication Systems by Using Nonlinear Optical Phase Conjugator," Optical Amplifiers and Their Applications, Technical Digest, vol. 14, Jul. 4-6, 1993, Yokohama, Japan, pp. 22-25. |
Kurtzke, C., and Gnauck, A. H., "How to Increase Capacity Beyond 200 Tbit/s km Without Solitons," Proc. of the 19th European Conference on Optical Communication, vol. 3, Sep. 12-16, 1993, Montreux, Switzerland, pp. 45-48. |
Pieper, W., et al., "Nonlinearity-Insensitive Standard-Fibre Transmission Based on Optical-Phase Conjugation in a Semiconductor-Laser Amplifier," Electronics Letters, vol. 30, No. 9, Apr. 28, 1994, pp. 724-726. |
Watanabe, S., and Chikama, T., "Cancellation of Four-wave Mixing in Multichannel Fibre Transmission by Midway Optical Phase Conjugation," Electronics Letters, vol. 30, No. 14, Jul. 7, 1994, pp. 1156-1157. |
Xu, C. Q., et al., "Efficient Broadband Wavelength Converter for WDM Optical Communication Systems," OFC '94 Technical Digest, paper No. ThQ4, pp. 250-251, Feb. 1994. |
Hagimoto, K., et al., "Penalty Free Dual-Channel 10 Gbit/s Transmission Over 132 km Standard Fiber Using a PLC Delay Equalizer With -830 ps/nm," OFC '94 Technical Digest, Postdeadline Papers, Feb. 20-25, 1994, San Jose, California, pp. 112-115. |
Takiguchi, K., et al., "Dispersion Compensation Using a Planar Lightwave Circuit Optical Equalizer," IEEE Photonics Technology Letters, vol. 6, No. 4, Apr. 1994, pp. 561-564. |
Hill, K. O., et al., "Aperiodic In-Fiber Bragg Gratings for Optical Fiber Dispersion Compensation," OFC '94 Technical Digest, Postdeadline Papers, Feb. 20-25, 1994, San Jose, California, pp. 17-20. |
Onishi, M., et al., "Dispersion Compensating Fiber With a Figure of Merit Compact Packaging," Technical Digest of the Fifth Optoelectronics Conference, Jul. 12-15, 1994, Makuhari Messe, Japan, pp. 126-127. |
Poole, C.D., et al., "Elliptical-Core Dual-Mode Fiber Dispersion Compensator," Proceedings of the 19th European Conference on Optical Communication, vol. 3, Sep. 27-Oct. 1, 1992, Berline, Germany, pp. 863-866. |
Lundin, R., "Dispersion Flattening in a W Fiber," Applied Optics, vol. 33, No. 6, Feb. 20, 1994, pp. 1011-1014. |