1. Field of Invention
The invention is directed to pressure relief devices for compensating for pressure changes within sealed or isolated zones of an annulus of an oil or gas wellbore.
2. Description of Art
Sealing or isolating zones or areas of an annulus of wellbores is well known in the art. In general, one or more wellbore barriers such as packers or bridge plugs are disposed with in a wellbore above and below a “zone” or area of the wellbore in which production, or other wellbore intervention operations are performed. In some instances, the isolated zone is not being produced or intervention operations are not being performed, however, tubing, e.g., an inner casing, is disposed through this zone so that oil or gas production or other downhole operations can be performed below the isolated zone. In these instances, the fluid trapped or sealed in this isolated zone can expand or contract depending on the temperature of the fluid trapped in the isolated zone. When the temperature increases, such as during production from other zones within in the wellbore, the fluid expands and can cause damage to the inner casing of the wellbore, the outer casing of the wellbore, other components within the wellbore, or the formation itself. When the temperature decreases, such as when fluid is pumped or injected into the wellbore, the fluid contracts and can cause damage to the inner casing of the wellbore, the outer casing of the wellbore, other components within the wellbore, or the formation itself.
In situations where wells are designed with multiple barriers, such as packers, bridge plugs and the like, in the annular space, fluid becomes trapped in the space between these barriers. If the temperature of this trapped fluid increases, such as during production from the well, pressure within this isolated annular space increases. If the temperature of this trapped fluid decreases, such as during injection of fluids into the well, pressure within this isolated annular space decreases. In some situations, these pressure changes can be substantial and may cause failure of critical well components, including damage to the formation itself.
The pressure relief devices disclosed herein facilitate compensation of the pressure within the isolated wellbore annulus. Broadly, the pressure relief devices disclosed herein comprise a tubular member having a housing disposed on an outer wall surface of the tubular member. The housing comprises a chamber divided into two portions by a piston. One portion of the chamber, referred to as the hydrostatic chamber, is in fluid communication with the wellbore environment through a port. The other portion of the chamber, referred to as the sealed chamber, is sealed and may be at atmospheric pressure or it may have a gas disposed therein. As pressure within the outside environment, such as within an isolated wellbore annulus, increases such as due to an increase in temperature within that environment, the resultant increase in pressure is distributed through the port and into the hydrostatic chamber. As pressure within the outside environment decreases, such as due to a decrease in temperature within that environment, the resultant decrease in pressure is compensated by pressure moving through the port and into the outside environment. As a result, the likelihood that the change in pressure within the outside environment will cause damage to the wellbore or the tubing disposed within the wellbore or any other wellbore component within the outside environment is decreased.
During movement of the piston away from the port due to the increased pressure within the outside environment exerting force on the hydrostatic side of the piston, the piston is moved away from the port and the volume of the sealed chamber is decreased and, therefore, becomes energized by compression of the fluid or gas contained in the sealed chamber. Conversely, when the hydrostatic pressure is decreased, the compressed fluid or gas in the sealed chamber exerts a force on the sealed side of the piston to force the piston back until equilibrium of pressure on both sides of the piston is established, or until the piston can no longer move, such as due to the piston reaching the top or bottom of the hydrostatic chamber. In other words, the atmospheric pressure or gas pressure within the sealed chamber acts as a return mechanism for the piston.
Similarly, during movement of the piston toward the port due to the decreased pressure within the outside environment reducing force on the hydrostatic side of the piston, the piston is moved toward the port and the volume of the sealed chamber is increased until the pressure on both sides of the piston is equalized, or until the piston can no longer move, such as due to the piston reaching the top or bottom of the hydrostatic chamber. When the hydrostatic pressure is increased, it exerts a force on the hydrostatic side of the piston to force the piston back until equilibrium of pressure on both sides of the piston is established, or until the piston can no longer move, such as due to the piston reaching the top or bottom of the sealed chamber.
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring now to
Housing 30 includes outer wall surface 36 and inner wall surface 38, and is connected to outer wall surface 22 of tubular member 20 at upper and lower ends 40, 42. Chamber 44 is disposed between inner wall surface 38 of housing 30 and outer wall surface 22 of tubular member 20. Housing 30 also includes port 46 which is in fluid communication, or capable of being placed in fluid communication, with an outside environment such as the annulus of a wellbore (not shown in
Disposed within chamber 44 is piston 50. Piston 50 is in sliding engagement with outer wall surface 22 of housing 20 and inner wall surface 38 of housing 30. Seals 52 prevent fluid leaks between piston 50 and outer wall surface 22 of housing 20 and inner wall surface 38 of housing 30. Piston 50 divides chamber 44 into hydrostatic chamber 54 and sealed chamber 56. Hydrostatic chamber 54 is in fluid communication with port 46. Sealed chamber 56 is isolated from the outside environment except in certain embodiments where a charging port is provided for charging. “Charging” occurs when a gas, such as nitrogen, is pumped into sealed chamber 56 of chamber 44. As shown in the embodiment of
In one specific operation of pressure relief device 10, pressure relief device 10 is placed in a work string such as production string or other string of tubing (not shown in
Thereafter, if the pressure within the isolated wellbore annulus decreases, such as due to a temperature decrease due to cessation of production operations through the work string, the compressed atmospheric pressure or gas within sealed chamber 56 exerts a force against piston 50 that is greater than the hydrostatic pressure within hydrostatic chamber 54. Accordingly, piston 50 moves toward port 46 causing the volume in hydrostatic chamber 54 of chamber 44 to decrease and the volume of sealed chamber 56 to increase. Piston 50 continues to move toward port 46, reducing the volume of hydrostatic chamber 54 and increasing the volume of sealed chamber 56 until the pressure on both sides of piston 50 reach equilibrium, or until piston 50 can no longer move toward port 46 such as due to piston 50 engaging a detent or stop (not shown). Thereafter, piston 50 is in position such that it can again move away from port 46 in response to a pressure increase within the isolated wellbore annulus.
In another embodiment of the operation of pressure relief device 10, the fluid within the isolated wellbore annulus contracts, or the pressure within the isolated wellbore annulus decreases, such as due to fluid injection operations being performed through the work string, the decreased pressure reduces the force being exerted on the hydrostatic side of piston 50. As a result, piston 50 is then moved toward port 46 causing the volume of sealed chamber 56 of chamber 44 to increase and the volume of hydrostatic chamber 54 to decrease. As a result, the atmospheric pressure or gas within sealed chamber 56 becomes “energized,” i.e., biased away from port 46. Piston 50 continues to move into hydrostatic chamber 56 until the pressure on both sides of piston 50 reach equilibrium, or until piston 50 can no longer move toward port 46 such as due to piston 50 engaging a detent or stop (not shown). In so doing, the pressure being exerted on the inner wall of the casing, or the inner wall of the formation, or the outer wall surface of the work string, is spread out and increased toward or achieving equilibrium, which decreases the likelihood of failure of any of the casing, the formation, or the work string, or any other wellbore component disposed in the isolated wellbore annulus.
Thereafter, if the pressure within the isolated wellbore annulus increases, such as due to a temperature increase due to cessation of fluid injection operations through the work string, the “energized” sealed chamber 56 exerts a force on piston 50 that is greater than the hydrostatic pressure within hydrostatic chamber 54. Accordingly, piston 50 moves away from port 46 causing the volume in hydrostatic chamber 54 of chamber 44 to increase and the volume of sealed chamber 56 to decrease. Piston 50 continues to move away from port 46, increasing the volume of hydrostatic chamber 54 and decreasing the volume of sealed chamber 56 until the pressure on both sides of piston 50 reach equilibrium, or until piston 50 can no longer move away from port 46 such as due to piston 50 engaging a detent or stop (not shown). Thereafter, piston 50 is in position such that it can again move away from port 46 in response to a pressure decrease within the isolated wellbore annulus.
Referring now to
Upper and lower housings 130, 230 include outer wall surface 36 and inner wall surface 38 and are connected to outer wall surface 22 of tubular member 20 at upper and lower ends 40, 42. Chambers 144, 244 are disposed between inner wall surface 38 of upper and lower housings 130, 230 and outer wall surface 22 of tubular member 20 and are connected to each other through passage 110. Upper and lower housings 130, 230 also include ports 146, 246, respectively, in fluid communication, or capable of being placed in fluid communication, with an outside environment such as annulus 91 and annulus 92, respectively, of wellbore 94. For example, as shown in the embodiment of
Disposed within chamber 144 is piston 150 and disposed within chamber 244 is piston 250. Pistons 150, 250 are in sliding engagement with outer wall surface 22 of housing 20 and inner wall surface 38 of housings 130, 230, respectively. Seals 52 prevent fluid leaks between pistons 150, 250 and outer wall surface 22 of housing 20 and inner wall surface 38 of housings 130, 230, respectively. Pistons 150, 250 divide chambers 144, 244 into hydrostatic chambers 154, 254 and sealed chambers 156, 256, respectively. Hydrostatic chambers 154, 254 are in fluid communication with ports 146, 246, respectively. Sealed chambers 156, 256 are isolated from the outside environment except during charging. Sealed chambers 156, 256 are charged through charging port 58 which includes a fluid flow restriction device (not shown).
In one particular operation of pressure relief device 100, pressure relief device 100 is placed in work string 101 such as a production string or other string of tubing and run-into cased wellbore 94. Pressure relief device 100 is then disposed within cased wellbore 94 such that upper housing 130 is disposed above wellbore barrier 102 and lower housing 230 is disposed below wellbore barrier 102 and above wellbore barrier 104. Thus, hydrostatic chamber of piston 150 is placed in fluid communication with annulus 91 of wellbore 94 through port 146, and hydrostatic chamber of piston 250 is placed in fluid communication with annulus 92 of wellbore 94 through 246. In so doing, either because ports 146, 246 are continuously opened or because a rupture disc or other similar device is actuated, hydrostatic chambers 154, 254 are placed in fluid communication with the isolated wellbore annulus 91, 92, respectively.
After being disposed within wellbore 94, pressure relief device 100 can be actuated by increased hydrostatic pressure within one or both of annulus 91 or annulus 92 in the same manner as described above with respect to pressure relief device 10; however, movement of piston 250 toward port 146 of upper housing 130 will cause piston 150 to move in the same direction, and movement of piston 150 toward port 246 of lower housing 230 will cause piston 250 to move in the same direction. Thus, pressure relief device 100 is capable of providing reduction of pressure in two different isolated wellbore annuluses and, in so doing, balances the pressures within annuluses 91, 92.
In one specific operation of pressure relief device 100, pressure relief device 100, such as in the event that wellbore barrier 104 fails, the increase in pressure within annulus 92 caused by the pressure from annulus 93 combining with the pressure within annulus 92 will be distributed through port 246 into hydrostatic chamber 254, causing piston 250 to move away from port 246, i.e., upward in the embodiment of
Referring now to
In another embodiment, shown in
As illustrated in
In another embodiment, shown in
Referring now to
In still another embodiment, shown in
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. For example, the passages in the various embodiments of the pressure relief devices, if present, may be as shown or may be disposed completely around the circumference of the tubular member 20. Moreover, the sealed chambers of the pressure relief devices are not required to be charged with a gas before use. Instead, sealed chambers may be atmospheric chambers such that no charging ports are required. In addition, the pistons may be differential pistons to compensate for the pressure differences within the hydrostatic chambers and the sealed chambers. Further, the housing chamber may be disposed above, below, or in between the upper or lower wellbore barriers. Additionally, the pressure relief device may be disposed between the bottom of the wellbore and another wellbore barrier such as a packer. Moreover, the passages may extend through two or more wellbore barriers to reach different isolated wellbore annuluses. Further, three or more pressure relief devices may be disposed within a wellbore and they may or may not include passages establishing fluid communication with the sealed chambers of each of the pressure relief devices. In addition, in embodiments comprising two or more housing chambers, each housing chamber is not required to contain a piston. For example, in the embodiment of
Number | Name | Date | Kind |
---|---|---|---|
3527297 | Todd | Sep 1970 | A |
3633671 | Nelson | Jan 1972 | A |
4260017 | Nelson et al. | Apr 1981 | A |
4729430 | White et al. | Mar 1988 | A |
4936383 | Towner et al. | Jun 1990 | A |
5020600 | Coronado | Jun 1991 | A |
5024273 | Coone et al. | Jun 1991 | A |
5048611 | Cochran | Sep 1991 | A |
5174379 | Whiteley et al. | Dec 1992 | A |
5860452 | Ellis | Jan 1999 | A |
6092611 | Saxman | Jul 2000 | A |
6109356 | Echols et al. | Aug 2000 | A |
6155342 | Oneal | Dec 2000 | A |
6186236 | Cox | Feb 2001 | B1 |
6216785 | Achee, Jr. et al. | Apr 2001 | B1 |
6253861 | Carmichael et al. | Jul 2001 | B1 |
6431291 | Moore et al. | Aug 2002 | B1 |
6571875 | Bissonnette et al. | Jun 2003 | B2 |
6973978 | Cravatte | Dec 2005 | B2 |
7011153 | Erkol | Mar 2006 | B2 |
7066264 | Bissonnette et al. | Jun 2006 | B2 |
7108015 | Lombari et al. | Sep 2006 | B2 |
7147052 | Erkol | Dec 2006 | B2 |
7353845 | Underwood et al. | Apr 2008 | B2 |
7500526 | Telfer | Mar 2009 | B2 |
7503384 | Coronado | Mar 2009 | B2 |
7628213 | Telfer | Dec 2009 | B2 |
7661478 | Palmer et al. | Feb 2010 | B2 |
7665545 | Telfer | Feb 2010 | B2 |
7762324 | Clem | Jul 2010 | B2 |
7861744 | Fly et al. | Jan 2011 | B2 |
8066074 | Maskos et al. | Nov 2011 | B2 |
20030141059 | Mauldin et al. | Jul 2003 | A1 |
20040094304 | Turner et al. | May 2004 | A1 |
20040159447 | Bissonnette et al. | Aug 2004 | A1 |
20050279501 | Surjaatmadja et al. | Dec 2005 | A1 |
20060191685 | Coronado | Aug 2006 | A1 |
20070012458 | Jackson | Jan 2007 | A1 |
20070240883 | Telfer | Oct 2007 | A1 |
20080093080 | Palmer et al. | Apr 2008 | A1 |
20090056952 | Churchill | Mar 2009 | A1 |
20090139718 | Clem | Jun 2009 | A1 |
20090139720 | Frazier | Jun 2009 | A1 |
20100032162 | Olstad et al. | Feb 2010 | A1 |
20100181080 | Levy | Jul 2010 | A1 |
20100270030 | Ashy et al. | Oct 2010 | A1 |
20100319927 | Yokley et al. | Dec 2010 | A1 |
20100326737 | Peddle et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0207785 | Jan 1987 | EP |
WO0188328 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20120090852 A1 | Apr 2012 | US |