The present invention relates to air-cooled condensing systems and more particularly to an air cooled condensing system that maintains thermodynamic efficiency but is much simpler and cheaper in physical installation than the current state of the art air cooled condensing systems.
Current state of the art air cooled condensing systems use flat two-dimensional tube sheets. The elevation of tube sheets in an A-framed air cooled condenser (“ACC”) is not constant due to manufacturing tolerances, erection tolerances and deflection of the actual support system and heat exchange cores. Because of this elevation difference, a zero welding gap cannot be maintained with the current two-dimensional flat tube sheets. That is, the two component heat exchange coils of an A-frame ACC cannot be welded directly to one-another.
The typical arrangement of an air cooled condenser according to the current state of the art is shown in
The current ACC design requires a significant amount of field welding. ‘Field welding’ is the welding that is performed at the construction site, as compared to ‘shop welding’ which is the welding that is performed in the factory. Companies that purchase ACCs, as well as the companies that erect them for purchasers, face very high costs to install them, and one of the contributory factors to the high installation cost is the amount of labor, man hours, and equipment costs it takes to do the field welding. Field welding can be very expensive when compared to the cost of shop welding.
The present invention relates to a change in the design of an ACC which will result in substantially less field welding. This will make ACCs cheaper to erect and much more attractive to purchase.
According to a first embodiment of the invention, an angle (L-shaped length of steel) may be shop-welded to the tube sheet on half of the primary HECs. According to this embodiment, the other half of the primary HECs may have a traditional configuration. Both the traditional HECs and the HECs having the shop-welded angle would be shipped to the assembly/field location. According to a preferred embodiment, the angle will be the full length of the inlet HEC tube sheet. At the assembly/field location, the HEC with the shop welded angle would be erected onto the structure first, and then the traditional HEC (the one with no angle welded to the tube sheet) would be erected second. The tube sheet of the second HEC would sit on, and be field welded to, the angle of the first HEC, reducing the current amount of field welding necessary to join the heat exchange coils by 50%.
Approximately 15% to 20% of the coils of a typical A-Frame ACC are so-called “secondary coils,” which often have modified shapes or arrangements to allow for vacuum piping and other infrastructure. The connection between secondary coils according to the invention may or may not be made according to the embodiments described herein, depending on the particular structure/arrangement of the secondary coils.
According to another embodiment, similar to the embodiment above, an inverted V-shaped length of steel, instead of an L-shaped length of steel, is shop welded to the tube sheet on half of the primary HECs. According to this embodiment of the invention, the other one-half of the primary HECs have a standard configuration. Also, according to this embodiment, after the HECs are delivered to the assembly site, the modified HECs are paired with traditional HECs and the tube sheet of the traditional HEC is welded to the inverted V-shaped length of steel that was shop welded to the modified HEC.
According to another embodiment, an inverted U-shaped length of steel is shop welded to the tube sheet on half of the primary HECs. According to this embodiment of the invention, the other one-half of the primary HECs have a standard configuration. Also according to this embodiment, after the HECs are delivered to the assembly site, the modified HECs are paired with traditional HECs and the tube sheet of the traditional HEC is welded to the inverted U-shaped length of steel that was shop welded to the modified HEC.
According to yet another embodiment of the invention, a flat or substantially flat length of steel is shop welded to the tube sheet on half of the primary HECs, and, after delivery of the HECs to the assembly site, the primary HECs to which the flat length of steel has been shop welded are paired with primary HECs having a traditional tube sheet configuration, and the tube sheet of the HEC having a traditional configuration is field welded to the flat plate on the modified HEC. According to a preferred aspect of this embodiment, the edge of the tube sheet that is shop welded to the flat plate is formed with a beveled or angled edge corresponding to the desired angle at which the plate is fitted/shop welded to the tube sheet.
According to another embodiment of the invention, an improved ACC includes an optimized three-dimensional tube sheet shape, which requires no shop-welding of a joining angle or other piece to one of the tube sheets, and which still reduces the current amount of field welding necessary to join the heat exchange coils by up to 50%. According to this embodiment of the invention, the tube sheet shapes may be modified and optimized to allow flexibility of adjusting the elevation of the heat exchange cores, while keeping a zero welding gap, and without changing the design angle of the heat exchange cores.
Instead of two longitudinal field welds to join the component HECs of an A-frame ACC, the present invention eliminates one of these and reduces it to a single longitudinal field weld, resulting in a savings of 50% in this type of field weld, and a total savings of around 10-15% of field welding on the whole ACC.
According to one aspect of the present invention, the two field welds that are made to join the SDM skirts to the tube sheets remain, and are the same size (10 mm) as before.
According to an embodiment of the invention, a 50% reduction in field welding can be achieved where the two HECs meet. According to this embodiment, there are no longer two longitudinal 15 mm welds between a closure plate and each of the HECs as there is according to prior designs. According to preferred embodiments of the present invention, only one field weld need be made at the assembly site in order to join the two HECs. According to a further embodiment of the invention, there is presented a way to achieve a cheaper installed cost at-site.
According to another embodiment of the invention, the need for a closure plate is eliminated. According to this embodiment, less steel, and fewer parts are required to be delivered to the site, and unloaded and handled at the site. Moreover, according to this embodiment, there will be no need to fit up the closure plates to the HECs at the site. According to this embodiment, there is further savings due to reduced material, shipping, and handling/labor costs.
According to the present invention, there is provided ample opportunity for adjustment at the assembly site, as the HEC having the traditional configuration can sit anywhere on the angle/bent shape/tube sheet extension of the modified HEC, and the erector can still easily make a fit up and field weld.
According to the present invention, significant cost savings are presented at the assembly site, and while some work transferred to the manufacturing facility/factory/shop, factory labor is much less costly than assembly labor, and will not add significantly to the cost of fabricating an HEC.
The subsequent description of the preferred embodiments of the present invention refers to the attached drawings, wherein:
In the following description, numerous details are set forth to provide a more thorough explanation of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention.
For assembly of an ACC according to this first embodiment of the invention, one half of the primary heat exchanger coils that are shipped to the assembly location include the shop welded angle, and the other one half of the primary heat exchanger coils have a generally standard configuration. During assembly of the heat exchanger A-frame 2 at the assembly location, one modified heat exchanger coil bearing the shop welded angle is positioned opposite a generally standard configuration heat exchanger coil, and the inner edge of the tube sheet 12 of the standard configuration heat exchanger coil is field welded to the face of the angle 16 that is opposite the face that is welded to tube sheet 12a of the modified heat exchanger coil.
For assembly of an ACC according to this embodiment of the invention, one half of the primary heat exchanger coils that are shipped to the assembly location include the extended and bent tube sheet, and the other one half of the primary heat exchanger coils have a generally standard configuration. During assembly of the heat exchanger A-frame 2 at the assembly location, one modified heat exchanger coil bearing the extended and bent tube sheet 18 is positioned opposite a generally standard configuration heat exchanger coil, and the inner edge of the tube sheet 12 of the standard configuration heat exchanger coil is field welded to the top face of the extended and bent portion of tube sheet 18.
For assembly of an ACC according to this third embodiment of the invention, one half of the primary heat exchanger coils that are shipped to the assembly location include the shop welded inverted V-shaped length of steel 20, and the other one half of the primary heat exchanger coils have a generally standard configuration. During assembly of the heat exchanger A-frame 2 at the assembly location, one modified heat exchanger coil bearing the shop welded V-shaped length of steel 20 is positioned opposite a generally standard configuration heat exchanger coil, and the inner edge of the tube sheet 12 of the standard configuration heat exchanger coil is field welded to the face of the V-shaped length of steel 20 that is opposite the face that is welded to tube sheet 12a of the modified heat exchanger coil.
For assembly of an ACC according to this fourth embodiment of the invention, one half of the primary heat exchanger coils that are shipped to the assembly location include the shop welded inverted U-shaped length of steel 22, and the other one half of the primary heat exchanger coils have a generally standard configuration. During assembly of the heat exchanger A-frame 2 at the assembly location, one modified heat exchanger coil bearing the shop welded U-shaped length of steel 22 is positioned opposite a generally standard configuration heat exchanger coil, and the inner edge of the tube sheet 12 of the standard configuration heat exchanger coil is field welded to the face of the U-shaped length of steel 22 that is opposite the face that is welded to tube sheet 12a of the modified heat exchanger coil.
For assembly of an ACC according to this fifth embodiment of the invention, one half of the primary heat exchanger coils that are shipped to the assembly location include the shop welded flat length of steel 24, and the other one half of the primary heat exchanger coils have a generally standard configuration. During assembly of the heat exchanger A-frame 2 at the assembly location, one modified heat exchanger coil bearing the shop welded flat length of steel 24 is positioned opposite a generally standard configuration heat exchanger coil, and the inner edge of the tube sheet 12 of the standard configuration heat exchanger coil is field welded to the face of the flat length of steel 24 that is opposite the face that is welded to tube sheet 12a of the modified heat exchanger coil.
It will be appreciated that other manufacturing (shop) modifications to one half of the heat exchange coils of an ACC which permit easy field fit and reduce field welding during assembly are within the scope of this invention and well within the skill of ordinary practitioners, given the disclosure of the invention herein.
Number | Date | Country | |
---|---|---|---|
61624763 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13864068 | Apr 2013 | US |
Child | 15439399 | US |