This disclosure relates to an apparatus and method for constructing building boards. More specifically, the present disclosure relates to a building board forming line that utilizes pressurized air to reduce associated frictional forces.
There are a variety of know processes for constructing building boards. One known method employs a forming line consisting of one or more forming tables. The building board, which may be a gypsum based building board, is sequentially assembled over the forming tables. A roll of a facing material, such as paper or a fibrous bounds mat, is unwound over the first forming table to form the lower surface of the board. The forming tables may include rotatable belts to transport the facing material. An overhead mixer is included for depositing a volume of cementitious slurry upon the inner surface of the facing material. An additional roll is included for providing an opposing facing material.
These known methods suffer from several disadvantages. For example, the friction between the facing material and the forming table often damages or mars the resulting budding board. This may result in the board being unsuitable for its intended use. Furthermore, known manufacturing techniques often result in an uneven distribution of cementitious slurry during formation. Most often the slurry disproportionally accumulates along the center line of the board, closest to the outlet of the overhead mixer. As a result, the edges of the resulting board are insufficiently strong and are prone to chipping or disintegration.
Over the years, various devices have been created for improving the board manufacturing process. For example, U.S. Pat. No. 2,722,262 to Eaton discloses an apparatus for the continuous production of a paper encased gypsum plaster strip. The apparatus includes a table over which a continuous strip is passed. The apparatus further includes a block and side guide members for shaping the strip and associated gypsum.
U.S. Pat. No. 3,529,357 to Hune et al. discloses method and apparatus for the high-speed drying of gypsum boards. The apparatus includes jet nozzles that impinge heated air on the this edge portions of the materials throughout a drying process.
Yet another manufacturing method is disclosed by U.S. Pat. No. 5,342,566 to Schafer et al. Schafer discloses a method and apparatus using air jets to support a gypsum board prior to cutting. The air cushion provides a lifting force but does not impart any forward motion.
U.S. Pat. No. 4,298,413 to Teare discloses method for producing fabric-reinforced thin concrete panels that are suitable as backer board for construction materials. Constructed panels can be transferred in seriatim to an air-float stacking unit positioned over a stacking table.
Finally, U.S. RE 41,592 to Lynn et al. discloses a manufacturing method for producing gypsum/fiber board with improved impact resistance. The method utilizes airjets to support the gypsum fiber board during processing.
Although the aforementioned methods each achieve their own unique objectives, all suffer from common drawbacks. The devices and methods described herein are designed to overcome the shortcomings present in background art. In particular, the devices and methods described herein employ pressurized air for the purpose of transporting building boards, ensuring adequate slurry spread, and/or preventing the boards from being damaged or marred during manufacture.
This disclosure permits smooth exterior finishes to be applied to wall boards with minimal finishing materials, time, and expense.
It is therefore one of the objectives of this invention to provide a gypsum board forming device that promotes the uniform distribution of slurry adjacent a pinch point.
It is yet another objective of this invention to provide a gypsum board forming device the promotes the spread of slurry to the edges of an associated forming table.
Various embodiments of the invention may have none, some, or all of these advantages. Other technical advantages of the present invention will be readily apparent to one skilled in the art.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following descriptions, taken in conjunction with the accompanying drawings, in which:
The present disclosure relates to a board forming device that employs pressurized air to reduce the friction between the board and the underlying forming tables. The device employs a series of air nozzles that are formed within the face of the forming tables. An air source delivers pressurized air to the nozzles. As completed or partially completed boards travel along the forming tables, an air cushion is created to reduce the friction between the board and the underlying table. The pressurized air can also be used to transport the boards and promote the even distribution of slurry during formation. The various components of the present invention, and the manner in which they interrelate, are described in greater detail hereinafter.
With reference now to
In accordance with the invention, each forming table 20 includes a series of nozzles 26 within its upper face. Nozzles 26 can be perforations, orifices, ports, or other openings formed within the surface of tables 20a and 20b. The nozzles 26 can have a minimum open diameter of 0.001 to a maximum open diameter of 0.0250 inches. The associated airflow rate will have a minimum velocity of 1 scfm (standard cubic feet per minute) to a maximum velocity of 490 scfm per a running foot of equipment. The minimum ported or air escape wall thickness of the air supply manifold shall be no less than 0.002 inches and no greater than 1.500 inches.
In one embodiment, tables 20 are elongated belts that rotate about pulleys for use in transporting the board 18 during assembly. In this case, nozzles 26 are formed within the upper surface of the belt. In yet another embodiment, tables (20a and 20b) are stationary and board 18 is transported via a directed air cushion supplied by nozzles 26.
With continuing reference to
A supply roll 34 is included at a first end of forming line 10. Roll 34 supplies the bottom facing sheet 36 to forming table 20. Facing sheet 36 can be formed from a number of different materials. For example, facing sheet 36 can be formed form paper or from a fibrous mat. In either event, facing sheet 36 is delivered over the top of the first forming table 20a. In the event a belt is included, facing sheet 36 is transported via movement of the belt. Slurry mixer 22 deposits slurry upon the exposed surface of facing sheet 36 as it is transported along forming line 10.
Air supply 32 supplies pressurized air to each of the nozzles 26 such that a cushion of air āCā (note
In the embodiment of
In a further aspect of the invention, the air provided by the air sources 32 can be heated. Thus, in addition to providing a lifting or propelling force to the boards, the supplied air can serve to further dry the boards. This would reduce the drying otherwise required by traditional board dryers. If the heated air is sufficient, heated air source 32 could altogether eliminate the need for external board dryers. This would represent a vast improvement by removing the opportunity for edge damage and paper, ply delamination associated with traditional drying mechanisms.
The air lift forming tables described above can be used throughout the entire wet forming process of the board as an alternative to the traditional post extruder forming belts. It is also within the scope of the present invention to utilize air lift forming tables in transfer or booking/staging areas within a board plant. These areas are known to cause surface damage to boards. Hence, by utilizing the air lift tables described herein, the damage or marring of completed boards can be avoided.
Although this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure.
This is a continuation of application Ser. No. 14/153,156, filed Jan. 13, 2014, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1749436 | Meier | Mar 1930 | A |
2176307 | Lamb et al. | Oct 1939 | A |
2517388 | Daves | Aug 1950 | A |
2722262 | Eaton et al. | Nov 1955 | A |
2848820 | Werner et al. | Aug 1958 | A |
3529357 | Schuette et al. | Sep 1970 | A |
4131320 | Volat | Dec 1978 | A |
4136214 | Bourelier | Jan 1979 | A |
4141457 | Nocek | Feb 1979 | A |
4280782 | Stumpf | Jul 1981 | A |
4298413 | Teare | Nov 1981 | A |
4462720 | Lenhart | Jul 1984 | A |
5143509 | Focke | Sep 1992 | A |
5342566 | Schafer | Aug 1994 | A |
6221521 | Lynn | Apr 2001 | B1 |
6336775 | Morita et al. | Jan 2002 | B1 |
7223060 | Weidenmuller | May 2007 | B2 |
7393159 | Chang et al. | Jul 2008 | B2 |
7530778 | Yassour et al. | May 2009 | B2 |
RE41592 | Lynn et al. | Aug 2010 | E |
20020069950 | Lynn | Jun 2002 | A1 |
20020191993 | Bartscher | Dec 2002 | A1 |
20060239808 | Ludwig | Oct 2006 | A1 |
20090297865 | Hauber | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
0684757 | Nov 1995 | EP |
2243817 | Nov 1991 | GB |
Number | Date | Country | |
---|---|---|---|
20180079106 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14153156 | Jan 2014 | US |
Child | 15827142 | US |