Insulated concrete forms (ICFs) of variable design comprise an increasingly important and popular product for construction of buildings and other structures. Such ICF products typically include a pair of spaced sidewalls fabricated from an insulating material. The paired sidewalls are maintained in a spaced relationship by connecting form ties. The form ties may be configured to support reinforcing bars (rebar). The ICF products are typically modular sizes and designed to be stacked to provide a form adapted to receive poured concrete in the cavity between the sidewalls, thereby resulting in a poured concrete structure intermediate sidewalls of an insulating material. An example of ICF products are depicted in U.S. Pat. No. 7,861,479, which is incorporated by reference as if fully set forth herein.
Further details, aspects, and embodiments of the invention will be described, by way of example only, with reference to the drawings.
An assembly for construction of structures utilizing insulated concrete forms includes an insulated concrete form comprising having a first sidewall with a first interior surface, a second sidewall with a second interior surface, and where a height of the first sidewall is less than a height of the second sidewall; the insulating concrete form includes a plurality of form ties, where the plurality of form ties connect the first sidewall to the second sidewall such that the first sidewall is spaced from the second sidewall to define a first interior cavity in between the first interior surface of the first sidewall and the second interior surface of the second sidewall, and where a thickness of the first interior cavity is defined in a lateral direction between the first interior surface of the first sidewall and the second interior surface of the second sidewall; the plurality of form ties include a first form tie, the first form tie has a first side member secured to the first sidewall, a second side member secured to the second sidewall, an upper lateral member, and a lower lateral member, where the upper and lower lateral members are positioned transverse the first and second side members, and where the lower lateral member connects the first side member to the second side member; an interior fastening plate is secured to the first form tie, the interior fastening plate has a first planar face, and the interior fastening plate is oriented such that the first planar face faces in a lateral direction toward the first interior surface of the first sidewall, and the interior fastening plate is spaced from the second interior surface of the second sidewall; a forming structure having an interior forming surface is secured to the interior fastening plate and oriented such that the interior forming surface of the forming structure faces toward the second interior surface of the second sidewall, and the interior forming surface is spaced from the second sidewall to define a second interior cavity in between the interior forming surface of the forming structure and the second interior surface of the second sidewall, where a thickness of the second interior cavity is defined in a lateral direction between the interior forming surface of the forming structure and the second interior surface of the second sidewall; and the thickness of the first interior cavity is greater than the thickness of the second interior cavity.
Referring to
In an embodiment, insulating material, such as expanded polystyrene (EPS) foam, can be molded around the side members (2, 3) of a plurality of form ties (1) that include a plurality of fastening plates (5) to form sidewalls (8, 9) of an ICF, such as in the example shown in
In an embodiment, the form tie (1) is made of plastic, such as polypropylene, and includes an interior fastening plate (5) of about 8 inches in height (y direction), about 1.40 inches in width (x direction), and about 0.20 inches in thickness (z direction). The term about as used herein in reference to dimensions means plus or minus 15% of the recited dimension. In an embodiment, the exterior fastening plates (7) can have the same width and thickness as the interior fastening plates (5). The form tie (1) and/or interior fastening plate (5) can also be made of other materials including metal, graphite, and composite materials.
In an embodiment, the interior fastening plate (5) can be positioned in between the spaced side members (2, 3). In an embodiment, an interior fastening plate (5) can include a first planar face (24) opposite a second planar face (25). Planar as used herein means a surface situated in a plane and includes, for example and without limitation, flat surfaces and generally flat surfaces that include minor deviations and/or imperfections in the surface. Such minor deviations and/or imperfections can be introduced to the surface as, for example, a design feature or the result and/or requirements of an injection molding process. The first planar face (24) can be substantially parallel to the second planar face (25). Substantially parallel as used herein means plus or minus about ten degrees from true parallel. A thickness (26) of the interior fastening plate (5) can be defined in a lateral direction (z) between the first planar face (24) and the second planar face (25). Similarly, the exterior fastening plates (7) can include planar faces that face in a lateral direction toward the exterior of the insulated concrete form. As shown by example in
In an embodiment, an interior fastening plate (5) is secured from the upper and lower cross members (4, 4a), positioned at approximately the lateral center of the lateral members, and positioned substantially parallel to the exterior fastening plates (7) in vertical orientation. The lateral center can also be identified as a point about midway between the lateral member ends (27, 28 or 29, 30). In an embodiment, an upper plate portion (31) of an interior fastening plate (5) can be secured to an upper lateral member (4) of the form tie (1). Similarly, in an embodiment, a lower plate portion (32) of an interior fastening plate (5) can be secured to a lower lateral member (4a) of the form tie.
In an embodiment, the interior fastening plate (5) can be formed as a unitary molded component of the form tie (1) or as a separate component which is attachable to the form tie. An attachable interior fastening plate (5) can be attached to the form tie (1) using attachment structures know in the art, including but not limited to snap-on structure, fasteners, and/or adhesive. In an embodiment, the interior fastening plate can be secured directly to the side members and/or supported by a single lateral member and/or multiple lateral members forming trusses. In addition, the interior fastening plate can be positioned in various orientations, such as horizontally, and/or secured to adjacent form ties in an ICF. As depicted by example in
Referring to
In an embodiment, an interior forming structure (10), such as a plywood board, can be secured to the interior fastening plates (5) as one aspect of creating a form to define a recessed portion (15) of the ICF—such as, for example, as shown in
Additional forming structures can be secured in appropriate positions to further define the recess (15), such as positioning a board to define the bottom portion (11) of the recess or to cover any open sides of the ICF assembly, if necessary. Once the form defining the recess (15) is complete, liquid concrete can be poured into the cavity areas (12, 34) of the ICF assembly. Upon curing of the concrete, the forming structures (10) can be removed to reveal a recess defined in the concrete portion (16) of the wall (17), in which the thickness (35) of the concrete formed in the second interior cavity (34) is less than the thickness (22) formed in the first interior cavity (12). The form to define the recess (15) can be made according to various depths (38), lengths (42), and heights (41) to accommodate various structural elements (such as hollow-core concrete slabs, beams, trusses, and the like) and utilities (channels, conduits, piping, raceways, and the like). An example recess (15) formed to accommodate hollow-core concrete slab (13) is shown in
According to one aspect of the invention, buildings of multiple stories can be constructed using ICF's with interior fastening plates (5) to form recesses as described above. For example, referring to
The detailed drawings, specific examples and particular embodiments given serve the purpose of illustration only. While some of the specific embodiments of the systems and methods described and shown herein concern building a vertical wall utilizing insulated concrete forms, the teachings of the present invention may be applied to apparatuses that build other structures using insulated concrete forms. In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention. Furthermore, the interior fastening plate and recess may have any suitable size and shape. Furthermore, the interior fastening plate may be implemented in multiple configurations of ICF. In addition, other modifications, variations and alternatives to the interior fastening plate and methods of use are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense. While certain embodiments detail certain optional features as further aspects of the invention, the description is meant to encompass and specifically disclose all combinations of these features unless specifically indicated otherwise or physically impossible.
This application claims priority from U.S. Provisional Application No. 61/586,533, entitled, “An Apparatus and Method for Construction of Structures Utilizing Insulated Concrete Forms,” filed on Jan. 13, 2012 and which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61586533 | Jan 2012 | US |