This invention concerns improvements in or relating to continuous motion rotatable forming of soluble pouches. More especially, the invention concerns machines and methods for producing multi-compartment pouches from four soluble substrates.
In WO 2002/085736, a process has been described for producing a water-soluble container comprising at least two compartments by sealing together two single compartment pouches. The compartments may be formed by any method which produces an open container, for example by vacuum forming, thermoforming, blow moulding or injection moulding, and are adjacent to each other having been formed concurrently. The compartments are then filled with a composition and closed with a lid such that the compartments are joined by a folding portion. The folding portion is then folded such that the lids of each of the compartments adhere to each other. Any method of sealing the two compartments together may be used, including pressure as in a snap-fit, an adhesive such as an aqueous solution of PVOH, or heat sealing. Other methods of sealing include infra-red, radio frequency, ultrasonic, laser, solvent, vibration and spin welding are described. The adhesive can be applied to the lids by spraying, transfer coating, roller coating, or otherwise coating, or the lids can be passed through a mist of the adhesive. The folding portion may be subsequently removed in order to provide an even more attractive appearance.
The above process has disadvantages. The presence of a folding portion means that the at least two compartments must be adjacent to each other in order to allow subsequent folding. The process is difficult to scale up in order to achieve economies of scale as the folding and trimming process is cumbersome, particularly where the at least two compartments contain different products, and it is difficult to envisage how a folding mechanism can allow a number of compartments greater than two.
In one aspect the present invention provides a continuous motion machine for producing water-soluble pouches comprising two or more compartments from four water-soluble polymeric webs wherein two pouches are formed, filled and sealed on separate, adjacent donating and receiving formers, each pouch being formed from two water-soluble polymeric webs, and wherein the two such pouches are held by vacuum on their formers until they are joined together in register to form a combined pouch whereupon the vacuum in the donating former is removed releasing its pouch to the receiving former and the combined pouch still held by vacuum in the receiving former is separated from the combined web.
The water soluble substrates may comprise any suitable polymeric material such as those based substantially upon polyvinyl alcohol. The polymeric material may be extruded or cast in solution to form a web. The web may be a single or multi-layer water soluble film. The polymeric material may be approved for ingestion by humans and/or by animals.
It may be that the pouches are formed by two webs, a base web and a lidding web. The formers may have recesses to create open compartments or pouches in the base web by any suitable forming operation such as vacuum forming or thermoforming. The open compartments or pouches may be filled with one or more products before being closed by the lidding webs and then sealed or bonded together to form a combined web of sealed and filled closed pouches. The base webs preferably comprise polymeric material that is sufficiently elastic and of a sufficient thickness to allow it to be vacuum formed or thermoformed into the cavities of the respective former without being punctured.
It may be that the lidding web of a closed pouch on one former is only partially sealed or bonded to the lidding web of a closed pouch on the other former to form a combined pouch. As a result, an aqueous medium into which the combined pouch is placed may be able to penetrate between lidding webs of the closed pouches more quickly and thereby accelerate dissolution.
It may be that a perimetric seal is formed between the lidding webs of two pouches. The perimetric seal may be a partial seal or a complete seal.
It may be that the contents of each compartment are released into an aqueous medium at different times. Alternatively, the contents of each compartment may be released into an aqueous medium at substantially the same time.
It may be that a solid item is placed between lidding webs of the closed pouches before the lidding webs are sealed together, thereby creating a further compartment.
It may be that a device is provided for perforating one or more of the base webs.
It may be that the one or more base webs are perforated prior to forming open compartments or pouches.
It may be that the one or more base webs are perforated while forming open compartments or pouches.
It may be that the one or more base webs are perforated subsequent to forming open compartments or pouches.
It may be that different levels of vacuum can be applied at different positions around one or both formers. For example, when the pouches are combined and held on one former, the level of vacuum holding the combined pouch may be increased.
In another aspect the present invention provides a method of producing water-soluble pouches comprising two or more compartments by forming, filling and sealing two pouches on separate formers each from two water soluble substrates and joining the two such pouches together to form a combined pouch comprising two or more compartments.
The water soluble substrates may comprise any suitable polymeric material such as those based substantially upon polyvinyl alcohol. The polymeric material may be in the form of a web. The web may be a single or multi-layer water soluble film. The polymeric material may be approved for ingestion by humans and/or by animals.
It may be that the method uses a machine according to the preceding aspect of the invention.
It may be that one or more compartments contain a combination of at least two components comprising a granular or powder product, a thickened liquid or gel, and a three dimensional solid item such that all of the components retain their identity and none of the components become mutually antagonistic.
It may be that base webs of the pouches comprise a polymeric material that is sufficiently elastic and of a sufficient thickness to allow it to be vacuum formed or thermoformed into the cavities of the respective former without being punctured.
It may be that lidding webs of the pouches are only partially sealed or bonded together. In this way an aqueous medium into which a pouch is placed may be able to penetrate between lidding webs of the pouches more quickly and thereby enhance dissolution.
It may be that a perimetric seal is formed between the lidding webs of two pouches. The perimetric seal may be a partial seal or a complete seal.
It may be that one of the pouches is transferred from its rotatable former to a second rotatable former, the lidding webs of both pouches sealed or bonded together to form a joined pouch, and the joined pouches separated from the web.
It may be that the method includes forming a first web of pouches on a rotatable donating former, forming a second web of pouches on a rotatable receiving former, bringing the first and second webs of pouches together with pouches in the first web in register with pouches in the second web, joining the pouches in the first web to the pouches in the second web and removing the vacuum holding the pouches on the donating former to release the combined web of combined pouches from the donating former while the combined web of combined pouches is still held by vacuum on the receiving former, separating the combined pouches from the combined web and subsequently removing the vacuum holding the separated, combined pouches on the receiving former.
Each web of pouches may comprise a base web and a lidding web. The base web may be formed to provide open compartments or pouches to receive one or more components prior to closing the open compartments or pouches with the lidding web to form closed pouches. The lidding webs of the closed pouches on one former may be joined to the lidding webs of the closed pouches on the other former. The lidding webs may be joined by a perimetric seal. The perimetric seal may be a partial seal or a complete seal.
It may be that different levels of vacuum can be applied at different positions around one or both formers. For example, when the pouches are combined and held on one former, the level of vacuum holding the combined pouch may be increased.
In another aspect the present invention provides a water-soluble pouch comprising two or more compartments made by the machine or method according to the preceding aspects of the invention.
It may be that the pouches are only partially sealed or bonded together in order to enhance dissolution.
It may be that a solid component is inserted between the two pouches prior to the two pouches being sealed or bonded together.
In the present invention, the aforementioned disadvantages of WO 2002/085736 are overcome by a process in which the compartments are provided by independently forming, filling and sealing pouches on separate formers and then presenting the pouches to each other for sealing to form a multi-compartment pouch. In this way, the filled and sealed pouches providing the compartments may be accurately positioned one on top of the other and then sealed together to form the multi-compartment pouch. The rotatable formers may be of the type disclosed in our earlier patent application WO 2011/061628. In certain of the simplest embodiments of the present invention, the appearance of the finished product is not dissimilar to that produced by means of WO 2002/085736, but the process by which it has been made is different.
The machine and method of the preceding aspects of the invention produce pouches comprising two or more compartments from four water-soluble substrates. Two such substrates are needed to produce each independently formed compartment and a further compartment may be created between the two independently formed compartments immediately prior to sealing the two independently formed compartments together. One or more of the four substrates may be perforated. Each substrate may dissolve at the same temperature or pH. Alternatively, each substrate may, for example, dissolve at a different temperature or at a different pH in order to allow sequential release of the contents of each compartment. The water soluble substrates may comprise any suitable polymeric material such as those based substantially upon polyvinyl alcohol. The polymeric material may be in the form of a web. The web may be a single or multi-layer water soluble film. The polymeric material may be approved for ingestion by humans and/or by animals.
The thickness of each water-soluble substrate may vary according to:
The application of solvent to a lidding web prior to sealing reduces the strength of that web due to partial dissolution and re-plasticization or softening of the web. However, lidding webs may nevertheless typically be thinner than base webs as lidding webs are not subjected to a forming operation. In this invention, the lidding webs of each compartment are subsequently sealed together to form a combined web which may have a thickness more or less equal to the sum of the thicknesses of the two lidding webs. The thickness of the combined lidding webs can increase dissolution time. Where speed of dissolution is important, it may be desirable to minimize the thickness of each lidding web in order to minimize an increase in dissolution time. The double thickness of the seal or bond between the two pouches may be detrimental to the speed of dissolution of the joined pouch. In order to reduce any increase in dissolution time, the lidding webs may not be completely sealed together but only partially sealed together. This may be achieved by applying solvent only to part of the lidding web and/or applying heat and pressure only to part of the flange surrounding the compartment. By this means, the dissolution time may not necessarily increase as the aqueous medium into which the pouch is placed, will be able to penetrate more easily into the space between the two lidding webs. Subject always to the above speed of dissolution considerations, as much as possible of the periphery of the seal or bond between the two pouches may be sealed in order to enhance the attractiveness of the joined pouches.
It may be that the lidding webs of each compartment are superimposed one upon the other prior to sealing together the two compartments. It may be that the lidding webs of each compartment are brought together in such a way that one compartment is placed in a required position upon the second compartment. The first compartment may be symmetrically placed upon the second compartment but in some embodiments of the present invention, the first compartment may be asymmetrically placed upon the second compartment but nevertheless still in register. The process of bringing two pouches together in a required position relative to each other is referred to in the art as bringing the two pouches together in register. Bringing the two pouches together in register is desirable in order that the subsequent process of separating the two or more compartment pouches from each other by slitting in the machine direction and then in the transverse direction can be carried out effectively. Accurate registration of the two pouches prior to sealing together may also beneficial for the commercial attractiveness of a two or more compartment pouch. Accurate registration may be achieved by use of a separate servo drive on each former, one being a master and one being a slave.
The time taken for each compartment to release its contents into the aqueous medium into which a two or more compartment pouch according to this invention has been placed may be varied in order that the release time of the contents of each compartment is different. Such a sequential release may be of commercial value in applications where the contents of one pouch are required for immediate release and the contents of a second pouch are required at a later time.
A tablet or other solid object may be placed between the two pouches after each has been closed with a lidding web but before the two pouches are joined together. The contents of each compartment may be solid, granular or powder, liquid of any viscosity, or gel. In the case where one of the compartments contains a solid material, the placement of a tablet between two sealed pouches may be facilitated by providing the sealed pouch containing a solid material with a perforated base web allowing excess air to be drawn by vacuum from the sealed pouch prior to placement of a tablet in the greater space so created between the two sealed pouches.
The sealing or bonding of two pouches to form a combined pouch comprising two or more compartments is typically effected by a combination of pressure and partial or complete wetting, leading to adhesivity, of the external (top) surface of either of the lidding webs. The selection as to which lidding web is partially or completely wetted prior to sealing or bonding together of the two pouches will depend upon the thickness of the respective lidding webs and their dissolution properties. Either lidding web may be selected for application of the wetting agent. Typically, the less readily soluble of the respective lidding webs will be selected for wetting partially or completely prior to sealing or bonding together of the two pouches. Where the lidding webs are made from the same water-soluble polymer formulation, the lidding film which is selected for wetting is typically thicker than the unwetted lidding film. For example the wetted lidding film may be up to 50% thicker than the unwetted lidding film.
During the process by which the two pouches are combined together into a multi-compartment pouch, the vacuum holding each pouch in its respective pocket is regulated and controlled. The vacuum in the pockets of the donating former is maintained, for example by means of a precisely designed and positioned vacuum shoe, until the two pouches have been combined together at which precise point the vacuum of the donating former is released. Conversely, the vacuum in the pockets of the receiving former is maintained whilst the two pouches are combined together and thereafter whilst the joined multi-compartment pouches, by now joined together in a combined web, are transported to a cutting station on the receiving former where they are separated from each other, for example by knives mounted in both machine direction and transverse direction, and the vacuum is subsequently released allowing the joined multi-compartment pouches to fall off or be blown off the receiving former on to a moving conveyor which transports the web of multi-compartment pouches to a downstream packaging operation. Once the multi-compartment pouches have been separated from each other, the side trim from the web is drawn by vacuum or otherwise into a collecting system for disposal or recycling.
In another aspect, the present invention provides a multi-compartment water-soluble pouch produced from four water-soluble webs comprising a first water-soluble pouch and a second water-soluble pouch wherein a compartment is created between the two pouches.
It may be that a solid object such as a tablet or a water-soluble pouch or capsule made off-line is inserted into the compartment between the two pouches.
It may be that the two pouches are sealed or bonded together by means of a partial perimetric seal.
It may be that the two pouches are sealed or bonded together by means of a complete perimetric seal.
It may be that at least one of the compartments of the first or second water-soluble pouch is perimetric.
It may be that the seal pressure exerted between the first and second water-soluble pouches is adjustable.
Features of any of the preceding aspects of the invention may be employed separately or in combination with the same or different aspects of the invention,
The invention will now be described in more detail by way of example with reference to the accompanying drawings wherein:
a and 4b are plan and sectional views of a multi-compartment pouch produced by the machines of
a and 6b are plan and sectional views of a multi-compartment pouch produced by the machine of
a, 7b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 8b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 9b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 10b, 10c, 10d show plan, perspective and sectional views of an alternative multi-compartment pouch according to the invention;
a, 11b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 12b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 13b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 14b, 14c show plan, perspective and sectional views of an alternative multi-compartment pouch according to the invention;
a, 15b show plan and sectional views of an alternative multi-compartment pouch according to the invention;
a, 16b, 16c show plan, perspective and sectional views of an alternative multi-compartment pouch according to the invention;
a, 17b, 17c show an alternative method of wetting the lidding webs;
a, 18b show an alternative method of wetting the lidding webs;
a, 19b show an alternative method of wetting the lidding webs; and
a and 20b shows a method of inserting a solid object between the lidding webs and a pouch so formed.
In the following description of exemplary embodiments, terms such as top, bottom, upper, lower, horizontal are used with reference to the orientation of the embodiments depicted in the drawings are not limiting on the scope of the embodiments.
In the exemplary embodiment of
As shown in
An additional wetting roller 25 is provided for wetting the external (top) surface of the lidding web 9 of the first web of closed pouches on the former 1 to be wetted prior to being brought into contact with the external (top) surface of the lidding web 15 of the second web of closed pouches on the former 3 at 27. The lidding web 9 may be partially or completely wetted in order to produce adhesivity when the lidding webs 9, 15 of the two webs of closed pouches are brought together at 27. At 27, the lidding webs 9, 15 are sealed or bonded together by a combination of pressure exerted between the two rotating formers 1, 3 and the adhesivity of the external (top) surface of the lidding web 9 produced by the action of the wetting roller 25. As a result, the first and second webs of closed pouches are combined together with closed pouches in the first web of pouches aligned with and in register with closed pouches in the second web of pouches to produce multi-compartment combined pouches from the pouches in both webs. In an alternative arrangement (not shown), the external (top) surface of the lidding web 15 of the second web of closed pouches may be partially or completely wetted prior to being brought into contact with the external (top) surface of the lidding web 9 of the first web of closed pouches at 27 to provide adhesion to the second web of closed pouches. Alternatively, the external (top) surface of both lidding polymeric webs 9, 15 may be wetted prior to being brought together to provide adhesion between the combined webs of closed pouches.
During the process by which the multi-compartment pouches are formed, the vacuum holding each pouch in its respective pocket is regulated and controlled. The vacuum is maintained, until the two pouches have been joined together at which point the vacuum in the pockets of one of the formers (the donating former) is released while the vacuum in the pockets of the other former (the receiving former) is maintained. In this way the combined web of multi-compartment pouches formed by combining the webs of pouches on both formers is retained by the receiving former. In this embodiment, former 1 is the donating former and former 3 is the receiving former but this could be reversed with former 3 being the donating former and former 1 the receiving former.
The multi-compartment pouches so formed can be separated from the combined webs at a cutting station on the receiving former 3 where they are separated from each other by any suitable device 29 for example cutting the combined webs in both the longitudinal direction and the transverse direction with a blade or knife or laser as will be familiar to those skilled in the art and the vacuum holding the pouches in the pockets 3b subsequently released allowing the joined multi-compartment pouches to fall off the receiving former 3 on to a moving conveyor 31 which transports the multi-compartment pouches 33 to a packaging operation. Once the multi-compartment pouches 33 have been separated from each other, the side trim from the web may be drawn by vacuum or otherwise into a collecting system for disposal or recycling. Transfer of the pouches may be assisted by applying fluid pressure through holes in the base of the pockets to eject the pouches from the pockets. The fluid may be air or any other fluid inert to the water-soluble substrates of the pouches.
The pressure exerted between the two rotating formers 1, 3 and/or the adhesivity of the external (top) surface of the lidding polymeric web(s) may be adjusted according to the required quality of the seal or bond between the two webs of pouches. If a partial seal or bond is required in order to enhance speed of dissolution of the combined pouch, this can be obtained by means of an engraved wetting roller such that the external (top) surface of the lidding web(s) is not completely covered but only partially covered, resulting in a partial seal or bond between the lidding web(s) at 27.
The thicknesses and dissolution or other characteristics of the four polymeric webs 5, 9, 11, 15 may be identical or different according to any one or more of the following list of features given by way of non-limiting example only:
In
In
In the exemplary embodiment of
In
As shown in
An additional wetting roller 125 is provided for wetting the external (top) surface of the lidding web 109 of the first web of closed pouches on the former 101 to be wetted prior to being brought into contact with the external (top) surface of the lidding web 115 of the second web of closed pouches on the former 103 at 127. The lidding polymeric web 109 may be partially or completely wetted in order to produce adhesivity when the lidding polymeric webs 109, 115 of the two webs of closed pouches are brought together at 127. At 127, the lidding webs 109, 115 are sealed or bonded together by a combination of pressure exerted between the two rotating formers 101, 103 and the adhesivity of the external (top) surface of the lidding web 109 produced by the action of the wetting roller 125. As a result, the first and second webs of closed pouches are combined together with closed pouches in the first web of pouches aligned with and in register with closed pouches in the second web of pouches to produce multi-compartment combined pouches 133 from the pouches in both webs. In an alternative arrangement (not shown), the external (top) surface of the lidding web 115 of the second web of closed pouches may be partially or completely wetted prior to being brought into contact with the external (top) surface of the lidding web 109 of the first web of closed pouches at 127 to provide adhesion to the second web of closed pouches. Alternatively, the external (top) surface of both lidding webs 109, 115 may be wetted prior to being brought together to provide adhesion between the combined webs of closed pouches.
As described previously, the vacuum holding the first web of pouches on the donating former 101 is released during the sealing or bonding process while maintaining the vacuum holding the second web of pouches on the receiving former 103 so that the multi-compartment pouches formed by the combined webs are retained on the receiving former 103 and can be separated from the combined webs by any suitable device 129 for example cutting with a blade or knife or laser as will be familiar to those skilled in the art and released from the receiving former 103 on to a conveyor (not shown) or similar arrangement for delivering the individual multi-compartment combined pouches 133 to a collection point (not shown) for a packaging operation or other processing as required. In a modification, the former 101 may be the receiving former and the former 103 may be the donating former. In this arrangement the vacuum holding the second web of pouches on the donating former 103 may be released while maintaining the vacuum holding the first web of pouches on the receiving former 101 so that the combined webs are retained on the receiving former 101 and can be separated and delivered to a collection point as described previously.
The pressure exerted between the two rotatable formers 101, 103 and/or the adhesivity of the external (top) surface of the lidding web(s) may be adjusted according to the required quality of the seal or bond between the two webs of pouches. If a partial seal or bond is required in order to enhance speed of dissolution of the combined pouch, this can be obtained by means of an engraved wetting roller such that the external (top) surface of the lidding web(s) is not completely covered but only partially covered, resulting in a partial seal or bond between the lidding webs at 127. In
The thicknesses and dissolution or other characteristics of the four polymeric webs 105, 109, 111, 115 may be identical or different according to any one or more of the following list of features given by way of non-limiting example only:
In the exemplary embodiment of
In
As shown in
An additional wetting roller 225 is provided for wetting the external (top) surface of the lidding web 209 of the first web of closed pouches on the former 201 to be wetted prior to being brought into contact with the external (top) surface of the lidding web 215 of the second web of closed pouches on the former 203 at 227. The lidding polymeric web 209 may be partially or completely wetted in order to produce adhesivity when the lidding polymeric webs 209, 215 of the two webs of closed pouches are brought together at 227. At 227, the lidding webs 209, 215 are sealed or bonded together by a combination of pressure exerted between the two rotating formers 201, 203 and the adhesivity of the external (top) surface of the lidding web 209 produced by the action of the wetting roller 225. As a result, the first and second webs of closed pouches are combined together with closed pouches in the first web of pouches aligned with and in register with closed pouches in the second web of pouches to produce multi-compartment combined pouches from the pouches in both webs. In an alternative arrangement (not shown), the external (top) surface of the lidding web 215 of the second web of closed pouches may be partially or completely wetted prior to being brought into contact with the external (top) surface of the lidding web 209 of the first web of closed pouches at 227 to provide adhesion to the second web of closed pouches. Alternatively, the external (top) surface of both lidding webs 209, 215 may be wetted prior to being brought together to provide adhesion between the combined webs of closed pouches.
As described previously, the vacuum holding the first web of pouches on the donating former 201 is released during the sealing or bonding process while maintaining the vacuum holding the second web of pouches on the receiving former 203 so that the multi-compartment combined pouches 233 so formed by the combined webs are retained on the receiving former 203 and can be separated from the combined webs by any suitable device 229 for example cutting with a blade or knife or laser as will be familiar to those skilled in the art and released from the receiving former 203 on to a conveyor (not shown) or similar arrangement for delivering the individual multi-compartment pouches to a collection point (not shown) for a packaging operation or other processing as required. In a modification, the former 201 may be the receiving former and the former 203 may be the donating former. In this arrangement the vacuum holding the second web of pouches on the donating former 203 may be released while maintaining the vacuum holding the first web of pouches on the receiving former 201 so that the combined webs are retained on the receiving former 201 and can be separated and delivered to a collection point as described previously.
The pressure exerted between the two rotatable formers 201, 203 and/or the adhesivity of the external (top) surface of the lidding web(s) may be adjusted according to the required quality of the seal or bond between the two webs of pouches. If a partial seal or bond is required in order to enhance speed of dissolution of the combined pouch, this can be obtained by means of an engraved wetting roller such that the external (top) surface of the lidding web(s) is not completely covered but only partially covered, resulting in a partial seal or bond between the lidding web(s) at 227. In
The thicknesses and dissolution or other characteristics of the four polymeric webs 205, 209, 211, 215 may be identical or different according to any one or more of the following list of features given by way of non-limiting example only:
In an exemplary embodiment, the sealing pressure exerted by the formers 1, 3 (
The machine preferably has a main frame to which the both formers 1, 3 (
When the top former sub frame is installed, the pressure at the sealing surface may be measured and used to calibrate the pressure load sensors for repeatability. Then, by means of a series of test runs with different setting combinations, sets of sample pouches may be produced and evaluated for seal quality and integrity, establishing a baseline against which future production can be monitored. Data sets from the series of test runs can then be used to determine the best combination of parameters for the pouch production. In addition, the drum may be mounted so that a skew angle of the drum to the chain can be micro-adjusted—to compensate for (or, in some cases, create) misalignment for appearance effect.
Sealing of the two pouches can be achieved by several different methods, depending on the pouch design/appearance requirement. For example, an incomplete or partial circumferential seal (stitch sealing) between the two pouches can be produced by different methods. One such method may include placing a series of liquid droplets on the mating surface of one or other of the pouches. The volume of each droplet can be precisely measured by the use of precision nozzles. The number of liquid droplets and the location and timing of placing the liquid droplets on the mating surface of one or other pouch, can be calculated depending on the machine speed, and the pressure and temperature selected to make an optimum strength seal. A dedicated screen can be provided for this task to take account of the temperature, humidity and other parameters of the environment of the production room where manufacturing is taking place. In this way, the quality of the stitched seal between the two pouches can be repeated even when environmental factors change, for example, due to a change in the environment of the production room or due to machine relocation to a different facility.
The same nozzles can be utilized if a complete circumferential seal between the pouches if desired. A complete circumferential seal can be provided by changing the pattern and volume of the droplets. In the case where an integral seal is desired, by which we mean that the entire mating surface of one of the pouches is wetted prior to the two pouches being brought together to be sealed, a wetting roller can be provided for this purpose. However, the use of nozzles is preferable as it can be used to provide either “stitched” or complete circumferential seals whereas the use of a wetting roller requires a change in the set up of the machine and consequential loss of productivity and flexibility.
A silicone or natural rubber gasket placed around the open pockets of one or both of the rotatable formers may facilitate greater control of the sealing pressure.
An example of a multi-compartment pouch 151 formed by the machines shown in
In
As shown in
An example of a multi-compartment pouch formed by the machine shown in
As will be appreciated, four water soluble substrates are used to produce the multi-compartment pouches formed by the mode of operation of the machines shown in
Further examples of novel multi-compartment pouches that can be made using the machine and the method described herein are shown in
In
In
In
In
By the term perimetric compartment in
In
In
In
In
In
In
Other shapes of pouches may be employed. For example, perimetric compartments comprising two half circles joined by straight lines thereby forming a “racetrack” in plan view.
In
In
Other configurations of perimetric compartments may be employed. For example the single perimetric compartments shown in
The following table provides a summary of features of the pouches described herein.
Referring now to
In
In
In
Referring now to
An exemplary embodiment provides a machine and method of forming multi-compartment pouches in which two pouches can be formed simultaneously on separate adjacent formers and brought together in register so that the pouches can be joined to form a combined pouch. The pouches may be held on the formers by vacuum until the pouches are joined whereupon the vacuum holding one of the pouches on its former is released while maintaining the vacuum holding the other pouch on its former so that the combined pouches are held on that former by the vacuum until the vacuum is released.
While exemplary embodiments have been described, it will be understood that the invention is not limited thereto and that modifications can be made within the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
1211179.5 | Jun 2012 | GB | national |
1221526.5 | Nov 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/055114 | 6/21/2013 | WO | 00 |