Conveyor ovens are commonly used for cooking a wide variety of food products, such as for cooking pizzas, baking and toasting bread, and the like. Examples of such ovens are shown, for example, in International Patent Application No. PCT/2009/030727, the entire contents of which are incorporated herein by reference.
Conveyor ovens typically have metallic housings with a heated tunnel extending therethrough, and one or more conveyors running through the tunnel. Each conveyor (in the form of a conveyor belt, for example) transports food items through the heated oven tunnel at a speed calculated to properly bake food on the conveyor belt during the time the conveyor carries the food through the oven. Conveyor ovens generally include a heat delivery system that may include one or more blowers supplying heated air to the tunnel, such as from a plenum to the tunnel. In some conveyor ovens, the hot air is supplied to the tunnel through passageways that lead to metal fingers discharging air into the tunnel at locations above and/or below the conveyor. The metal fingers act as airflow channels that deliver streams of hot air which impinge upon the surfaces of the food items passing through the tunnel on the conveyor. In modern conveyor ovens, a microprocessor-driven control can be employed to enable the user to regulate the heat provided to the tunnel, the speed of the conveyor, and other parameters to properly bake the food item being transported through the oven.
Some conveyor ovens include one or more gas burners positioned to heat air (e.g., in a plenum) before it is supplied to the tunnel to heat the food. In such ovens, the gas burner can include a modulating gas valve providing fuel to the burner, and a combustion blower providing enough air for efficient combustion of the fuel. An oven controller can monitor the temperature at one or more locations within the tunnel, and can adjust the modulating gas valve to provide more or less heat to the tunnel. If the measured temperature is lower than a set point temperature, the modulating gas valve is adjusted to supply more fuel. Conversely, if the measured temperature is higher than the set point temperature, the modulating gas valve is adjusted to supply less fuel. In some conventional ovens, the combustion blower and the modulating fuel valve are adjusted proportionally. For example, if the modulating fuel valve is adjusted to double the amount of fuel output, the speed of the combustion blower is also doubled.
As described above, current conveyor oven systems generally adjust the speed of a combustion blower in proportion to the setting of a modulating gas valve. However, such systems typically do not account for other external influences that may affect the efficiency of the gas burner. In some cases, air flow generated by a main blower that circulates air in the conveyor oven (e.g., between the tunnel and a plenum of the conveyor oven) can affect the speed and amount of air provided by the gas burner, thereby affecting the quality of the flame of the gas burner.
Some embodiments of the present invention provide a conveyor oven comprising a main blower that circulates air within a cooking chamber; at least one gas burner; a valve having a setting that determines an amount of gas provided to the gas burner; at least one combustion blower that provides air to the at least one gas burner; and a controller that monitors an internal temperature of the oven, adjusts the setting of the valve based at least in part on the internal temperature of the oven, adjusts a speed of the main blower, wherein the speed of the main blower includes at least a high speed setting and a low speed setting, and adjusts a speed of the at least one combustion blower based at least in part on at least one of the internal temperature of the oven and the speed of the main blower.
In some embodiments, the controller lowers the speed of the combustion blower when the main blower transitions from the low speed setting to the high speed setting, and/or increases the speed of the combustion blower when the main blower transitions from the high speed setting to the low speed setting. Also, in some embodiments, the controller determines an appropriate speed setting for the combustion blower by accessing a look-up table stored on a computer-readable memory. The look-up table can identify a plurality of speed settings based on internal oven temperature and main blower speed. In some embodiments, the controller calculates an appropriate combustion blower speed setting based on internal oven temperature and main blower speed.
Some embodiments of the present invention provide a method of controlling a combustion blower in a conveyor oven, wherein the method comprises measuring an internal temperature of the conveyor oven as determined by a temperature sensor; determining the speed of a main blower circulating air within an internal chamber of the conveyor oven; providing fuel to a burner within the conveyor oven through an electronically-controlled modulating fuel valve; controlling the output of the modulating fuel valve to adjust the internal temperature of the conveyor oven toward a set-point temperature; determining a speed setting for a combustion blower based at least in part on at least one of the measured internal temperature of the oven and the speed of the main blower; and operating the combustion blower at the determined speed setting.
Other aspects of the present invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the present invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
In some embodiments, the oven 20 can have one or more sensors positioned to detect the presence of food product on the conveyor 20 at one or more locations along the length of the conveyor 20. By way of example only, the oven 20 illustrated in
The conveyor 22 can be implemented using conventional components and techniques such as those described in U.S. Pat. Nos. 5,277,105 and 6,481,433 and 6,655,373, the contents of which are incorporated herein by reference insofar as they relate to conveyor support, tracking, and drive systems and related methods. In the illustrated embodiment by way of example only, a chain link drive is housed within compartment 30 at the left end 26 of the oven. Thus, a food item 32R, such as a raw pizza or a sandwich (to be toasted), may be placed on the conveyor 22 of the ingoing left oven end 26, and removed from the conveyor 22 as a fully baked food item 32B at the outgoing right oven end 28. The speed at which the conveyor 22 moves is coordinated with the temperature in the heated tunnel 24 so that the emerging food item 32B is properly baked, toasted, or otherwise cooked.
A hinged door 34 is provided on the front of the oven 20 shown in
Although the oven 20 illustrated in
The controller 42 in the illustrated embodiment adjusts the internal temperature of the oven using a PID (proportional—integral—derivative) control module 55 (also described in greater detail below). The PID control module 55 calculates an amount of fuel needed by the gas burners 100, 150 to raise the actual temperature toward a setpoint temperature, and the CPU 650 generates a command or signal to an amplifier board or signal conditioner that controls a modulating fuel valve to regulate the amount of fuel provided to each of the gas burners 100, 150.
Heat delivery systems for supplying heat to the tunnel 24 are described generally in U.S. Pat. Nos. 5,277,105, 6,481,433 and 6,655,373, the disclosures of which are incorporated herein by reference insofar as they relate to heat delivery systems for ovens. As shown diagrammatically in
The configuration of the conveyor oven 20 illustrated in
In some embodiments, the speed of the main blowers 72, 74 may be varied at times to reduce the amount of energy used by the conveyor oven 20 during periods of non-activity. To provide control over fan speed in these and other cases, the main blowers 72, 74 can be driven by variable-speed electric motors (not shown) coupled to and controlled by the controller 42. Power can be supplied to each variable-speed motor by, for example, respective inverters. In some embodiments, each inverter is a variable-speed inverter supplying power to the motor at a frequency that is adjustable to control the speed of the motor and, therefore, the speed of each of the main blowers 72, 74. An example of such an inverter is inverter Model No. MD60 manufactured by Reliance Electric (Rockwell Automation, Inc.). By utilizing variable speed motors supplied by power through respective inverters as just described, a significant degree of control over fan speed and operation is available directly via the controller 42 connected to other components of the control system. A similar motor control arrangement can also be used to control the speed of the combustion blower 155 (described in greater detail below), which functions to provide an appropriate level of air to the burners 100, 150 for proper combustion of fuel supplied to the burners 100, 150.
The main blowers 72, 74 described and illustrated herein can be located at any of a variety of locations with respect to the plenums 68, 70 of the oven 20, and can be used to pull and/or push air with respect to the plenums 68, 70 and/or the tunnel 24. For example, in some embodiments, the main blowers 72, 74 are positioned and oriented to draw air from the tunnel 24 into one of the plenums 68, 70. The suction caused by the main blowers 72, 74 lowers the air pressure in the tunnel 24 and increases the air pressure in the plenums 68, 70, thereby forcing heated air from the plenums 68, 70 into the tunnel 24 through the fingers 76, 78. In other embodiments, the main blowers 72, 74 are oriented to draw heated air from each of the plenums 68, 70 into the tunnel 24 through the metal fingers 76, 78.
An example of an orientation and layout of components in a conveyor oven 20 according to the present invention is shown in
With continued reference to the illustrated embodiment of
The burner 100 illustrated in
The structure of the burner 100 illustrated in
However, the speed of the combustion blower 155 is not the only variable that can affect the efficiency of the flame. The flame can also be adversely (or positively) affected by the speed of the main blowers 72, 74. For example, in some embodiments, the speed of the main blowers 72, 74 can be adjusted to save energy during operation of the oven—a change that can affect the efficiency of the flame. In the illustrated embodiment, the photosensor 79, 81 can be used to detect whether a food item has been placed on the conveyor 22 (see step 300 of
When the timer illustrated in
The temperature of the oven can also affect the rate at which air is circulated through the oven, independent or at least partially independent of the speed of the main blowers 72, 74. As the air increases in temperature, the air becomes less dense. Therefore, suction from one oven chamber to another (e.g., suction from an oven plenum to the tunnel, or vice versa) can gradually reduce as air temperature at different locations within the oven 20 increases or decreases. For example, as air temperature within the tunnel 24 of the oven 20 increases in the illustrated embodiment, air pressure within the tunnel 24 increases, thereby reducing the ability of air to move from the burners 100, 150 into the tunnel 24. Accordingly, increased air supply to the burners 100, 150 can be needed in order to maintain an optimal flame.
To address the changing needs of air supply to the burners 100, 150 based at least upon changes in main blower speed 72, 74,
With continued reference to
As described above in reference to
At this point, the controller 42 in the illustrated embodiment has already determined the internal temperature in the oven 20, the flow rate of the modulating fuel valve, and the speed of the main blower 72 (or these values are otherwise known or set). The controller 42 then uses this information to determine an appropriate speed for the combustion blower 155 (step 811). This determination can be reached in a number of different manners. In some embodiments, the controller 42 accesses a computer readable memory which stores a look-up table. As illustrated in
The values of variables X1 through X11 and Y1 through Y11 will vary depending upon the size, shape, and configuration of the conveyor oven 20 and, therefore, can be specific to each conveyor oven model utilizing such a look-up table. Furthermore, some embodiments of the look-up table can include additional variables that affect the identified combustion blower speed. For example, in some look-up tables, the combustion blower speed setting can be based upon oven temperature, main blower speed, and the flow rate of the modulating fuel valve associated with the burner.
In other embodiments, the controller 42 determines the appropriate combustion blower speed by calculating a value. By way of example only, the value can be calculated by the controller based at least in part upon the following formula:
Combustion Blower Speed=(A×Gas Flow Rate)−(B×Main Blower Speed)+(C×Oven Temperature)
or by the following alternate formula:
Combustion Blower Speed=(A×Gas Flow Rate)−(B×Main Blower Speed)
or by the following alternate formula:
Combustion Blower Speed=(A×Gas Flow Rate)+(C×Oven Temperature)
wherein A, B, and C are coefficients determined at least in part upon the size, shape, and configuration of the conveyor oven 20 and components of the conveyor oven 20, such as the size and/or shape of the plenum 68, 70, the position of the combustion blower 155 with respect to the fingers 76, 78 and the plenum 68, 70, and the like.
With continued reference to
The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present invention as set forth in the appended claims. For example, although a specific type of burner is described above in connection with ovens according to the present invention, the invention can be applied to any type of gas burner system having other types of burners. As another example, the conveyor oven 20 can have any number of combustion blowers 155 corresponding to any number of burners 100, 150, and can have any number of main blower fans 72, 74, all of which can be located anywhere in the oven 20. In such embodiments, the CPU 650 can control operation of the gas burners 100, 150, the combustion blowers 155, and/or the blower fans 72, 74 independently with respect to one another or with respect to other components of the conveyor oven 20, or otherwise.