This invention relates an apparatus and method for controlling an accelerator for electric vehicles.
For a conventional fuel vehicle, the engine is used as the power output source, during stepping on the pedal of the throttle for accelerating, for controlling the rotary speed with controller, thus a bigger torque may be output without the driver deeply stepping on the pedal of the throttle. But the electric vehicle adopts the torque control, at the forward gear position, the motor controller (i.e. the motor control ECU) may calculate the output torque of motor based on the accelerator pedal travel, thus realize the control of vehicle for accelerating.
The relationship between the output torque and the accelerator pedal depth value in a general motor is linear, and the formula for calculating the output torque is T=Tm*Gain, wherein, T is the output torque of the motor, Tm is the maximum output torque of the motor under the current vehicle speed, which is a specified value, and Gain is the depth value of the accelerator pedal with the range of 0-100%, the more deep the accelerator pedal travels, the higher the value of Gain. According to the formula mentioned above, the performance curve of output torque T and the accelerator pedal depth value Gain is a straight line, when the current vehicle speed V is specified, the variation of the output torque T depends on the variation of the accelerator pedal depth value Gain, that is, during acceleration, if a bigger output torque is required, then the driver must deeply steps on the accelerator pedal, however, this case may cause the fatigue of the driver and give adverse influences to the driving comfort.
This invention mainly aims to solve the problem mentioned above to provide an apparatus and method for controlling an accelerator for electric vehicle in order to ensure the electric vehicle with an excellent dynamic response to acceleration and improve the driving comfort.
In order to realize the purpose mentioned above, the present invention provides an apparatus for controlling an accelerator for an electric vehicle, comprising: a speed sensor, for detecting a current vehicle speed of the vehicle and outputting a vehicle speed signal to a motor controller; an accelerator pedal depth sensor, for detecting a depth of the pedal travel of accelerator and outputting an accelerator pedal depth signal to the motor controller; and the motor controller, configured to receive the vehicle speed signal and the accelerator pedal depth signal, determine a current vehicle speed V, an actual accelerator pedal depth value Gain and a maximum output torque Tm of the motor under the current vehicle speed V based on the received signal, determine an output torque T for controlling the motor according to a formula T=Tm*ƒ(Gain), and outputting a torque control signal corresponding to the output torque T; wherein, the formula T=Tm*ƒ(Gain) is such a function that lets the growth rate of the output torque T higher than that of the actual accelerator pedal depth value Gain at the beginning and then closed to that of the actual accelerator pedal depth value Gain during the actual accelerator pedal depth value gain growing.
In order to realize the purpose mentioned above, this invention still provides a method for controlling an accelerator accelerating for an electric vehicle, comprising follow steps: step A) acquiring an actual accelerator pedal depth value Gain and a current vehicle speed V; step B) determining a maximum output torque Tm of motor under the current vehicle speed based on the current vehicle speed V; and step D) controlling the output torque T of motor according to a formula T=Tm*ƒ(Gain); wherein the formula T=Tm*ƒ(Gain) in step D) is such a function that lets the growth rate of the output torque T higher than that of the actual accelerator pedal depth value Gain at the beginning and then closed to that of the actual accelerator pedal depth value Gain during the actual accelerator pedal depth value Gain growing.
In the present invention, by constructing an accelerator pedal curve, i.e., the formula T=Tm*ƒ(Gain, the output torque T grows with the growth rate higher than that of the actual accelerator pedal depth value Gain within the relative shallow range of the actual accelerator pedal depth value Gain and then the output torque T grows with the growth rate closed to that of the actual accelerator pedal depth value Gain within the relative deep range of the actual accelerator pedal depth value Gain during the actual accelerator pedal depth value Gain grows detected by the accelerator pedal depth sensor. Thus the driver just steps on the accelerator pedal, i.e., during the initial stage of acceleration, the vehicle may rapidly output a bigger torque, with an excellent dynamic response, to improve the driving comfort.
The other features and advantages of the present invention may be detailed through embodiments and accompanying figures.
The further description of the present invention is as below referred to the accompanying figures.
Refer to
Wherein, the speed sensor 1 may be various sensors for measuring speed such as NCS-1D non-contact vehicle speedometer and Hall vehicle speed sensor. The accelerator pedal depth sensor 2 may be various position sensors for detecting the position of accelerator pedal, such as C70FCA-10 pedal controller and HAL815 non-contact electronic accelerator pedal.
Wherein, the formula T=Tm*ƒ(Gain) is such a function that lets the growth rate of the output torque T higher than that of the actual accelerator pedal depth value Gain at the beginning and then closed to that of the actual accelerator pedal depth value Gain during the actual accelerator pedal depth value Gain growing. Thus, at the beginning of acceleration, the bigger output torque may be gained without stepping a deep pedal travel of accelerator.
Preferably, the whole accelerator pedal travel may be divided into three stages with different growth rates of output torque T during the different stages, thus the formula T=Tm*ƒ(Gain) is such a function that lets the growth rate of the output torque T higher than that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the initial stage of the whole accelerator pedal travel; lets the growth rate of the output torque T closed to that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the middle stage of the whole accelerator pedal travel; and lets the growth rate of the output torque T lower than that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the end stage of the whole accelerator pedal travel.
Wherein, said “higher than” the growth rate of the actual accelerator pedal depth value Gain is preferably about 10% more than the growth rate of the actual accelerator pedal depth value Gain; said “closed to” the growth rate of the actual accelerator pedal depth value Gain is preferably about 90%-110% of the growth rate of the actual accelerator pedal depth value Gain; and said “lower than” the growth rate of the actual accelerator pedal depth value Gain is preferably about 10% less than the growth rate of the actual accelerator pedal depth value Gain. All these values such as 10% or 90% are not unique, and they may be defined according to the derivative values of the virtual accelerator pedal curves and that of the actual accelerator pedal depth curves. Furthermore, said “the whole accelerator pedal travel” indicates 0-100% of the accelerator pedal travel, wherein, said initial stage means 0%-30%, said middle stage means 30%-60%, and said end stage means 60%400%. Similar, these values such as 30% or 60% are also not unique, and they may be adjusted according to the percentage of the accelerator pedal travel as necessary.
In particular, shown as
Wherein, the virtual accelerator pedal depth computing unit 4 is configured to receive the accelerator pedal depth signal from the accelerator pedal depth sensor 2, obtain the actual accelerator pedal depth value Gain based on the accelerator pedal depth signal, calculate the virtual accelerator pedal depth value Gain′ according to the following formula and output the virtual accelerator pedal depth value Gain′ to the output torque computing unit 5.
Gain′=ƒ(Gain) (1)
Wherein, the formula (1) Gain′=ƒ(Gain) is such a function that lets the virtual accelerator pedal depth value Gain′ varies from 0 to 100% while the actual accelerator pedal depth value Gain varies from 0 to 100%, lets the growth rate of the virtual accelerator pedal depth value Gain′ higher than that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the initial stage of the whole accelerator pedal travel, lets the growth rate of the virtual accelerator pedal depth value Gain′ closed to that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the middle stage of the whole accelerator pedal travel, and lets the growth rate of the virtual accelerator pedal depth value Gain′ lower than that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the end stage of the whole accelerator pedal travel
The formula (1) may be several different functions, for example shown as
The function expression of curve Gain2: Gain′=√{square root over (Gain)}
The function expression of curve Gain3: Gain′=1−(Gain−1)2
The function expression of curve Gain4: Gain′=√{square root over (1−(Gain−1)2)}
The function expression of curve Gain1 in
The output torque computing unit 5 is configured to receive the vehicle speed signal and the virtual accelerator pedal depth value Gain′, obtain the current vehicle speed V based on the vehicle speed signal, determine the maximum output torque Tm of motor under the current vehicle speed V according to the performance curve of motor corresponding to the current vehicle speed V, calculate the output torque T according to the following formula, and output the torque control signal corresponding to the output torque T
T=T
m*Gain′ (2)
Refer to
The maximum output torque Tm of motor under the current vehicle speed may be only determined according to the current vehicle speed V. It is because that the maximum output torque Tm of motor depends on the performance curve of motor. Under different vehicle speeds, the maximum output torques of motor are different, according to the function relationship between the maximum output torque Tm of motor and vehicle speed, under a specified current vehicle speed V, the maximum output torque Tm of motor is also a specified value. The maximum output torque Tm of motor may be measured through experiments.
Incorporating the formula (1) and (2), the formula mentioned above may be obtained
T=T
m*ƒ(Gain) (3)
Then the output torque T is calculated directly, and the middle item, i.e. the virtual accelerator pedal depth value Gain′, may be omitted. The curves T2, T3, and T4 in
The function expression of curve T2: T=Tm√{square root over (Gain)}
The function expression of curve T3: T=Tm[1−(Gain−1)2]
The function expression of curve T4: T=Tm√{square root over (1−(Gain−1)2)}
The function expression of curve T1 in
During the actual application of the present invention, it still requires to determine whether the vehicle is currently at forward gear, because if the vehicle is now at the reverse gear, with this invention, then slightly step on the accelerator pedal may cause high output torque, the vehicle acceleration too high, which may cause the possible dangers. Thus, the apparatus for controlling an accelerator shown as
Shown as
In step S1, acquiring an actual accelerator pedal depth value Gain and a current vehicle speed V.
In step S2, determining a maximum output torque Tm of motor under the current vehicle speed based on the current vehicle speed V.
In step S4, calculating a virtual accelerator pedal depth value Gain′ according to a formula Gain′=ƒ(Gain).
In step S5, calculating the output torque T according to a formula T=Tm*Gain′.
In step S6, controlling the motor to output the output torque T.
Wherein, in steps S4-S6, the formula T=Tm*ƒ(Gain) may be obtained, this formula is such a function that lets the growth rate of the output torque T higher than that of the actual accelerator pedal depth value Gain at the beginning and then closed to that of the actual accelerator pedal depth value Gain during the actual accelerator pedal depth value Gain growing.
Preferably, the formula T=Tm*ƒ(Gain) is such a function that lets the growth rate of the output torque T higher than that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the initial stage of the whole accelerator pedal travel; lets the growth rate of the output torque T closed to that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the middle stage of the whole accelerator pedal travel; and lets the growth rate of the output torque T lower than that of the actual accelerator pedal depth value Gain when the actual accelerator pedal depth value Gain is at the end stage of the whole accelerator pedal travel.
Preferably, this method further comprises the following steps: detecting a current gear position in step S3, and continuing executing step S4-S6 only when the current gear position is at the forward gear detected in step S3. Such embodiment may avoid wrong execution of the method for controlling an accelerator during the vehicle at the reverse gear.
The method provided by the present invention may be executed with the apparatus provide by the present invention, in details, the speed sensor 1 and the accelerator pedal depth sensor 2 are used for executing the step S1, all units of motor controller 3 may execute the steps S2-S6. For step S6, the torque control signal corresponding to the calculated output torque T, that is, PWM signal, is output through motor controller 3 to the drive unit of motor to control the motor. In the electrical system of electric vehicle, the PWM signal is output to the inverter for controlling the motor. The method provided by the present invention may be implemented referring to the detail introduction of the apparatus mentioned above, so the details of the method are omitted here.
For all mentioned above, the invention, for example, by setting a middle item, i.e. the virtual accelerator pedal depth value Gain′, an accelerator curve T=Tm*ƒ(Gain) may be reconstructed, during stepping on the accelerator pedal for accelerating, within the shallow range of accelerator pedal depth, the output torque T increases rapidly, within the deep range of accelerator pedal depth, the growth rate of the output torque is closed to that of the actual accelerator pedal depth value. Thus during acceleration, a bigger torque may be output rapidly, which improves the dynamic response and driving comfort of electric vehicle.
Number | Date | Country | Kind |
---|---|---|---|
200610157473.8 | Dec 2006 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2007/071213 | 12/11/2007 | WO | 00 | 6/11/2009 |