This application is the U.S. National Phase under 35 U.S.C. § 371 of International Patent Application No. PCT/KR2017/015084, filed on Dec. 20, 2017, which in turn claims the benefit of Korean Patent Application No. 10-2016-0174801, filed Dec. 20, 2016, the entire disclosures of which applications are incorporated by reference herein.
The present disclosure relates to an apparatus and a method for controlling concentration of oxygen in a heating furnace.
Generally, in a heating furnace, an air-to-fuel ratio (hereinafter referred to as “AFR”) needs to be appropriately adjusted to improve stability of combustion and efficiency of combustion. Accordingly, combustion control of the heating furnace is required.
The modified AFR 20 was determined using the fuel flow rate set value 10 and an oxygen concentration set value set by a user, disclosed in detail in Korean Patent Publication No. 10-2009-0069607.
According to the invention disclosed in Korean Patent Publication No. 10-2009-0069607, an air flow rate is always maintained to be greater than a theoretically required air flow rate to prevent incomplete combustion, and thus, a safe combustion state may be maintained. However, heat loss was increased when an oxygen concentration set value, set by a user, was input as a certain value or more.
An AFR control technology was proposed to improve thermal efficiency of a heating furnace and to provide a flow rate of air within an appropriate combustion area, illustrated in
This is disclosed in detail in Korean Patent Publication No. 10-2009-0068810.
In the AFR control system of a heating furnace according to a related art, since an oxygen concentration bias, set by a user, is directly used to set oxygen concentration, stable combustion may be maintained, while optimal combustion cannot be achieved, for example, carbon monoxide is out of an allowable range.
An aspect of the present disclosure is to provide an automatic correction method and a combustion control method for automatically controlling an oxygen (O2) concentration set value by using carbon monoxide (CO) in a combustion control system of combustion equipment such as a heating furnace, or the like, and to provide a combustion control system.
According to an aspect of the present disclosure, an apparatus for controlling the concentration of oxygen in a heating furnace includes: a first oxygen concentration bias setting unit configured to receive a set first oxygen concentration bias; a second oxygen concentration bias calculation unit configured to, when a measured value of carbon monoxide in exhaust gas is out of an allowable carbon monoxide range, calculate a second oxygen concentration bias based on the measured value of carbon monoxide and the concentration of oxygen measured in the exhaust gas; an oxygen concentration bias providing unit configured to provide an oxygen concentration bias based on the first oxygen concentration bias and the second oxygen concentration bias; and an oxygen concentration set value correction unit configured to correct a set value of the concentration of oxygen based on the oxygen concentration bias.
According to an example embodiment in the present disclosure, in a combustion control system of combustion equipment such as a heating furnace, or the like, an oxygen concentration set value is automatically corrected and set while satisfying an allowable range of carbon monoxide in such a manner that optimal combustion may be maintained without operator's intervention. As a result, optimal combustion and significantly high thermal efficiency may be maintained.
Hereinafter, example embodiments in the present disclosure will be described in detail with reference to the accompanying drawings. The disclosure may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Throughout the drawings, the same or like reference numerals will be used to designate the same or like elements.
The oxygen concentration bias (O2_bias) correction unit 100 may include a first oxygen concentration bias setting unit 110, a second oxygen concentration bias calculation unit 120, and an oxygen concentration bias providing unit 130 to correct an oxygen concentration bias O2_bias using a carbon monoxide measured value COpv of an exhaust gas.
Technical features of the present disclosure will be described with reference to
The first oxygen concentration bias setting unit 110 may be allowed to set a first oxygen concentration bias O2_bias1. As an example, the first oxygen concentration bias O2_bias1 may be set in advance by a user to correct an oxygen concentration set value.
As an example, even if the oxygen concentration set value is corrected only using the first oxygen concentration bias O2_bias1 which may be set by a user, carbon monoxide in an exhaust gas maybe out of an allowable range. Therefore, a second oxygen concentration bias O2_bias2 may be additionally used in the present disclosure, as set forth below.
The second oxygen concentration bias calculation unit 120 may calculate the second oxygen concentration bias O2_bias2 by using the carbon monoxide measured value COpv and an oxygen concentration measured value O2pv of an exhaust gas when the carbon monoxide measured value COpv of the exhaust gas is out of a carbon monoxide allowable range COL to COH.
The carbon monoxide measured value COpv of the exhaust gas may be measured by a carbon monoxide sensor, the oxygen concentration measured value O2pv may be measured by an oxygen sensor, and the carbon monoxide allowable range may be determined by a predetermined carbon monoxide lowest value COL and a predetermined carbon monoxide highest value COH.
The oxygen concentration bias providing unit 130 may provide the oxygen concentration bias O2_bias by using the first oxygen concentration bias O2_bias1 from the first oxygen concentration bias setting unit 110 and the second oxygen concentration bias O2_bias2 from the second oxygen concentration bias calculation unit 120.
As an example, the oxygen concentration bias providing unit 130 may calculate the oxygen concentration bias O2_bias by adding the first oxygen concentration bias O2_bias1 and the second oxygen concentration bias O2_bias2.
The oxygen concentration set value correction unit 200 may correct an oxygen concentration set value O2sv by using the oxygen concentration bias O2_bias.
As an example, the oxygen concentration set value correction unit 200 may correct the oxygen concentration set value O2sv by adding the oxygen concentration bias O2_bias to a predetermined oxygen concentration set value O2sv.
In
The hardware may include at least one processing unit and a memory. The processing unit may include at least one of, for example, a signal processor, a microprocessor, a central processing unit (CPU), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA).
The memory may include at least one of a volatile memory (for example, a random access memory (RAM), or the like) and a nonvolatile memory (for example, a read-only memory (ROM), a flash memory, or the like).
Redundant descriptions of components, having the same reference numeral and function, maybe omitted, related to each drawing of the present description.
As can be seen from
In addition, as can be seen from
Referring to
The second oxygen concentration bias calculation unit 120 may further a signal transmission unit 125.
The carbon monoxide determination unit 121 may determine whether the carbon monoxide measured value COpv is out of a carbon monoxide allowable range COL to COH.
As an example, the carbon monoxide determination unit 121 may not calculate when the carbon monoxide measured value COpv is not out of the carbon monoxide allowable range COL to COH, and may calculate a second oxygen concentration bias O2_bias through a procedure, set forth below, when the carbon monoxide measured value COpv is out of the carbon monoxide allowable range COL to COH.
The carbon monoxide calculation unit 122 may calculate a moving average value COpv,avg(t) of the carbon monoxide measured value COpv.
As an example, the carbon monoxide calculation unit 122 may calculate a moving average value COpv,avg(t) of the carbon monoxide measured value COpv using Equation (1).
where COpv,avg denotes a moving average value of the carbon monoxide measured value, N denotes a positive integer greater than or equal to 1, and t denotes a time variable.
The oxygen change calculation unit 123 may calculate an oxygen concentration change ΔO2(t) using the moving average value COpv,avg(t) of the carbon monoxide measured value COpv and the oxygen concentration measured value O2pv.
As an example, the oxygen change calculation unit 123 may calculate the oxygen concentration change ΔO2(t) using Equation (2).
where A denotes a sensitivity coefficient, ΔO2(t) denotes an oxygen concentration change, dO2pv,avg denotes a differential value of moving average of an oxygen concentration measured value, dCOpv,avg denotes a differential value of moving average of the carbon monoxide measured value COpv, ΔCO(t) denotes a change of the carbon monoxide measured value Copy, and B denotes an offset for adjustment (for example, B=1).
The second oxygen concentration bias calculation unit 124 may calculate a second oxygen concentration via O2_bias using the oxygen concentration change ΔO2(t).
As an example, the second oxygen concentration bias calculation unit 124 may calculate the second oxygen concentration bias O2_bias2 using Equation (3).
O2_bias2=O2(t−1)+ΔO2(t) Equation (3):
where O2_bias2 denotes a second oxygen concentration bias, ΔO2 (t) denotes an oxygen concentration change at a point of time (t), and O2(T−1) denotes oxygen concentration at a point of time (t−1).
The signal transmission unit 125 may transmit the second oxygen concentration bias O2_bias2 from the second concentration bias calculation unit 124 to the oxygen concentration bias providing unit 130.
As an example, in
The second oxygen concentration bias calculation unit 120 may not provide the second oxygen concentration bias O2_bias2 to the oxygen concentration bias providing unit 130 when the carbon monoxide measured value COpv is not out of the carbon monoxide allowable range COL to COH, and may provide the second oxygen concentration bias O2_bias2 to the oxygen concentration bias providing unit 130 through the procedure, set forth above, when the carbon monoxide measured value COpv is out of the carbon monoxide allowable range COL to COH.
According to the above-described example embodiment, an oxygen concentration set value is automatically corrected using concentration of carbon monoxide to control oxygen concentration and an air-to-fuel ratio (AFR). Thus, concentration of carbon monoxide in an exhaust gas may be adjusted to a level to maintain optimal combustion of the concentration of carbon monoxide in the exhaust gas. As a result, optimal combustion and significantly high thermal efficiency may be maintained.
Hereinafter, a method for controlling oxygen concentration will be described with reference to
Referring to
In operation S200, a determination may be made by a second oxygen concentration bias calculation unit 120 as to whether the carbon monoxide measured value COpv is out of a carbon monoxide allowable range COL to COH.
In operation S300, a second oxygen concentration bias O2_bias2 may be calculated by the second oxygen concentration bias calculation unit 120 using the carbon monoxide measured value COpv and an oxygen concentration measured value O2pv of the exhaust gas.
In operation S400, an oxygen concentration bias O2_bias maybe calculated by an oxygen concentration bias providing unit 130 using the first oxygen concentration bias O2_bias1 and the second oxygen concentration bias O2_bias2 when the carbon monoxide measured value COpv is out of the carbon monoxide allowable range COL to COH.
In operation S500, the first oxygen concentration bias O2_bias1 may be provided as the oxygen concentration bias O2_bias when the carbon monoxide measured value COpv is not out of the carbon monoxide allowable range COL to COH.
In operation S600, an oxygen concentration set value O2sv maybe corrected by an oxygen concentration set value correction unit 200 using the oxygen concentration bias O2_bias.
The oxygen concentration set value O2sv, corrected through the above-described procedure, may be used in oxygen control and AFR correction to maintain optimal combustion.
Hereinafter, the operation S300, in which the second oxygen concentration bias O2_bias2 is calculated, will be described with reference to
In operation S310, a moving average value COpv,avg(t) of the carbon monoxide measured value COpv may be calculated based on Equation (1).
In operation S320, a carbon monoxide change ΔCO(t) may be calculated based on Equation (4) using the moving average value COpv,avg(t) of the carbon monoxide measured value COpv.
ΔCO(t)=COpv,avg(t−1)−COpv,avg(t) Equation (4):
where COpv,avg(t−1) denotes a moving average value of the carbon monoxide measured value COpv at a point of time (t−1), and COpv,avg(t) denotes a moving average value of the carbon monoxide measured value COpv at a point of time (t).
In operation S330, an oxygen concentration change ΔO2(t) may be calculated based on Equation (2) using the moving average value COpv,avg(t) of the carbon monoxide measured value COpv, the oxygen concentration measured value O2pv, and the carbon monoxide change ΔCO(t).
In operation S340, a second oxygen concentration bias O2_bias2 may be calculated based on Equation (3) using the oxygen concentration change ΔO2(t).
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0174801 | Dec 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/015084 | 12/20/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/117625 | 6/28/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3475599 | Schwartzenberg | Oct 1969 | A |
20090253090 | Seo | Oct 2009 | A1 |
20160304977 | Kamikawa et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
5-79622 | Mar 1993 | JP |
2015-113484 | Jun 2015 | JP |
10-2009-0067937 | Jun 2009 | KR |
10-2009-0068810 | Jun 2009 | KR |
10-2009-0069607 | Jul 2009 | KR |
10-2010-0040469 | Apr 2010 | KR |
10-2010-0074799 | Jul 2010 | KR |
10-2011-0077619 | Jul 2011 | KR |
10-1657415 | Sep 2016 | KR |
10-2018-0071782 | Jun 2018 | KR |
Entry |
---|
Search Report issued in corresponding International Application No. PCT/KR2017/015084, dated Apr. 17, 2018. |
Number | Date | Country | |
---|---|---|---|
20190346206 A1 | Nov 2019 | US |