This disclosure generally relates to intraocular implants and the placement thereof within the eye, and relates more particularly to an apparatus and method for identifying locations of collector ducts, or channels, of the eye and positioning intraocular implants near the identified locations.
A human eye is a specialized sensory organ capable of light reception and is able to receive visual images. Aqueous humor is a transparent liquid that fills at least the region between the cornea, at the front of the eye, and the lens. A trabecular meshwork, located in an anterior chamber angle, which is formed between the iris and the cornea, normally serves as a drainage channel for aqueous humor from the anterior chamber so as to maintain a balanced pressure within the anterior chamber of the eye.
About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.
In glaucomas associated with an elevation in eye pressure (intraocular hypertension), the source of resistance to outflow is mainly in the trabecular meshwork. The tissue of the trabecular meshwork normally allows the aqueous humor to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous is continuously secreted by a ciliary body around the lens, so there is a constant flow of aqueous from the ciliary body to the anterior chamber of the eye. Pressure within the eye is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) and uveoscleral outflow (minor route). The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) causes most of the resistance to aqueous outflow.
Glaucoma is broadly classified into two categories: closed-angle glaucoma, also known as angle closure glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous from the anterior chamber of the eye. Open-angle glaucoma is any glaucoma in which the exit of aqueous through the trabecular meshwork is diminished while the angle of the anterior chamber remains open. For most cases of open-angle glaucoma, the exact cause of diminished filtration is unknown. Primary open-angle glaucoma is the most common of the glaucomas, and is often asymptomatic in the early to moderately advanced stages of glaucoma. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment. However, there are secondary open-angle glaucomas that may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
Because the trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous, they are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue need be altered and existing physiologic outflow pathways can be utilized. Some procedures bypass the trabecular meshwork and juxtacanilicular tissue to drain fluid to physiologic outflow channels.
In accordance with some embodiments, a method of positioning intraocular implants at or near collector ducts of Schlemm's canal. The method comprises positioning a handheld peristaltic rotor device on a corneal surface of an eye, the handheld peristaltic rotor device comprising a rotor having a plurality of compression elements; rotating the rotor such that the plurality of compression elements create a peristaltic movement of blood from one or more occluded episcleral veins to Schlemm's canal; identifying a location of at least one collector duct, or channel, of the eye based on the refluxed blood within Schlemm's canal; delivering an implant through an incision (e.g., corneal incision or incision through a limbus) in the eye; and placing an implant within the eye such that the implant is located at or near the identified location of the at least one collector duct. The implant may drain aqueous from an anterior chamber of the eye to Schlemm's canal and bypass the trabecular meshwork.
In accordance with some embodiments, a method of identifying a location of one or more collector ducts of Schlemm's canal of an eye is disclosed. The method comprises positioning a handheld peristaltic rotor device on a surface of an eye, the handheld rotor device comprising a rotor having a compression element; rotating the rotor such that the compression element of the rotor induces a peristaltic movement of blood into Schlemm's canal from one or more occluded episcleral veins, and identifying a location of at least one collector duct of the eye based at least in part on the refluxed blood. In some embodiments, rotating the rotor comprises manual rotation (partial revolution rotation or multiple turn or revelation rotation). The rotation may be effected by a handle or level coupled to the rotor or by directly rotating the rotor with the fingers. In some embodiments, rotating the rotor comprises winding an internal spring by manually rotating the rotor in a first (e.g., clockwise) direction and then releasing the rotor to cause the spring to unwind and the rotor to rotate in an opposite (e.g., counter-clockwise) direction.
A handheld peristaltic rotor device for locating collector ducts of Schlemm's canal of an eye is also disclosed. The handheld peristaltic rotor device comprises a rotor having a proximal portion and a distal open end, the distal open end comprising a distal rim surface and a corneal clearance portion; and a plurality of compression elements protruding from the distal rim surface, wherein the rotor and the plurality of compression elements are configured to cause a blood reflux into Schlemm's canal from one or more occluded episcleral surface region of an eye by positioning the rotor on the episcleral surface of the eye and rotating the rotor. The handheld peristaltic rotor device may also comprise an optical element that remains stationary while the rotor is rotated either by hand or a wound spring. The device may comprise a handle connected to the proximal portion of the rotor to facilitate manual rotation of the rotor. In some embodiments, a spring is included having a first end coupled to the optical portion and a second end coupled to the proximal portion of the rotor, wherein the spring is configured to cause rotation of the rotor. The plurality of compression elements may comprise ribs or fins that taper in height along their length so as to induce the peristaltic effect. The lengths of the compression elements may overlap. The plurality of compression elements may be formed of a compliant polymeric material so as to deform when in contact with an eye surface. The optical element or portion may include a magnifying lens (e.g., gonio lens) to facilitate visualization of reflux. The optical element or portion may be detachably coupled to the proximal portion of the rotor fi the rotor is intended for single use or for sterilization.
Embodiments of the invention will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may comprise several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
In some circumstances, an intraocular implant (e.g., a shunt, stent or the like) can be implanted into the trabecular meshwork of the eye of a patient suffering from an ocular disorder, such as glaucoma, so as to create a fluid passageway between the anterior chamber and Schlemm's canal behind the trabecular meshwork in the patient's eye. The fluid passageway allows aqueous fluid to flow from the anterior chamber of the eye through the fluid passageway (e.g., bypass) created by the implant, into Schlemm's canal, and out of the patient's eye through the episcleral venous pathways, thereby relieving the elevated intraocular pressure associated with glaucoma. In some embodiments, the devices and methods described herein can used to facilitate reduction of intraocular pressure in pigmentary glaucoma patients and/or pseudoexfoliation glaucoma patients.
Pressure within the eye is determined by a balance between the production of aqueous fluid and its exit through the canalicular outflow (e.g., through the trabecular meshwork) and uveoscleral outflow routes or pathways. The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) is believed to cause most of the resistance to aqueous fluid outflow. Accordingly, it can be advantageous to insert ocular implants, such as shunts or stents, to promote and maintain an increased level of aqueous fluid flow out of Schlemm's canal through the trabecular meshwork.
Schlemm's canal contains numerous outflow channels known as collector ducts, or collector channels. In some circumstances, it can be desirable to place an implant at a position in the trabecular meshwork that is near (e.g., within 1 mm of) one of the collector ducts, or channels, so as to provide an effective fluid passageway between the anterior chamber and Schlemm's canal. The various collector ducts of Schlemm's canal can vary in size, and it can be desirable to position an outlet of the implant near (e.g., within 1 mm of) a large collector duct so as to allow a sufficient amount of fluid to drain out of the anterior chamber of the eye to relieve the elevated intraocular pressure in a more efficient manner.
The implant can be implanted into the trabecular meshwork using a surgical procedure in which the implant is placed in or on a delivery device and inserted through an incision, including a self-sealing incision, in the cornea, limbus, or the adjacent scleral or conjunctival tissue, then transported across the anterior chamber (e.g., in an ab interno manner), and implanted into the trabecular meshwork on the side of the eye substantially across from the incision. In other embodiments, the implant can be implanted on the same side of the eye as the incision (e.g., corneal incision). In some embodiments, the surgical procedure is performed using a surgical microscope positioned over the patient's eye and a gonioprism is used to allow the ophthalmologist or other clinician to see into the anterior chamber of the eye as the implant is implanted. Although the trabecular meshwork can be viewed using this system, the locations of collector ducts of Schlemm's canal are not readily visible because they are hidden behind the trabecular meshwork. Therefore, the ophthalmologist or other clinician may be unable to target a specific collector duct, or channel, when placing the implant. Placement of the implants is sometimes guided by rules of thumb or general guidelines such as placing the implant in the nasal inferior quadrant of the trabecular meshwork, where the collector ducts are believed to be more prevalent. However, because the ophthalmologist may be unable to identify the actual locations of the collector ducts in the eye, the successful placement of the implant near a collector duct, including large collector ducts, can ultimately rely on a degree of chance without use of embodiments of the inventions described herein.
Anatomy
The anterior chamber 20 of the eye 10, which is bound anteriorly by the cornea 12 and posteriorly by the iris 13 and the lens 26, is filled with aqueous fluid. Aqueous humor (also referred to as “aqueous”) is produced primarily by the ciliary body 16 and reaches the anterior chamber angle 25 formed between the iris 13 and the cornea 12 through the pupil 14. In a normal eye, the aqueous is removed through the trabecular meshwork 21. The aqueous passes through the trabecular meshwork 21 into Schlemm's canal 22 and through collector ducts or channels 27, which merge with blood-carrying episcleral veins and into venous circulation. Intraocular pressure of the eye 10 is maintained by the intricate balance of secretion and outflow of the aqueous in the manner described above. Glaucoma is characterized by the excessive buildup of aqueous fluid in the anterior chamber 20 which produces an increase in intraocular pressure (fluids are relatively incompressible and pressure is directed equally to all areas of the eye).
Blood Reflux
With reference to
With reference to
Peristaltic Rotor
The height of the cup-shaped rotor member 32 can be between about 7 mm to about 20 mm (e.g., 7 mm-10 mm, 10 mm-15 mm, 15 mm-20 mm, 7 mm-15 mm, 10 mm-20 mm, overlapping ranges thereof, or any value within the recited ranges). The diameter of the rotor member 32 can be between about 10 mm to about 25 mm (e.g., 10 mm-20 mm, 10 mm-15 mm, 15 mm-25 mm, 15 mm-20 mm, overlapping ranges thereof, or any value within the recited ranges). Heights and diameters outside these ranges are also possible. The distal rim surface 39 of the rotor member 32 can have an O-ring or a toroidal shape surrounding the corneal clearance portion 36. The distal rim surface 39 of the rotor member 32 can be configured to substantially conform to the contour of the episcleral surface region of the eye. The distal rim surface 39 can have a thickness configured to allow the rotor member 32 to concentrically rotate about the cornea 12. For example, the distal rim surface 39 can have a thickness of about 0.5 mm to about 10 mm (e.g., 0.5 mm-5 mm, 1 mm-5 mm, 0.5 mm-1.5 mm, 0.5 mm to 2 mm, 5 mm to 10 mm, overlapping ranges thereof, or any value within the recited ranges). A fluid or a gel can optionally be applied to the distal rim surface 39 of the rotor member 32.
The corneal clearance portion 36 can have a generally spherical-cap shape or other shape that can conform to the shape of the cornea 12 of an average human eye (e.g., adult or child eye). The height and the diameter of the corneal clearance portion 36 are similar to, or greater than, the height and the diameter size of the cornea 12. The height and the diameter of the corneal clearance portion 36 can allow the distal rim surface 39 of the peristaltic rotor device 30 to rotate about the cornea, without any part of the peristaltic rotor device 30 contacting the cornea. For example, the corneal clearance portion 36 can have a diameter of between about 9 mm and 12 mm. The height of the corneal clearance portion 36 can be between about 0.5 mm to about 3 mm (e.g., between 0.5 and 1.5 mm, between 0.5 mm and 2 mm, between 1 mm and 3 mm, overlapping ranges thereof, or any value within the recited ranges). Diameters and heights outside these ranges are also possible.
The structure of the rotor member 32 can also include an undercut 45, as shown in
In some embodiments, the rotor member 32 can include two or more undercuts 45 radially spaced apart from each other. In such embodiments, a clinician may use the rotor 32 having two or more undercuts 45 to place a second implant within the eye such that the second implant is located at or near the identified location of a second collector duct. The rotor 32 having two or more undercuts 45 can also be used to determine a desired degree of rotation of the rotor member 32 about the cornea.
All or part of the rotor member 32 can be made of a substantially transparent material (e.g, glass, plastic, silicone, or other materials) so that light reflected from the subject's eye can be received by the distal rim surface 39, propagate through the transparent material, and be emitted by the proximal surface. In some embodiments, the handheld peristaltic rotor device 30 can include a plurality of optical elements configured to refract light reflected by the patient's ocular structure. In some embodiments, an opaque material, such as an opaque plastic can be used for the rotor member 32.
In some embodiments, the rotor member 32 can be formed of a flexible material (e.g., a soft polymer such as silicone) so as to enhance the conformability of the rotor member 32 with the surface of the eye. In other embodiments, the rotor member 32 can be constructed of a rigid or semi-rigid material. In some embodiments, the handle 38 can be made of a rigid or semi-rigid material. In other embodiments, the handle 38 can be made of a flexible material.
With reference to
The upper (top) optical element or portion 40 may be configured to remain stationary while the lower (bottom) rotor member or portion 32 is rotated. The optical element or portion 40 includes a goniolens, gonioscope, or gonioprism or other lens or visualization member 42 that advantageously facilitates visualization (e.g., magnified visualization) of the regions of blood 28 where the rotor member 32 has generated blood reflux. The optical element or portion 40 can be held in the hand and does not rotate. The rotor member 32 may be rotated by hand (e.g., using a handle or lever, not shown) or with an internally wound spring 35 (as shown in
Compression Elements
The handheld peristaltic rotor device 30 can include a plurality of compression elements 37. In general, the plurality of compression elements 37 can be configured to apply pressure to an episcleral region of the eye, thereby occluding one or more episcleral veins to produce blood reflux within Schlemm's canal 22. The plurality of compression elements 37 can include two or more concentric spiral protrusions on a distal rim surface 39 of the rotor member 32, as best shown in
The embodiments of the rotor members 32 shown in
The plurality of compression elements 37 can be a plurality of linear protrusions having a curved surface, each protrusion having a thickness and a maximum height configured to substantially occlude one or more episcleral veins and produce blood reflux within Schlemm's canal 22. For example, the thickness and the height of a compression element can be about 0.4 mm to about 7 mm (e.g., between 0.4 mm and 1.5 mm, between 0.5 mm and 2.5 mm, between 1 mm and 4 mm, between 2 mm and 6 mm, between 3 mm and 7 mm, overlapping ranges thereof, or any value within the recited ranges). The plurality of compression elements 37 can be formed of any suitable biocompatible material. In some embodiments, the plurality of compression elements 37 can be protrusions having a flat surface or a ridged surface instead of having a curved surface. In some embodiments, the plurality of compression elements 37 can be a ring-shaped protrusion, the ring shape located concentrically with the distal rim surface 39 of the rotor member 32. In another embodiment, the plurality of compression elements 37 can be a plurality of spoke-shaped protrusions extending outward from the center of the rotor member 32. The lower (e.g., contact) surface of the compression elements 37 may be tapered such that a height of the compression element 37 varies from one end to the other (as shown, for example, in
In some embodiments, a user (e.g., ophthalmologist or other clinician) can place the rotor member 32 on the episcleral surface of the eye, and then manually rotate the rotor member 32 (e.g., using a handle or lever). The user may rotate the rotor member 32 to a degree that can cause the plurality of compression elements 37 to create a peristaltic movement of blood within episcleral veins, thereby inducing blood reflux within Schlemm's canal 22. In some embodiments, a user may tilt, press, or squeeze the rotor 32 and/or the handle 38 to cause the movement of blood. In some embodiments, the rotor member 32 is rotated (manually or by an internal wound spring) multiple turns or a partial turn (e.g., ¼ turn, ½ turn, ¾ turn). In some embodiments, the rotor member 32 may be rotated automatically with an internally wound spring 35 (as shown, for example, in
Delivery Instrument
In some embodiments, the delivery instrument can be sufficiently long to advance the implant transocularly from the insertion site across the anterior chamber to the implantation site. At least a portion of the instrument can be flexible. Alternatively, the instrument can be rigid. The delivery instrument can comprise a plurality of members longitudinally moveable relative to each other. In some embodiments, at least a portion of the delivery instrument is curved or angled. In some embodiments, a portion of the delivery instrument is rigid and another portion of the instrument is flexible.
In some embodiments, the delivery instrument has a distal curvature. The distal curvature of the delivery instrument may be characterized as a radius of approximately 10 to 30 mm, and preferably about 20 mm.
In some embodiments, the delivery instrument has a distal angle. The distal angle may be characterized as approximately 90 to 170 degrees relative to an axis of the proximal segment of the delivery instrument, and preferably about 145 degrees. The angle can incorporate a small radius of curvature at the “elbow” so as to make a smooth transition from the proximal segment of the delivery instrument to the distal segment. The length of the distal segment may be approximately 0.5 to 7 mm, and preferably about 2 to 3 mm.
In some embodiments, the instruments have a sharpened forward end and are self-trephinating, e.g., self-penetrating, so as to pass through tissue without preforming an incision, hole or aperture. Alternatively, a trocar, scalpel, or similar instrument can be used to pre-form an incision in the eye tissue before passing the implant into such tissue.
For delivery of some embodiments of the ocular implant, the instrument can have a sufficiently small cross section such that the insertion site self seals without suturing upon withdrawal of the instrument from the eye. An outer diameter of the delivery instrument preferably is no greater than about 18 gauge and is not smaller than about 27 gauge.
For delivery of some embodiments of the ocular implant, the incision in the corneal tissue is preferable made with a hollow needle through which the implant is passed. The needle has a small diameter size (e.g., 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 gauge) so that the incision is self sealing and the implantation occurs in a closed chamber with or without viscoelastic. A self-sealing incision also can be formed using a conventional “tunneling” procedure in which a spatula-shaped scalpel is used to create a generally inverted V-shaped incision through the cornea. In a preferred mode, the instrument used to form the incision through the cornea remains in place (that is, extends through the corneal incision) during the procedure and is not removed until after implantation. Such incision-forming instrument either can be used to carry the ocular implant or can cooperate with a delivery instrument to allow implantation through the same incision without withdrawing the incision-forming instrument. Of course, in other modes, various surgical instruments can be passed through one or more corneal incisions multiple times.
Once into the anterior chamber, a delivery instrument can be advanced from the insertion site transocularly into the anterior chamber angle and positioned at a location near the scleral spur. Using the scleral spur as a reference point, the delivery instrument can be advanced further in a generally posterior direction to drive the implant into eye tissue at a location just inward of the scleral spur toward the iris. The placement and implantation of the implant can be performed using a gonioscope or other conventional imaging equipment. The delivery instrument preferably is used to force the implant into a desired position by application of a continual implantation force, by tapping the implant into place using a distal portion of the delivery instrument, or by a combination of these methods. Once the implant is in the desired position, it may be further seated by tapping using a distal portion of the delivery instrument.
The delivery instrument can include an open distal end with a lumen extending therethrough. Positioned within the lumen is preferably a pusher tube that is axially movable within the lumen. The pusher tube can be any device suitable for pushing or manipulating the implant in relation to the delivery instrument, such as, for example, but without limitation a screw, a rod, a stored energy device such as a spring. A wall of the delivery instrument preferably extends beyond pusher tube to accommodate placement within the lumen of a implant. The implant can be secured in position. For example, the implant can be secured by viscoelastic or mechanical interlock with the pusher tube or wall. When the implant is brought into position adjacent the tissue in the anterior chamber angle, the pusher tube is advanced axially toward the open distal end of the delivery instrument. As the pusher tube is advanced, the implant is also advanced. When the implant is advanced through the tissue and such that it is no longer in the lumen of the delivery instrument, the delivery instrument is retracted, leaving the implant in the eye tissue.
Some embodiments can include a spring-loaded or stored-energy pusher system. The spring-loaded pusher preferably includes a button operably connected to a hinged rod device. The rod of the hinged rod device engages a depression in the surface of the pusher, keeping the spring of the pusher in a compressed conformation. When the user pushes the button, the rod is disengaged from the depression, thereby allowing the spring to decompress, thereby advancing the pusher forward.
In some embodiments, an over-the wire system is used to deliver the implant. The implant can be delivered over a wire. Preferably, the wire is self-trephinating. The wire can function as a trocar. The wire can be superelastic, flexible, or relatively inflexible with respect to the implant. The wire can be pre-formed to have a certain shape. The wire can be curved. The wire can have shape memory, or be elastic. In some embodiments, the wire is a pull wire. The wire can be a steerable catheter.
In some embodiments, the wire is positioned within a lumen in the implant. The wire can be axially movable within the lumen. The lumen may or may not include valves or other flow regulatory devices.
In some embodiments, the delivery instrument comprises is a trocar. The trocar may be angled or curved. The trocar can be rigid, semi-rigid or flexible. In embodiments where the trocar is stiff, the implant can be, but need not be relatively flexible. The diameter of the trocar can be about 0.001 inches to about 0.01 inches. In some embodiments, the diameter of the trocar is 0.001, 0.002, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, or 0.01 inches.
In some embodiments, delivery of the implant is achieved by applying a driving force at or near the distal end of the implant. The driving force can be a pulling or a pushing applied generally to the end of the implant.
The instrument can include a seal to prevent aqueous humor from passing through the delivery instrument and/or between the members of the instrument when the instrument is in the eye. The seal can also aid in preventing backflow of aqueous humor through the instrument and out the eye. Suitable seals for inhibiting leakage include, for example, an O-ring, a coating, a hydrophilic agent, a hydrophobic agent, and combinations thereof. The coating can be, for example, a silicone coat such as MDX™ silicone fluid. In some embodiments, the instrument is coated with the coating and a hydrophilic or hydrophobic agent. In some embodiments, one region of the instrument is coated with the coating plus the hydrophilic agent, and another region of the instrument is coated with the coating plus the hydrophobic agent. The delivery instrument can additionally comprise a seal between various members comprising the instrument. The seal can comprise a hydrophobic or hydrophilic coating between slip-fit surfaces of the members of the instrument. The seal can be disposed proximate of the drainage implant when carried by the delivery instrument. Preferably, the seal is present on at least a section of each of two devices that are machined to fit closely with one another.
In some embodiments, the delivery instrument can include a distal end having a beveled shape. The delivery instrument can include a distal end having a spatula shape. The beveled or spatula shape can have a sharpened edge. The beveled or spatula shape can include a recess to contain the implant. The recess can include a pusher or other suitable means to push out or eject the implant.
The delivery instrument further can be configured to deliver multiple implants. In some embodiments, when multiple implants are delivered, the implants can be arranged in tandem.
Method of Use
Visualization
In some embodiments, a therapeutic agent can be administered to a patient at a location proximal the identified collector duct, or collector channel, locations. The therapeutic agent can include, but is not limited to, pharmaceutical agents, biological agents including hormones, enzyme or antibody-related components, oligonucleotides, DNA/RNA vectors and live cells configured to produce one or more biological components. The therapeutic agent can be configured to cause a reduction in the intraocular pressure of the eye.
In some embodiments, the implant may comprise a surface coated by a material selected from Teflon, polyimide, hydrogel, heparin, hydrophilic compound, anti-angiogenic factor, anti-proliferative factor, therapeutic drugs, and the like. Suitable anti-angiogenic or anti-proliferative factors may be selected from, for example, protamine, heparin, steroids, anti-invasive factor, retinoic acids and derivatives thereof, and paclitaxel or its analogues or derivatives thereof.
Implantation
In other embodiments, the peristaltic rotor device 30 can be oriented such that the plurality of compression elements 37 occludes one or more episcleral veins on a temporal side of the eye and the implant 51 can be delivered to the temporal side of the eye via an incision. In some embodiments, the delivery instrument 50 can be configured to carry multiple implants and to deliver the implants at various locations within the eye without removing the delivery instrument 50.
The delivery instrument 50 can comprise any suitable instrument for delivery of intraocular implants within the eye, such as the delivery instruments described in U.S. Patent Publication No. 2008/0228127, U.S. Patent Publication No. 2013/0253528, or U.S. patent application Ser. No. 16/132,252, the entire content of each of which is hereby expressly incorporated by reference herein. For example, the delivery instrument can comprise a cannula portion 55. The distal section of the cannula portion 55 can include a distal space 56 for holding an implant 51. The proximal end 57 of the lumen of the distal space 56 can be sealed from the remaining lumen of the cannula portion 55. In some embodiments, the delivery instrument 50 can comprise a microknife, a pointed guidewire, a sharpened applicator, a screw shaped applicator, an irrigating applicator, or a barbed applicator. In other embodiments, the incision can be formed by a blade, scalpel, or other suitable instrument or by retrograde fiberoptic laser ablation and the delivery instrument 50 can then be inserted through the preformed incision.
Conditional language, for example, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers or an amount that is within less than or equal to 10% of the stated amount. For example, “about 10 mm” includes “10 mm.” Terms or phrases preceded by a term such as “substantially” or “generally” include the recited term or phrase. For example, “substantially transparent” includes “transparent.” The terms “comprising,” “including,”, “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
While the inventions have been discussed in the context of certain embodiments and examples, it should be appreciated that the inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Additionally, the skilled artisan will recognize that any of the above-described methods can be carried out using any appropriate apparatus. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. The headings used herein are merely provided to enhance readability and are not intended to limit the scope of the embodiments disclosed in a particular section to the features or elements disclosed in that section.
For purposes of this disclosure, certain aspects, advantages, and novel features of the invention are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
This application claims priority to U.S. Provisional Application No. 62/564,972 filed Sep. 28, 2017, the entire content of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2031754 | Mills | Feb 1936 | A |
2127903 | Bowen | Aug 1938 | A |
2269963 | Frederick | Jan 1942 | A |
3159161 | Ness | Dec 1964 | A |
3416530 | Ness | Dec 1968 | A |
3439675 | Cohen | Apr 1969 | A |
3717151 | Collett | Feb 1973 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3827700 | Kaller | Aug 1974 | A |
3863623 | Trueblood et al. | Feb 1975 | A |
3915172 | Krejci et al. | Oct 1975 | A |
3948271 | Aklyama | Apr 1976 | A |
3948871 | Butterfield et al. | Apr 1976 | A |
3976077 | Kerfoot, Jr. | Aug 1976 | A |
4030480 | Meyer | Jun 1977 | A |
4037604 | Newkirk | Jul 1977 | A |
4043346 | Mobley et al. | Aug 1977 | A |
4113088 | Binkhorst | Sep 1978 | A |
4168697 | Cantekin | Sep 1979 | A |
4175563 | Arenberg et al. | Nov 1979 | A |
4299227 | Lincoff | Nov 1981 | A |
4366582 | Faulkner | Jan 1983 | A |
4402681 | Haas et al. | Sep 1983 | A |
4428746 | Mendez | Jan 1984 | A |
4449529 | Burns et al. | May 1984 | A |
4449974 | Messingschlager | May 1984 | A |
4457757 | Molteno | Jul 1984 | A |
4501274 | Skjaerpe | Feb 1985 | A |
4554918 | White | Nov 1985 | A |
4560383 | Leiske | Dec 1985 | A |
4578058 | Grandon | Mar 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4632842 | Karwoski et al. | Dec 1986 | A |
4634418 | Binder | Jan 1987 | A |
4642090 | Ultrata | Feb 1987 | A |
4692142 | Dignam et al. | Sep 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722724 | Schocket | Feb 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4782819 | Adair | Nov 1988 | A |
4787885 | Binder | Nov 1988 | A |
4800870 | Reid, Jr. | Jan 1989 | A |
4800890 | Cramer | Jan 1989 | A |
4804382 | Turina et al. | Feb 1989 | A |
4820626 | Williams et al. | Apr 1989 | A |
4826478 | Schocket | May 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4846793 | Leonard et al. | Jul 1989 | A |
4867173 | Leoni | Sep 1989 | A |
4870953 | DonMicheal et al. | Oct 1989 | A |
4886488 | White | Dec 1989 | A |
4900300 | Lee | Feb 1990 | A |
4905667 | Foerster et al. | Mar 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4986810 | Semrad | Jan 1991 | A |
4991602 | Amplatz et al. | Feb 1991 | A |
5005577 | Frenekl | Apr 1991 | A |
5041081 | Odrich | Aug 1991 | A |
5053040 | Goldsmith, III | Oct 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5095887 | Leon et al. | Mar 1992 | A |
5116327 | Seder et al. | May 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5129895 | Vassiliadis et al. | Jul 1992 | A |
5139502 | Berg et al. | Aug 1992 | A |
5169386 | Becker et al. | Dec 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5207685 | Cinberg et al. | May 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5246451 | Trescony et al. | Sep 1993 | A |
5248231 | Denham et al. | Sep 1993 | A |
5284476 | Koch | Feb 1994 | A |
5290295 | Querals et al. | Mar 1994 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5318513 | Leib et al. | Jun 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5326345 | Price, Jr. | Jul 1994 | A |
5334137 | Freeman | Aug 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5342370 | Simon et al. | Aug 1994 | A |
5346464 | Camras | Sep 1994 | A |
5358492 | Feibus | Oct 1994 | A |
5360399 | Stegmann | Nov 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5370641 | O'Donnell, Jr. | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5415666 | Gourlay et al. | May 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5445637 | Bretton | Aug 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5462558 | Kolesa et al. | Oct 1995 | A |
5472440 | Beckman | Dec 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5486165 | Stegmann | Jan 1996 | A |
5520631 | Nordquist et al. | May 1996 | A |
5556400 | Tunis | Sep 1996 | A |
5558629 | Baerveldt et al. | Sep 1996 | A |
5558630 | Fisher | Sep 1996 | A |
5558637 | Allonen et al. | Sep 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
RE35390 | Smith | Dec 1996 | E |
5626558 | Suson | May 1997 | A |
5626559 | Solomon | May 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5643321 | McDevitt | Jul 1997 | A |
5651782 | Simon et al. | Jul 1997 | A |
5651783 | Reynard | Jul 1997 | A |
5653724 | Imonti | Aug 1997 | A |
5669501 | Hissong et al. | Sep 1997 | A |
5676679 | Simon et al. | Oct 1997 | A |
5681275 | Ahmed | Oct 1997 | A |
5681323 | Arick | Oct 1997 | A |
5695479 | Jagpal | Dec 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5702419 | Berry et al. | Dec 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5722948 | Gross | Mar 1998 | A |
5723005 | Herrick | Mar 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5725546 | Samson | Mar 1998 | A |
5733256 | Costin | Mar 1998 | A |
5741292 | Mendius | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5743868 | Brown et al. | Apr 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5762625 | Igaki | Jun 1998 | A |
5766243 | Christensen et al. | Jun 1998 | A |
5785674 | Mateen | Jul 1998 | A |
5792099 | DeCamp et al. | Aug 1998 | A |
5800376 | Vaskelis | Sep 1998 | A |
5807244 | Barot | Sep 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5810870 | Myers et al. | Sep 1998 | A |
5817100 | Igaki | Oct 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5830171 | Wallace | Nov 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836939 | Negus et al. | Nov 1998 | A |
5846199 | Hijlkema et al. | Dec 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Richter et al. | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5882327 | Jacob | Mar 1999 | A |
5891084 | Lee | Apr 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5908449 | Bruchman et al. | Jun 1999 | A |
5913852 | Magram | Jun 1999 | A |
5927585 | Moorman et al. | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5941250 | Aramant et al. | Aug 1999 | A |
5984913 | Kritzinger et al. | Nov 1999 | A |
6004302 | Brierley | Dec 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6030416 | Huo et al. | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6036678 | Giungo | Mar 2000 | A |
6036682 | Lange et al. | Mar 2000 | A |
6045557 | White et al. | Apr 2000 | A |
6050970 | Baeverldt | Apr 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6071286 | Mawad | Jun 2000 | A |
6074395 | Trott et al. | Jun 2000 | A |
6077299 | Adelberg et al. | Jun 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6135977 | Drasler et al. | Oct 2000 | A |
6142990 | Burk | Nov 2000 | A |
6146387 | Trott et al. | Nov 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6168575 | Soltanpour | Jan 2001 | B1 |
6174305 | Mikus et al. | Jan 2001 | B1 |
6186974 | Allan et al. | Feb 2001 | B1 |
6187016 | Hedges et al. | Feb 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6224570 | Le et al. | May 2001 | B1 |
6231597 | Deem et al. | May 2001 | B1 |
6241721 | Cozean et al. | Jun 2001 | B1 |
6254612 | Hieshima | Jul 2001 | B1 |
6261256 | Ahmed | Jul 2001 | B1 |
6264668 | Prywes | Jul 2001 | B1 |
6287313 | Sasso | Sep 2001 | B1 |
6299603 | Hecker et al. | Oct 2001 | B1 |
6306114 | Freeman et al. | Oct 2001 | B1 |
6342058 | Portney | Jan 2002 | B1 |
6355033 | Moorman et al. | Mar 2002 | B1 |
6358222 | Grundei | Mar 2002 | B1 |
6361519 | Knudson et al. | Mar 2002 | B1 |
6363938 | Saadat et al. | Apr 2002 | B2 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6378526 | Bowman | Apr 2002 | B1 |
6402734 | Weiss | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6428501 | Reynard | Aug 2002 | B1 |
6428566 | Holt | Aug 2002 | B1 |
6450937 | Mercereau et al. | Sep 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6454787 | Maddalo et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6468283 | Richter et al. | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6530896 | Elliott | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544249 | Yu et al. | Apr 2003 | B1 |
6561974 | Grieshaber et al. | May 2003 | B1 |
6582426 | Moorman et al. | Jun 2003 | B2 |
6582453 | Tran et al. | Jun 2003 | B1 |
6585680 | Bugge | Jul 2003 | B2 |
6585753 | Eder et al. | Jul 2003 | B2 |
6589198 | Soltanpour et al. | Jul 2003 | B1 |
6589203 | Mitrev | Jul 2003 | B1 |
6595945 | Brown | Jul 2003 | B2 |
6605053 | Kamm et al. | Aug 2003 | B1 |
6607542 | Wild | Aug 2003 | B1 |
6613343 | Dillingham et al. | Sep 2003 | B2 |
6620154 | Amirkhanian et al. | Sep 2003 | B1 |
6623283 | Torigian et al. | Sep 2003 | B1 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6629981 | Bui et al. | Oct 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666213 | Svadovskiy | Dec 2003 | B2 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6676607 | De Juan, Jr. et al. | Jan 2004 | B2 |
6682500 | Soltanpour et al. | Jan 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6699272 | Slepian et al. | Mar 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6763833 | Khera et al. | Jul 2004 | B1 |
6764439 | Schaaf et al. | Jul 2004 | B2 |
6767346 | Damasco et al. | Jul 2004 | B2 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6780165 | Kadziauskas et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6827738 | Willis et al. | Dec 2004 | B2 |
6893413 | Martin | May 2005 | B2 |
6902577 | Lipshitz et al. | Jun 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6966888 | Cullen et al. | Nov 2005 | B2 |
6981958 | Gharib et al. | Jan 2006 | B1 |
7077821 | Durgin | Jul 2006 | B2 |
7077848 | de Juan et al. | Jul 2006 | B1 |
7090681 | Weber et al. | Aug 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7101402 | Phelps et al. | Sep 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7135016 | Asia et al. | Nov 2006 | B1 |
7144616 | Unger et al. | Dec 2006 | B1 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7192484 | Chappa et al. | Mar 2007 | B2 |
7217263 | Humayun et al. | May 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7294115 | Wilk | Nov 2007 | B1 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7344528 | Tu et al. | Mar 2008 | B1 |
7364564 | Sniegowski et al. | Apr 2008 | B2 |
7431710 | Tu et al. | Oct 2008 | B2 |
7468065 | Weber et al. | Dec 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7520876 | Ressemann et al. | Apr 2009 | B2 |
D592746 | Highley et al. | May 2009 | S |
RE40722 | Chappa | Jun 2009 | E |
7563241 | Tu et al. | Jul 2009 | B2 |
D606190 | Pruitt et al. | Dec 2009 | S |
7641627 | Camras et al. | Jan 2010 | B2 |
7678065 | Haffner et al. | Mar 2010 | B2 |
7695135 | Rosenthal | Apr 2010 | B1 |
7708711 | Tu et al. | May 2010 | B2 |
7713228 | Robin | May 2010 | B2 |
7758624 | Dorn et al. | Jul 2010 | B2 |
7771388 | Olsen et al. | Aug 2010 | B2 |
7811268 | Maldon Ado Bas | Oct 2010 | B2 |
7850637 | Lynch et al. | Dec 2010 | B2 |
7857782 | Tu et al. | Dec 2010 | B2 |
7862531 | Yaron et al. | Jan 2011 | B2 |
7867186 | Haffner et al. | Jan 2011 | B2 |
7867205 | Bergheim et al. | Jan 2011 | B2 |
7879001 | Haffner et al. | Feb 2011 | B2 |
7879079 | Tu et al. | Feb 2011 | B2 |
7905904 | Stone et al. | Mar 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7945336 | Sauter-Starace et al. | May 2011 | B2 |
7951155 | Smedley et al. | May 2011 | B2 |
7959632 | Fugo | Jun 2011 | B2 |
7967772 | McKenzie et al. | Jun 2011 | B2 |
7997460 | Pardes et al. | Aug 2011 | B2 |
8007459 | Haffner et al. | Aug 2011 | B2 |
D645489 | Gille et al. | Sep 2011 | S |
D645490 | Gille et al. | Sep 2011 | S |
8034016 | Yaron et al. | Oct 2011 | B2 |
8034105 | Stegmann et al. | Oct 2011 | B2 |
8062244 | Tu et al. | Nov 2011 | B2 |
8070290 | Gille et al. | Dec 2011 | B2 |
8075511 | Tu et al. | Dec 2011 | B2 |
8118768 | Tu et al. | Feb 2012 | B2 |
8142364 | Haffner et al. | Mar 2012 | B2 |
8152752 | Lynch et al. | Apr 2012 | B2 |
8197418 | Lal et al. | Jun 2012 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8267995 | Castillejos | Sep 2012 | B2 |
8273050 | Bergheim et al. | Sep 2012 | B2 |
8333742 | Bergheim et al. | Dec 2012 | B2 |
8337445 | Tu et al. | Dec 2012 | B2 |
8348877 | Tu et al. | Jan 2013 | B2 |
8388568 | Lynch et al. | Mar 2013 | B2 |
8419673 | Rickard | Apr 2013 | B2 |
8439972 | Badawi et al. | May 2013 | B2 |
8506515 | Burns et al. | Aug 2013 | B2 |
8540659 | Berlin | Sep 2013 | B2 |
8545431 | Rickard | Oct 2013 | B2 |
8579846 | Tu et al. | Nov 2013 | B2 |
8579848 | Field et al. | Nov 2013 | B2 |
8585631 | Dacquay | Nov 2013 | B2 |
8585664 | Dos Santos et al. | Nov 2013 | B2 |
8603024 | Bohm et al. | Dec 2013 | B2 |
8617094 | Smedley et al. | Dec 2013 | B2 |
8656958 | Unger et al. | Feb 2014 | B2 |
8679089 | Berlin | Mar 2014 | B2 |
8721580 | Rickard et al. | May 2014 | B2 |
8753305 | Field et al. | Jun 2014 | B2 |
8771217 | Lynch et al. | Jul 2014 | B2 |
8771220 | Nissan | Jul 2014 | B2 |
8801648 | Bergheim et al. | Aug 2014 | B2 |
8808219 | Bergheim et al. | Aug 2014 | B2 |
8808224 | Rickard | Aug 2014 | B2 |
8814820 | Bergheim et al. | Aug 2014 | B2 |
8840578 | Dos Santos et al. | Sep 2014 | B2 |
8852137 | Horvath et al. | Oct 2014 | B2 |
8852266 | Brooks et al. | Oct 2014 | B2 |
8864701 | Dos Santos et al. | Oct 2014 | B2 |
8882781 | Smedley et al. | Nov 2014 | B2 |
8956320 | Ovchinnikov et al. | Feb 2015 | B2 |
8986240 | Dos Santos et al. | Mar 2015 | B2 |
8998838 | Yalamanchili | Apr 2015 | B2 |
8998983 | Auld | Apr 2015 | B2 |
9066782 | Tu et al. | Jun 2015 | B2 |
9072588 | Bohm et al. | Jul 2015 | B2 |
9125721 | Field | Sep 2015 | B2 |
9132034 | Dos Santos | Sep 2015 | B2 |
9155653 | Field | Oct 2015 | B2 |
9155654 | Tu et al. | Oct 2015 | B2 |
9173775 | Haffner et al. | Nov 2015 | B2 |
9220632 | Smedley et al. | Dec 2015 | B2 |
9226851 | Gunn | Jan 2016 | B2 |
9283115 | Lind et al. | Mar 2016 | B2 |
9289324 | Johnson et al. | Mar 2016 | B2 |
9301875 | Tu et al. | Apr 2016 | B2 |
9492320 | Lynch et al. | Nov 2016 | B2 |
9554940 | Haffner et al. | Jan 2017 | B2 |
9561131 | Tu et al. | Feb 2017 | B2 |
9572963 | Tu et al. | Feb 2017 | B2 |
9592151 | Rangel-Friedman et al. | Mar 2017 | B2 |
9597230 | Haffner et al. | Mar 2017 | B2 |
9603738 | Haffner et al. | Mar 2017 | B2 |
9603741 | Berlin | Mar 2017 | B2 |
9636255 | Haffner et al. | May 2017 | B2 |
9668915 | Haffner et al. | Jun 2017 | B2 |
9730638 | Haffner et al. | Aug 2017 | B2 |
9789001 | Tu et al. | Oct 2017 | B2 |
9827143 | Lynch | Nov 2017 | B2 |
9833357 | Berlin | Dec 2017 | B2 |
9849027 | Highley et al. | Dec 2017 | B2 |
9962290 | Burns et al. | May 2018 | B2 |
9987472 | Tu et al. | Jun 2018 | B2 |
9993368 | Bergheim et al. | Jun 2018 | B2 |
D833008 | Kalina, Jr. et al. | Nov 2018 | S |
10188551 | Rangel-Friedman et al. | Jan 2019 | B2 |
10206813 | Haffner et al. | Feb 2019 | B2 |
D846738 | Kalina, Jr. et al. | Apr 2019 | S |
10245178 | Heitzmann et al. | Apr 2019 | B1 |
10271989 | Haffner et al. | Apr 2019 | B2 |
10285853 | Rangel-Friedman et al. | May 2019 | B2 |
10285856 | Tu et al. | May 2019 | B2 |
10406029 | Tu et al. | Sep 2019 | B2 |
10485701 | Haffner et al. | Nov 2019 | B2 |
10485702 | Bergheim et al. | Nov 2019 | B2 |
10492950 | Lynch et al. | Dec 2019 | B2 |
10499809 | Kalina, Jr. et al. | Dec 2019 | B2 |
10517759 | Crimaldi et al. | Dec 2019 | B2 |
10568762 | Lynch et al. | Feb 2020 | B2 |
D886997 | Kalina, Jr. et al. | Jun 2020 | S |
10674906 | Kalina, Jr. et al. | Jun 2020 | B2 |
10813789 | Haffner et al. | Oct 2020 | B2 |
D901683 | Kalina, Jr. et al. | Nov 2020 | S |
10828195 | Burns et al. | Nov 2020 | B2 |
10828473 | Haffner et al. | Nov 2020 | B2 |
20010000527 | Yaron et al. | Apr 2001 | A1 |
20010025150 | de Juan et al. | Sep 2001 | A1 |
20010053873 | Schaaf et al. | Dec 2001 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020026200 | Savage | Feb 2002 | A1 |
20020052640 | Bigus et al. | May 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020082591 | Haefliger | Jun 2002 | A1 |
20020087111 | Ethier et al. | Jul 2002 | A1 |
20020099434 | Buscemi et al. | Jul 2002 | A1 |
20020111608 | Baerveldt et al. | Aug 2002 | A1 |
20020120284 | Schachar et al. | Aug 2002 | A1 |
20020120285 | Schachar et al. | Aug 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020156413 | Williams et al. | Oct 2002 | A1 |
20020165522 | Holmen | Nov 2002 | A1 |
20020169468 | Brown | Nov 2002 | A1 |
20020177856 | Richter et al. | Nov 2002 | A1 |
20020193725 | Odrich | Dec 2002 | A1 |
20030014021 | Holmen | Jan 2003 | A1 |
20030014092 | Neuhann | Jan 2003 | A1 |
20030019833 | Unger et al. | Jan 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030079329 | Yaron et al. | May 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097117 | Buono | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030105456 | Lin | Jun 2003 | A1 |
20030109907 | Shadduck | Jun 2003 | A1 |
20030135149 | Cullen et al. | Jul 2003 | A1 |
20030139729 | Stegmann et al. | Jul 2003 | A1 |
20030153863 | Patel | Aug 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030195438 | Petillo | Oct 2003 | A1 |
20030208163 | Yaron et al. | Nov 2003 | A1 |
20030208217 | Dan | Nov 2003 | A1 |
20030212383 | Cote et al. | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040059248 | Messner et al. | Mar 2004 | A1 |
20040076676 | Tojo et al. | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040092856 | Dahan | May 2004 | A1 |
20040098122 | Lee et al. | May 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040154946 | Solovay et al. | Aug 2004 | A1 |
20040162545 | Brown et al. | Aug 2004 | A1 |
20040193095 | Shadduck | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040215126 | Ahmed | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040236343 | Taylor et al. | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040249404 | Haefliger | Dec 2004 | A1 |
20040254517 | Quiroz-Mercado et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040254521 | Simon | Dec 2004 | A1 |
20040260227 | Lisk, Jr. et al. | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050038498 | Dubrow et al. | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050055075 | Pinchuk et al. | Mar 2005 | A1 |
20050096639 | Slatkine et al. | May 2005 | A1 |
20050119601 | Lynch et al. | Jun 2005 | A9 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050165385 | Simon | Jul 2005 | A1 |
20050171507 | Christian et al. | Aug 2005 | A1 |
20050171562 | Criscuolo et al. | Aug 2005 | A1 |
20050182350 | Nigam | Aug 2005 | A1 |
20050184004 | Rodgers et al. | Aug 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209672 | George et al. | Sep 2005 | A1 |
20050240143 | Dohlman | Oct 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050261624 | Wilcox | Nov 2005 | A1 |
20050267397 | Bhalla | Dec 2005 | A1 |
20050267398 | Protopsaltis et al. | Dec 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050288619 | Savage | Dec 2005 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060036207 | Koonmen et al. | Feb 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060079828 | Brown | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060129129 | Smith | Jun 2006 | A1 |
20060155300 | Stamper et al. | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060210605 | Chang et al. | Sep 2006 | A1 |
20060217741 | Ghannoum | Sep 2006 | A1 |
20060235367 | Takashima et al. | Oct 2006 | A1 |
20060241580 | Mittelstein et al. | Oct 2006 | A1 |
20060276739 | Brown | Dec 2006 | A1 |
20070004998 | Rodgers et al. | Jan 2007 | A1 |
20070021653 | Hattenbach et al. | Jan 2007 | A1 |
20070073275 | Conston et al. | Mar 2007 | A1 |
20070073390 | Lee | Mar 2007 | A1 |
20070078371 | Brown et al. | Apr 2007 | A1 |
20070078471 | Schachar et al. | Apr 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070093740 | Shetty | Apr 2007 | A1 |
20070106199 | Krivoy et al. | May 2007 | A1 |
20070106200 | Levy | May 2007 | A1 |
20070118065 | Pinchuk et al. | May 2007 | A1 |
20070118066 | Pinchuk et al. | May 2007 | A1 |
20070123812 | Pinchuk et al. | May 2007 | A1 |
20070123919 | Schachar et al. | May 2007 | A1 |
20070149927 | Itou et al. | Jun 2007 | A1 |
20070154621 | Raad | Jul 2007 | A1 |
20070156079 | Brown | Jul 2007 | A1 |
20070161981 | Sanders et al. | Jul 2007 | A1 |
20070179426 | Selden | Aug 2007 | A1 |
20070179471 | Christian et al. | Aug 2007 | A1 |
20070185468 | Prywes | Aug 2007 | A1 |
20070191863 | De Juan et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070212386 | Patravale et al. | Sep 2007 | A1 |
20070212387 | Patravale et al. | Sep 2007 | A1 |
20070212388 | Patravale et al. | Sep 2007 | A1 |
20070212393 | Patravale et al. | Sep 2007 | A1 |
20070219632 | Castillejos | Sep 2007 | A1 |
20070260201 | Prausnitz et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070287958 | McKenzie et al. | Dec 2007 | A1 |
20070292470 | Thornton | Dec 2007 | A1 |
20070292474 | Hsu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20070293872 | Peyman | Dec 2007 | A1 |
20070293873 | Chang | Dec 2007 | A1 |
20070298068 | Badawi et al. | Dec 2007 | A1 |
20080027304 | Pardo et al. | Jan 2008 | A1 |
20080033351 | Trogden et al. | Feb 2008 | A1 |
20080039931 | Jelle et al. | Feb 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080051681 | Schwartz | Feb 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080082078 | Berlin | Apr 2008 | A1 |
20080091224 | Griffis, III et al. | Apr 2008 | A1 |
20080097214 | Meyers et al. | Apr 2008 | A1 |
20080097335 | Trogden et al. | Apr 2008 | A1 |
20080108932 | Rodgers | May 2008 | A1 |
20080108933 | Yu et al. | May 2008 | A1 |
20080108934 | Berlin | May 2008 | A1 |
20080109037 | Steiner et al. | May 2008 | A1 |
20080114440 | Hlavka et al. | May 2008 | A1 |
20080125691 | Yaron et al. | May 2008 | A1 |
20080140059 | Schachar et al. | Jun 2008 | A1 |
20080147083 | Vold et al. | Jun 2008 | A1 |
20080161741 | Bene et al. | Jul 2008 | A1 |
20080161907 | Chen et al. | Jul 2008 | A1 |
20080183289 | Werblin | Jul 2008 | A1 |
20080188860 | Vold | Aug 2008 | A1 |
20080200923 | Beckman et al. | Aug 2008 | A1 |
20080208176 | Loh | Aug 2008 | A1 |
20080210322 | Unger et al. | Sep 2008 | A1 |
20080215062 | Bowen et al. | Sep 2008 | A1 |
20080221501 | Cote et al. | Sep 2008 | A1 |
20080236669 | Unger et al. | Oct 2008 | A1 |
20080243156 | John | Oct 2008 | A1 |
20080243243 | Williams et al. | Oct 2008 | A1 |
20080243247 | Poley et al. | Oct 2008 | A1 |
20080255545 | Mansfield et al. | Oct 2008 | A1 |
20080269730 | Dotson | Oct 2008 | A1 |
20080277007 | Unger et al. | Nov 2008 | A1 |
20080281250 | Bergsneider et al. | Nov 2008 | A1 |
20080289710 | Unger et al. | Nov 2008 | A1 |
20080306429 | Shields et al. | Dec 2008 | A1 |
20090036818 | Grahn et al. | Feb 2009 | A1 |
20090043242 | Bene et al. | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090043365 | Friedland et al. | Feb 2009 | A1 |
20090076436 | Gharib et al. | Mar 2009 | A2 |
20090082860 | Schieber et al. | Mar 2009 | A1 |
20090082862 | Schieber et al. | Mar 2009 | A1 |
20090082863 | Schieber et al. | Mar 2009 | A1 |
20090112245 | Haefliger | Apr 2009 | A1 |
20090124973 | D'Agostino et al. | May 2009 | A1 |
20090132040 | Frion et al. | May 2009 | A1 |
20090137989 | Kataoka | May 2009 | A1 |
20090137992 | Mallakrishnan | May 2009 | A1 |
20090151422 | Unger et al. | Jun 2009 | A1 |
20090177138 | Brown et al. | Jul 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090198213 | Tanaka | Aug 2009 | A1 |
20090204053 | Nissan et al. | Aug 2009 | A1 |
20090227933 | Karageozian | Sep 2009 | A1 |
20090227934 | Eutenever et al. | Sep 2009 | A1 |
20090264813 | Chang | Oct 2009 | A1 |
20090275924 | Lattanzio et al. | Nov 2009 | A1 |
20090287136 | Castillejos | Nov 2009 | A1 |
20090287233 | Huculak | Nov 2009 | A1 |
20090326432 | Schmidt et al. | Dec 2009 | A1 |
20100004635 | Lin et al. | Jan 2010 | A1 |
20100025613 | Tai et al. | Feb 2010 | A1 |
20100042209 | Guarnieri | Feb 2010 | A1 |
20100056977 | Wandel | Mar 2010 | A1 |
20100056979 | Smedley et al. | Mar 2010 | A1 |
20100057055 | Camras et al. | Mar 2010 | A1 |
20100114006 | Baerveldt | May 2010 | A1 |
20100121342 | Schieber et al. | May 2010 | A1 |
20100125237 | Schocket | May 2010 | A1 |
20100168644 | Brown | Jul 2010 | A1 |
20100175767 | Unger et al. | Jul 2010 | A1 |
20100185138 | Yaron et al. | Jul 2010 | A1 |
20100191103 | Stamper et al. | Jul 2010 | A1 |
20100191329 | Badawi et al. | Jul 2010 | A1 |
20100222733 | Schieber et al. | Sep 2010 | A1 |
20100234791 | Lynch et al. | Sep 2010 | A1 |
20100241046 | Pinchuk et al. | Sep 2010 | A1 |
20100249691 | Van der Mooren et al. | Sep 2010 | A1 |
20100274259 | Yaron et al. | Oct 2010 | A1 |
20110009874 | Wardle et al. | Jan 2011 | A1 |
20110009958 | Wardle et al. | Jan 2011 | A1 |
20110046536 | Stegmann et al. | Feb 2011 | A1 |
20110046728 | Shareef et al. | Feb 2011 | A1 |
20110066098 | Stergiopulos | Mar 2011 | A1 |
20110071454 | Dos Santos et al. | Mar 2011 | A1 |
20110071456 | Rickard | Mar 2011 | A1 |
20110071458 | Rickard | Mar 2011 | A1 |
20110071459 | Rickard et al. | Mar 2011 | A1 |
20110071505 | Rickard et al. | Mar 2011 | A1 |
20110098627 | Wilcox | Apr 2011 | A1 |
20110098809 | Wardle et al. | Apr 2011 | A1 |
20110118649 | Stegmann et al. | May 2011 | A1 |
20110118835 | Silvestrini et al. | May 2011 | A1 |
20110130831 | Badawi et al. | Jun 2011 | A1 |
20110144559 | Lafdi et al. | Jun 2011 | A1 |
20110196487 | Badawi et al. | Aug 2011 | A1 |
20110224597 | Stegmann et al. | Sep 2011 | A1 |
20110244014 | Williams et al. | Oct 2011 | A1 |
20110245753 | Sunalp | Oct 2011 | A1 |
20110248671 | Dos Santos et al. | Oct 2011 | A1 |
20110257623 | Marshall et al. | Oct 2011 | A1 |
20110319806 | Wardle | Dec 2011 | A1 |
20120010702 | Stegmann et al. | Jan 2012 | A1 |
20120022424 | Yamamoto et al. | Jan 2012 | A1 |
20120035524 | Silvestrini | Feb 2012 | A1 |
20120059461 | Badawi et al. | Mar 2012 | A1 |
20120078158 | Haffner et al. | Mar 2012 | A1 |
20120089072 | Cunningham, Jr. | Apr 2012 | A1 |
20120089073 | Cunningham, Jr. | Apr 2012 | A1 |
20120130467 | Selden et al. | May 2012 | A1 |
20120179087 | Schieber et al. | Jul 2012 | A1 |
20120184892 | Bigler et al. | Jul 2012 | A1 |
20120203160 | Kahook et al. | Aug 2012 | A1 |
20120257167 | Gille et al. | Oct 2012 | A1 |
20120259195 | Haffner et al. | Oct 2012 | A1 |
20120289883 | Meng et al. | Nov 2012 | A1 |
20120302861 | Marshall et al. | Nov 2012 | A1 |
20120310072 | Grieshaber | Dec 2012 | A1 |
20120323159 | Wardle et al. | Dec 2012 | A1 |
20130006164 | Yaron et al. | Jan 2013 | A1 |
20130006165 | Eutenener et al. | Jan 2013 | A1 |
20130018295 | Haffner et al. | Jan 2013 | A1 |
20130018296 | Bergheim et al. | Jan 2013 | A1 |
20130079701 | Schieber et al. | Mar 2013 | A1 |
20130090534 | Burns et al. | Apr 2013 | A1 |
20130102949 | Baerveldt | Apr 2013 | A1 |
20130144202 | Field et al. | Jun 2013 | A1 |
20130150770 | Horvath et al. | Jun 2013 | A1 |
20130150773 | Nissan et al. | Jun 2013 | A1 |
20130150774 | Field et al. | Jun 2013 | A1 |
20130150776 | Bohm et al. | Jun 2013 | A1 |
20130150777 | Bohm et al. | Jun 2013 | A1 |
20130150779 | Field | Jun 2013 | A1 |
20130150959 | Shieber et al. | Jun 2013 | A1 |
20130158381 | Rickard | Jun 2013 | A1 |
20130158462 | Wardle et al. | Jun 2013 | A1 |
20130165840 | Orge | Jun 2013 | A1 |
20130172804 | Schieber et al. | Jul 2013 | A1 |
20130184631 | Pinchuk | Jul 2013 | A1 |
20130253404 | Tu | Sep 2013 | A1 |
20130253405 | Tu | Sep 2013 | A1 |
20130281910 | Tu et al. | Oct 2013 | A1 |
20130310930 | Tu et al. | Nov 2013 | A1 |
20140034607 | Meng et al. | Feb 2014 | A1 |
20140046437 | Renke | Feb 2014 | A1 |
20140052046 | Peartree et al. | Feb 2014 | A1 |
20150223981 | Smedley et al. | Aug 2015 | A1 |
20150342875 | Haffner | Dec 2015 | A1 |
20150374546 | Hill | Dec 2015 | A1 |
20160354309 | Heitzmann et al. | Dec 2016 | A1 |
20170135857 | Haffner et al. | May 2017 | A1 |
20180021170 | Haffner et al. | Jan 2018 | A1 |
20180028361 | Haffner et al. | Feb 2018 | A1 |
20180085065 | Haffner et al. | Mar 2018 | A1 |
20180161205 | Tu et al. | Jun 2018 | A1 |
20180177633 | Haffner et al. | Jun 2018 | A1 |
20180280194 | Heitzmann et al. | Oct 2018 | A1 |
20180303665 | Heitzmann et al. | Oct 2018 | A1 |
20180303752 | Haffner | Oct 2018 | A1 |
20180333296 | Heitzmann et al. | Nov 2018 | A1 |
20190000673 | Fjield et al. | Jan 2019 | A1 |
20190021991 | Heitzmann et al. | Jan 2019 | A9 |
20190053704 | Burns et al. | Feb 2019 | A1 |
20190083307 | Burns et al. | Mar 2019 | A1 |
20190104936 | Gunn et al. | Apr 2019 | A1 |
20190105077 | Kalina, Jr. et al. | Apr 2019 | A1 |
20190224046 | Heitzmann et al. | Jul 2019 | A1 |
20190314199 | Haffner et al. | Oct 2019 | A1 |
20190321220 | Rangel-Friedman et al. | Oct 2019 | A1 |
20190321225 | Smedley et al. | Oct 2019 | A1 |
20190321226 | Haffner et al. | Oct 2019 | A1 |
20200155349 | Haffner et al. | May 2020 | A1 |
20200179171 | Crimaldi et al. | Jun 2020 | A1 |
20200214560 | Kalina, Jr. et al. | Jul 2020 | A1 |
20200214561 | Kalina, Jr. et al. | Jul 2020 | A1 |
20200367745 | Kalina, Jr. et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
199876197 | Feb 1999 | AU |
200072059 | Jul 2001 | AU |
2004264913 | Dec 2011 | AU |
2009251058 | Dec 2013 | AU |
2244646 | Feb 1999 | CA |
2442652 | Jan 2011 | CA |
2683224 | Dec 2014 | CA |
92111244 | Jul 1993 | CH |
19840047 | Mar 2000 | DE |
10127666 | Jan 2003 | DE |
0858788 | Aug 1998 | EP |
1977724 | Oct 2008 | EP |
2260803 | Dec 2010 | EP |
2260804 | Dec 2010 | EP |
2263621 | Dec 2010 | EP |
2351589 | Aug 2011 | EP |
2982354 | Feb 2016 | EP |
2985012 | Feb 2016 | EP |
2967993 | Apr 2019 | EP |
2553658 | Apr 1985 | FR |
2710269 | Mar 1995 | FR |
2721499 | Dec 1995 | FR |
2757068 | Jun 1998 | FR |
2296663 | Jul 1996 | GB |
3703721 | Jul 2005 | JP |
4031836 | Jan 2008 | JP |
4688444 | Feb 2011 | JP |
2012-198134 | Sep 2012 | JP |
5255402 | Apr 2013 | JP |
5323011 | Jul 2013 | JP |
2013-208434 | Oct 2013 | JP |
2014-193366 | Oct 2014 | JP |
2014-240022 | Dec 2014 | JP |
2022539 | Nov 1994 | RU |
2143250 | Dec 1999 | RU |
WO 198900869 | Feb 1989 | WO |
WO 199118568 | Dec 1991 | WO |
WO 199200112 | Jan 1992 | WO |
WO 199413234 | Jun 1994 | WO |
WO 199508310 | Mar 1995 | WO |
WO 199823237 | Jun 1998 | WO |
WO 1998030181 | Jul 1998 | WO |
WO 199835639 | Aug 1998 | WO |
WO 199837831 | Sep 1998 | WO |
WO 199926567 | Jun 1999 | WO |
WO 199930641 | Jun 1999 | WO |
WO 200013627 | Mar 2000 | WO |
WO 200064389 | Nov 2000 | WO |
WO 200064390 | Nov 2000 | WO |
WO 200064391 | Nov 2000 | WO |
WO 200064393 | Nov 2000 | WO |
WO 200067687 | Nov 2000 | WO |
WO 200072788 | Dec 2000 | WO |
WO 200141685 | Jun 2001 | WO |
WO 200150943 | Jul 2001 | WO |
WO 200178631 | Oct 2001 | WO |
WO 200197727 | Dec 2001 | WO |
WO 200236052 | May 2002 | WO |
WO 2002074052 | Sep 2002 | WO |
WO 2002080811 | Oct 2002 | WO |
WO 2002087418 | Nov 2002 | WO |
WO 2002089699 | Nov 2002 | WO |
WO 2002102274 | Dec 2002 | WO |
WO 2003015659 | Feb 2003 | WO |
WO 2003041622 | May 2003 | WO |
WO 2003045290 | Jun 2003 | WO |
WO 2003073968 | Sep 2003 | WO |
WO 2004014218 | Feb 2004 | WO |
WO 2004043231 | May 2004 | WO |
WO 2004093761 | Nov 2004 | WO |
WO 2005016418 | Feb 2005 | WO |
WO 2005105197 | Nov 2005 | WO |
WO 2005107664 | Nov 2005 | WO |
WO 2006036715 | Apr 2006 | WO |
WO 2007130393 | Nov 2007 | WO |
WO 2008061043 | May 2008 | WO |
WO 2010077987 | Jul 2010 | WO |
WO 2010093945 | Aug 2010 | WO |
WO 2010135369 | Nov 2010 | WO |
WO 2011020633 | Feb 2011 | WO |
WO 2012071476 | May 2012 | WO |
WO 2013040079 | Mar 2013 | WO |
WO 2013148275 | Oct 2013 | WO |
WO 2014150292 | Sep 2014 | WO |
WO 2014151070 | Sep 2014 | WO |
WO 2014164569 | Oct 2014 | WO |
WO 2015073571 | May 2015 | WO |
WO 2015184173 | Dec 2015 | WO |
WO 2016154066 | Sep 2016 | WO |
WO 2016187355 | Nov 2016 | WO |
WO 2017015633 | Jan 2017 | WO |
WO 2017030917 | Feb 2017 | WO |
WO 2017040853 | Mar 2017 | WO |
WO 2017040855 | Mar 2017 | WO |
WO 2017053885 | Mar 2017 | WO |
WO 2017087713 | May 2017 | WO |
WO 2017184881 | Oct 2017 | WO |
WO 2019036025 | Feb 2019 | WO |
WO 2019070385 | Apr 2019 | WO |
WO 2020172615 | Aug 2020 | WO |
Entry |
---|
Alexander, L., et al., Disistronic Polioviruses as Expression Vectors for Foreign Genes. 1994. Aids Research and Human Retroviruses. vol. 10, Supplement 2, S57-S60. |
Bae, et al., “In vitro experiment of the pressure regulating valve for a glaucoma implant”, Journal of Micromechanics and Microengineering 13.5, 13:613-619, No. 5, Sep. 2003. |
Bucciarelli, Patrice D., Working Model is Next Step in Team's Long Journey to Commercial Product, Healthfirst, Business First of Louisville, louisville.bizjournals.com, Feb. 27, 2004. |
Cairns, J.E., “Trabeculectomy: Preliminary report of a new method”, Am. J. Ophthalmology, 66:673-79 (1968). |
“Changing Perspectives in Glaucoma Management,” Innovations in Glaucoma 2010. |
Chen, et al., “Trabeculetomy combined with implantation of sil-icon rubber slice for intractable glaucoma”, Eye Science, 18:95-98, vol. 2, Jun. 2002. |
Fine, Ben S., et al., “A Clinicopathologic Study of Four Cases of Primary Open-Angle Glaucoma Compared to Normal Eyes”, American Journal of Ophthalmology, vol. 91, No. 1, 1981, pp. 88-105. |
Fiore, P.M., et al., Use of neodymium: YAG laser to open an occluded molteno tube, Ophthalmic Surgery, May 1989; 20(5): 373-74. |
Gimbel, H.V., et al., “Small incision trabeculotomy combined with phacoemulsificatin and intraocular lens implantation”, J Cataract Refract Surg, vol. 19:92-96 (Jan. 1993). |
Gothwal, et al., “Migration of seton into the anterior chamber”, Eye, 16:85-97, 2002. |
Hoskins, H. Dunbar, et al., “Diagnosis and Therapy of the Glaucomas”, Chapter 4: Aqueous Humor Outflow, 61 Edition, pp. 41-66 (1989) (28 pages). |
Huang, Morgan C., et al., “Intermediate-term Clinical Experience with the Ahmed Glaucoma Valve Implant”, 127 Am. J. Ophthalmol. 27 (Jan. 1999). |
Johnson, et al., “Schlemm's Canal Becomes Smaller After Successful Filtration Surgery”, (reprinted) ARCM Ophthalmol—vol. 118, Sep. 2000 (www.archophthalmol.com) p. 1251-1256. |
Jordan, et al., “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma,” J Glaucoma 15(3): 200-205 (2006). |
Kampik, Anselm Franz Grehn, “Nutzen und Risiken Augenärzticher Therapie”, Hauptreferate der XXXIII, Essener Fortbildung für Augenärzte, Dec. 1998. (English translated version enclosed Benefits and Risks of Ophthalmological Therapy). |
Kershner, Robert, “Nonpenetrating trabulectomy with placement of a collagen drainage device”, J. Cataract Refract. Sug., 21:608-611 (1995). |
Klemm, A. Balazs, J. Draeger, R. Wiezorrek, “Experimental use of space-retaining substances with extended duration: functional and morphological results”, Graefe's Arch Clin Exp Ophthalmol (1995) 233:592-597. |
Krupin, Theodore, et al., “Filtering valve implant surgery for eyes with neovascular glaucoma”, 89 Am. J. Ophthalmol. 338 (Mar. 1980). |
Mermoud, A., et al., “Comparison of deep sclerectomy with collagen implant and trabeculectomy in open-angle glaucoma”, J. Cataracat Refract. Surg., vol. 25, No. 3, Mar. 1999, pp. 323-331 (abstract only). |
Miyazaki, Akiko, et al., “Postoperative Results of Combined Trabeculotomy, Phacoemuisification and Intraocular Lens Implantation With Self-Sealing Wound”, Japanese Journal of Ophthalmic Surgery, 1997, pp. 537-542, vol. 10, No. 4. |
Molteno, A.C.B., et al., “Implants for draining neovascular glaucoma”, 61 Br. J. Ophthalmol. 120 (1977). |
Moses, Robert A., M.D.; “Circumferential Flow in Schlemm's Canal”, American Journal of Ophthalmology, Sep. 1979, vol. 88, No. 3, Part II, :pp. 585-591. |
Nguyen, Quang H., et al., “Complications of Baerveldt Glaucoma Drainage Implants”, 116 Arch. Ophthalmol. 571 (May 1998). |
Refojo, “Current status of biomaterials in ophthalmology”, Survey of ophthalmology, 26:257-265, No. 5, 1982. |
Rizq, et al., “Intraocular Pressure Measurement at the Choroid Surface: A Feasibility Study with Implications for Implantable Microsystems”, Br J Ophthalmol 2001; 85:868-871, Jul. 2001. |
Saxena, Sandeep. “Clinical Ophthalmology”. 2011. pp. 245. |
Schocket, “Investigations of the Reasons for Success and Failure in the Anterior Shunt-to-the Encircling-Band Procedure in the Treatment of Refractory Glaucoma”, Tr. Am. Ophth. Soc., 84:743 (1986). |
Scott, et al., “Use of glaucoma drainage devices in the management of glaucoma associated with aniridia”, American Journal of Ophthalmology, 135:155-159, No. 2, Feb. 1, 2003. |
Shields, M. Bruce, MD, “A Study Guide for Glaucoma: Aqueous Humor Dynamics”, Copyright 1982, pp. 6-43. |
Spiegel, Detlev, “Benefits and Risks of Ophthalmological Treatment” Bucherei des Augenarztes I the Ophthalmologist's Library, vol. 139, Oct. 15, 1998. |
Stefansson, J., “An Operation for Glaucoma”, American J. Ophthalmology, 8:681-693 (1925). |
Tham, et al., “Incisional surgery for angle closure glaucoma”, Seminars in Ophthalmology, 17:92-99, No. 2, Jun. 2002. |
Topouzis, Fotis, et al., “Follow-up of the Original Cohort With the Ahmed Glaucoma Valve Implant”, 128 Am. J. Ophthalmol. 198 (Aug. 1999). |
“Transcend Medical CyPass® System—Instructions for Use,” (Release date Apr. 29, 2013). |
Tripathi, et al., “Functional Anatomy of the Anterior Chamber Angle”, Biomedical Foundation of Ophthalmology, vol. 1, Chapter 10,pp. 1-74; edited by Thomas Dune and Edward Jaeger, Revised Edition, 1983,—Harper & Row, Publishers. |
Tun, et al.,“Assessment of Trabecular Meshwork Width Using Swept Source Optical Coherence Tomography”, 251:6 Graefes Arch. Clin. Exp. Ophthalmol. 1587 (2013). |
Wagner, et al., “Characterization of Uveoscleral Outflow in Enucleated Porcine Eyes Perfused Under Constant Pressure”, Invest Ophthalmol Vis Sci. Sep. 2004; 45(9): 3203-3206 (9 pages). |
Webster's Third New International Dictionary of the English Language (Unabridged), definitions of “deploy” and “deployment”, p. 605 (2002) (4 pages). |
Wilcox, Michael J. et al. “Hypothesis for Improving Accessory Filtration by Using Geometry”, J. Glaucoma, vol. 3, No. 3, pp. 244-247 (1994). |
Wilcox et al., Latest Research: Tear Biomarkers, Jun. 29, 2011, 5 pages. |
Wilcox, Michael J. et al. “Performance of a New, Low-volume, High-Surface Area Aqueous Shunt in Normal Rabbit Eyes”, J. Glaucoma, vol. 9, No. 1, pp. 74-82 (Feb. 2000). |
Wilson, Ellen D., “Implants offer choices for glaucoma surgeons”, EW Glaucoma, Oct. 11, 1999, website “http:--www.eyeorld.org-sep99-999p60.asp”. |
Yan, et al., “Schlemm's Canal and Trabecular Meshworkin Eyes with Primary Open Angle Glaucoma: A Comparative Study Using High-Frequency”, PLOS ONE, 15 pages, Jan. 4, 2016. |
European Exam Report, EPO App. No. 08 102 896.1, dated Nov. 4, 2010. |
Communication from European Patent Office for European App. No. 08102896.1 (dated Jul. 2, 2012) (5 pages). |
Appeal in European Application No. 08102896.1 dated Aug. 27, 2012. |
International Search Report and Written Opinion in PCT/US2016/053570 dated Mar. 9, 2017. |
Number | Date | Country | |
---|---|---|---|
20190091012 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62564972 | Sep 2017 | US |