Information
-
Patent Grant
-
6672844
-
Patent Number
6,672,844
-
Date Filed
Friday, November 9, 200123 years ago
-
Date Issued
Tuesday, January 6, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Yu; Justine R.
- Liu; Han L
Agents
-
CPC
-
US Classifications
Field of Search
US
- 417 2222
- 417 269
- 417 270
- 417 213
- 417 2221
- 091 499
- 091 504
- 091 505
- 062 2283
- 062 2285
- 062 133
- 251 12902
- 251 12905
- 251 12915
-
International Classifications
-
Abstract
A variable displacement compressor has a control valve for controlling the displacement of the compressor. When the pressure in a discharge chamber of the compressor (discharge pressure) is equal to or higher than a first threshold value, a controller executes a limiting control for limiting the discharge pressure. During the limiting control, the controller gradually decreases a duty ratio, which is sent to the control valve, such that the displacement of the compressor is gradually decreased. When the duty ratio is decreased to a reference duty ratio, the controller sets the duty ratio to zero %. As a result, the compressor displacement is minimized and the discharge pressure is lowered. Therefore, the pipes of an external refrigerant circuit does not receive excessive load based on high discharge pressure.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a control apparatus for controlling the displacement of a variable displacement compressor used in a refrigerant circuit of a vehicle air conditioner.
A typical variable displacement compressor includes a drive plate coupled to pistons. The drive plate is accommodated in a crank chamber. The pressure of the crank chamber is adjusted to alter the inclination angle of the drive plate, which varies the displacement of the compressor between the minimum displacement and the maximum displacement. The crank chamber pressure is adjusted by a control valve. Specifically, the opening degree of the control valve is adjusted based on a command from a controller.
If the discharge pressure is excessive in the refrigeration circuit, the pipes of the circuit receives excessive load. Therefore, when a discharge pressure sensor detects a pressure that is higher than a predetermined level, the controller adjusts the command signal to the control valve such that the compressor displacement is gradually decreased until the discharge pressure falls below the predetermined level (for example, in Japanese Unexamined Patent Publication No. 59-112156).
Compared to a case in which the displacement is quickly decreased, the invention of the publication, which gradually decreases the displacement, prevents the passenger from being disturbed by a sudden change in the cooling performance.
However, an excessively increased discharge pressure may not be quickly lowered according to a decrease in the compressor displacement. In this case, the displacement may be dropped to a value that is close to the minimum displacement. If the displacement is close to the minimum displacement, little refrigerant is supplied to the compressor from the external refrigerant circuit. That is, lubricant contained in the refrigerant is not sufficiently supplied to the compressor. Thus, the parts needing lubrication, such as sliding portions of the pistons and the cylinder bores, will be poorly lubricated.
SUMMARY OF THE INVENTION
Accordingly, it is an objective of the present invention to provide a control apparatus and a control method that reliably lubricate the sliding parts of a variable displacement compressor when lowering an excessive discharge pressure.
To achieve the foregoing and other objectives and in accordance with the purpose of the present invention, an apparatus for controlling a variable displacement compressor used in a refrigerant circuit of an air conditioner is provided. The refrigerant circuit includes the compressor and an external circuit, which is connected to the compressor. The compressor compresses refrigerant sent from the external circuit and discharges the compressed refrigerant to the external circuit. The refrigerant circuit has a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor. The compressor includes a drive shaft, which is rotated by an external drive source, and a tiltable drive plate, which is located in a crank chamber and converts rotation of the drive shaft to reciprocation of a piston. The drive plate changes its inclination angle in accordance with the pressure in the crank chamber. The drive plate changes the stroke of the piston according to its inclination angle thereby changing the displacement of the compressor. The apparatus includes a control valve, which adjusts the pressure in the crank chamber, a controller for controlling the control valve. The controller sends a command value that corresponds to cooling performance required for the refrigerant circuit to the control valve. The control valve operates to adjust its opening according to the sent command value. When the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, the controller executes a limiting control for limiting the pressure in the high pressure zone. During the limiting control, the controller first gradually changes the command value, which is sent to the control valve, such that the displacement of the compressor is gradually decreased. Then, when the command value is equal to a predetermined reference value, the controller sends a command value that can minimize the displacement of the compressor to the control valve.
The present invention provides another apparatus for controlling a variable displacement compressor used in a refrigerant circuit of an air conditioner. The refrigerant circuit includes the compressor and an external circuit, which is connected to the compressor. The compressor compresses refrigerant sent from the external circuit and discharges the compressed refrigerant to the external circuit. The refrigerant circuit has a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor. The compressor includes a drive shaft, which is coupled to an external drive source through a clutch mechanism, and a compression mechanism, which is actuated by the drive shaft to compress refrigerant and changes the displacement of the compressor. The apparatus includes an actuator for controlling the compression mechanism to change the displacement of the compressor, and a controller for controlling the actuator and the clutch mechanism. The controller sends a command value that corresponds to cooling performance required for the refrigerant circuit to the actuator. The actuator actuates the compression mechanism according to the sent command value. When the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, the controller executes a limiting control for limiting the pressure in the high pressure zone. During the limiting control, the controller first gradually changes the command value, which is sent to the actuator, such that the displacement of the compressor is gradually decreased. Then, when the command value is equal to a predetermined reference value, the controller disconnects the drive shaft from the external drive source by using the clutch mechanism.
Further, the present invention provides a method for controlling a variable displacement compressor used in a refrigerant circuit of an air conditioner. The refrigerant circuit includes the compressor and an external circuit, which is connected to the compressor. The compressor compresses refrigerant sent from the external circuit and discharges the compressed refrigerant to the external circuit. The refrigerant circuit has a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor. The compressor includes a tiltable drive plate, which is located in a crank chamber, the drive plate changes its inclination angle in accordance with the pressure in the crank chamber. The inclination angle of the drive plate determines the displacement of the compressor. The method includes adjusting the pressure in the crank chamber by a control valve, wherein the control valve operates according to a command value, which represents cooling performance required for the refrigerant circuit, and executing a limiting control for limiting the pressure in the high pressure zone when the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, wherein, during the limiting control, the command value, which is sent to the control valve, is first gradually changed such that the displacement of the compressor is gradually decreased, and then, when the command value is equal to a predetermined reference value, a command value that can minimize the displacement of the compressor is sent to the control valve.
The present invention provides another method for controlling a variable displacement compressor used in a refrigerant circuit of an air conditioner. The refrigerant circuit includes the compressor and an external circuit, which is connected to the compressor. The compressor compresses refrigerant sent from the external circuit and discharges the compressed refrigerant to the external circuit. The refrigerant circuit has a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor. The compressor includes a drive shaft, which is coupled to an external drive source through a clutch mechanism, and a compression mechanism, which is actuated by the drive shaft to compress refrigerant and changes the displacement of the compressor. The method includes controlling the compression mechanism by an actuator to change the displacement of the compressor, wherein the actuator operates according to a command value, which represents cooling performance required for the refrigerant circuit, and executing a limiting control for limiting the pressure in the high pressure zone when the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, wherein, during the limiting control, the command value, which is sent to the actuator, is first gradually changed such that the displacement of the compressor is gradually decreased, and then, when the command value is equal to a predetermined reference value, the clutch mechanism disconnects the drive shaft from the external drive source.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
FIG. 1
is a cross-sectional view illustrating a swash plate type variable displacement compressor according to a first embodiment of the present invention;
FIG. 2
is a cross-sectional view of the compressor shown in
FIG. 1
when the displacement is minimum;
FIG. 3
is a cross-sectional view illustrating the control valve in the compressor shown in
FIG. 1
;
FIG. 4
is a graph showing the operation of the controller of the compressor shown in
FIG. 1
;
FIG. 5
is another graph showing the operation of the controller of the compressor shown in
FIG. 1
; and
FIG. 6
is a cross-sectional view illustrating a swash plate type variable displacement compressor according to a second embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A control apparatus according to a first embodiment of the present invention will now be described. The control apparatus is used in a variable displacement swash plate type compressor located in a refrigerant circuit of a vehicle air conditioner.
As shown in
FIGS. 1 and 2
, the compressor includes a cylinder block
1
, a front housing member
2
connected to the front end of the cylinder block
1
, and a rear housing member
4
connected to the rear end of the cylinder block
1
. A valve plate assembly
3
is located between the rear housing member
4
and the cylinder block
1
.
A crank chamber
5
is defined between the cylinder block
1
and the front housing member
2
. A drive shaft
6
extends through the crank chamber
5
and is rotatably supported by the cylinder block
1
and the front housing member
2
. The drive shaft
6
is connected to an external drive source, which is an engine E in this embodiment, through a power transmission mechanism without a clutch such as an electromagnetic clutch. The power transmission mechanism includes a pulley
7
and a belt
8
. When the engine E is running, the drive shaft
6
is constantly rotated. Since the compressor has no electromagnetic clutch, which is expensive and heavy, the cost is lowered and the weight of the compressor is reduced. Also, since there is no shock due to engaging and disengaging of an electromagnetic clutch, the engine performance is improved.
A lug plate
11
is fixed to the drive shaft
6
in the crank chamber
5
to rotate integrally with the drive shaft
6
. A drive plate, which is a swash plate
12
in this embodiment, is accommodated in the crank chamber
5
. The swash plate
12
slides along the drive shaft
6
and inclines with respect to the axis of the drive shaft
6
. A hinge mechanism
13
is provided between the lug plate
11
and the swash plate
12
. The hinge mechanism
13
causes the lug plate
11
to rotate integrally with the drive shaft
6
. The hinge mechanism
13
also permits the swash plate
12
to move along and to incline with respect to the axis of the drive shaft
6
.
Cylinder bores
1
a
are formed in the cylinder block
1
at constant angular intervals around the drive shaft
6
. Each cylinder bore
1
a
accommodates a single headed piston
20
. A compression chamber
29
, the volume of which varies in accordance with the reciprocation of the piston
20
, is defined in each bore la. The front end of each piston
20
is connected to the periphery of the swash plate
12
through a pair of shoes
19
. The rotation of the swash plate
12
is converted into reciprocation of the pistons
20
. The lug plate
11
, the swash plate
12
, the hinge mechanism
13
, the shoes
19
and the pistons
20
form a compression mechanism, which compresses refrigerant gas and changes the displacement of the compressor.
A suction chamber
21
and a discharge chamber
22
are defined between the valve plate assembly
3
and the rear housing member
4
. The valve plate assembly
3
has suction ports
23
, suction valve flaps
24
, discharge ports
25
and discharge valve flaps
26
. Each set of the suction port
23
, the suction valve flap
24
, the discharge port
25
and the discharge valve flap
26
corresponds to one of the cylinder bores
1
a
. When each piston
20
moves from the top dead center position to the bottom dead center position, refrigerant gas in the suction chamber
21
flows into the corresponding cylinder bore
1
a
via the corresponding suction port
23
and suction valve
24
. When each piston
20
moves from the bottom dead center position to the top dead center position, refrigerant gas in the corresponding cylinder bore
1
a
is compressed to a predetermined pressure and is discharged to the discharge chamber
22
via the corresponding discharge port
25
and discharge valve
26
.
As shown in
FIG. 3
, a crank chamber pressure control mechanism includes a bleed passage
27
, a supply passage
28
, and a control valve CV. The pressure in the crank chamber
5
(crank chamber pressure Pc) affects the inclination angle of the swash plate
12
. The passages
27
,
28
are formed in the compressor housing, and the control valve CV is located in the compressor. The bleed passage
27
connects the crank chamber
5
with the suction chamber
21
, which is exposed to suction pressure Ps. The supply passage
28
connects the discharge chamber
22
, which is exposed to discharge pressure Pd, with the crank chamber
5
. The control valve CV regulates the supply passage
28
.
The opening of the control valve CV is adjusted to control the flow rate of highly pressurized gas supplied to the crank chamber
5
through the supply passage
28
. The crank chamber pressure Pc is determined by the flow rate of the gas supplied to the crank chamber
5
through the supply passage
28
and the flow rate of refrigerant gas conducted out from the crank chamber
5
through the bleed passage
27
. As the crank chamber pressure Pc varies, the difference between the crank chamber pressure Pc and the pressure in the cylinder bores la varies, which changes the inclination angle of the swash plate
12
, or the angle of the swash plate
12
relative to a plane that is perpendicular to the axis of the drive shaft
6
. Accordingly, the stroke of each piston
20
, or the compressor displacement, is varied.
When the opening degree of the control valve CV is small, the crank chamber pressure Pc is lowered, which decreases the difference between the crank chamber pressure Pc and the pressure in the compression chamber
29
. Accordingly, the inclination angle of the swash plate
12
is increased and the compressor displacement is increased. In
FIG. 1
, the swash plate
12
contacts the lug plate
11
and the inclination angle of the swash plate
12
is maximized. In this state, the compressor displacement is maximized.
When the opening degree of the control valve CV is increased, the crank chamber pressure Pc is increased, which increases the difference between the crank chamber pressure Pc and the pressure in the compression chamber
29
. Accordingly, the inclination angle of the swash plate
12
is decreased, and the compressor displacement is decreased. In
FIG. 2
, the swash plate
12
contacts and compresses a spring
14
fitted about the drive shaft
6
, and the inclination angle of the swash plate
12
is minimized. In this state, the compressor displacement is minimized. The minimum inclination angle of the swash plate
12
is close to zero degrees and is, for example, two to five degrees. The spring
14
functions as a means for limiting the minimum inclination angle of the swash plate
12
.
As shown in
FIGS. 1 and 2
, the refrigerant circuit of the vehicle air conditioner includes the compressor and an external refrigerant circuit
30
. The external refrigerant circuit
30
includes, for example, a condenser
31
, a decompression device, which is an expansion valve
32
in this embodiment, and an evaporator
33
.
A device for stopping external circulation of refrigerant, which is a shutoff valve
69
in this embodiment, is located on a refrigerant passage between the discharge chamber
22
of the compressor and the condenser
31
of the external refrigerant circuit
30
. The shutoff valve
69
shuts off the refrigerant passage when the pressure Pd in the discharge chamber
22
falls below a predetermined level to stop the circulation of refrigerant through the external refrigerant circuit
30
.
The shutoff valve
69
may be a differential valve, which mechanically detects the pressures at both sides. Alternatively, the shutoff valve
69
may be an electromagnetic valve, which is actuated and controlled according to the discharge pressure Pd by a controller
70
, which will be discussed below. The discharge pressure Pd falls below the predetermined level when the compressor displacement is minimized. Thus, the shutoff valve
69
may be mechanically linked to the swash plate
12
such that the shutoff valve
69
shuts off the passage when the inclination angle of the swash plate
12
is minimized.
As shown in
FIG. 3
, the control valve CV includes a supply valve and a device for setting a target pressure, which is a solenoid
60
in this embodiment. The supply valve is arranged in an upper portion of the valve CV, while the solenoid
60
is arranged in a lower portion of the valve. The supply valve adjusts the opening size (throttle amount) of the supply passage
28
, which connects the discharge chamber
22
to the crank chamber
5
. The solenoid
60
is an electromagnetic actuator for urging a rod
40
, which is located in the control valve CV, based on a current supplied from an outside source. The solenoid
60
functions as an actuator for indirectly actuating the compression mechanism to control the compressor displacement. The rod
40
has a distal end portion
41
, a valve body
43
, a connecting portion
42
, which connects the distal end portion
41
and the valve body
43
with each other, and a guide
44
. The valve body
43
is part of the guide
44
.
A valve housing
45
of the control valve CV has a plug
45
a
, an upper half body
45
b
, and a lower half body
45
c
. The upper half body
45
b
defines the shape of the supply valve portion. The lower half body
45
c
defines the shape of the solenoid
60
. A valve chamber
46
and a communication passage
47
are defined in the upper half body
45
b
. The upper half body
45
b
and the plug
45
a
define a pressure sensing chamber
48
.
The rod
40
moves in the axial direction of the control valve CV, or vertically as viewed in the drawing, in the valve chamber
46
and the communication passage
47
. The valve chamber
46
is selectively connected to and disconnected from the passage
47
in accordance with the position of the rod
40
. The communication passage
47
is separated from the pressure sensing chamber
48
by the distal end portion
41
of the rod
40
.
The bottom wall of the valve chamber
46
is formed by the upper end surface of a stationary iron core
62
. A first radial port
51
is formed in a part of the wall of the valve housing
45
that surrounds the valve chamber
46
. The first radial port
51
allows the valve chamber
46
to communicate with the discharge chamber
22
through an upstream section of the supply passage
28
. A second radial port
52
is formed in a part of the valve housing
45
that surrounds the communication passage
47
. The second radial port
52
allows the communication passage
47
to communicate with the crank chamber
5
through a downstream section of the supply passage
28
. The first port
51
, the valve chamber
46
, the communication passage
47
, and the second port
52
form a passage, which is located in the control valve CV and is a part of the supply passage
28
.
The valve body
43
of the rod
40
is located in the valve chamber
46
. A valve body urging spring
56
is located in the valve chamber
46
and urges the valve body
43
downward. A step is formed between the valve chamber
46
and the communication passage
47
. The step functions as a valve seat
53
, and the communication passage
47
functions as a valve hole. When the rod
40
is moved from the position of
FIG. 3
, or the lowermost position, to the uppermost position, at which the valve body
43
contacts the valve seat
53
, the communication passage
47
is disconnected from the valve chamber
46
. That is, the valve body
43
is a supply valve body that controls the opening size of the supply passage
28
.
A pressure sensing member, which is a bellows
54
in this embodiment, is located in the pressure sensing chamber
48
. The upper end of the bellows
54
is fixed to the plug
45
a
of the valve housing
45
. A rod seat
54
a
is located at the lower end of the bellows
54
. The upper end of the rod
40
is located in the rod seat
54
a
. An urging spring
55
is accommodated in the bellows
54
and expands the bellows
54
downward. The bellows
54
is pressed against the distal end portion
41
of the rod through the rod seat
54
a
by the downward force of the spring
55
.
The pressure sensing chamber
48
is connected to a pressure monitoring point, which is the suction chamber
21
, through a pressure introduction port
57
formed in the upper half body
45
b
of the valve housing
45
and a pressure introduction passage
37
, which is formed in the rear housing member
4
. That is, the pressure sensing chamber
48
is exposed to the pressure Ps in the suction chamber
21
.
The solenoid
60
includes a cup-shaped cylinder
61
. The stationary iron core
62
is fitted into an upper opening of the cylinder
61
. The stationary core
62
defines a solenoid chamber
63
in the cylinder
61
. A movable iron core
64
is located in the solenoid chamber
63
. The movable iron core
64
is moved axially. The stationary core
62
has a guide hole
65
through which the guide
44
of the rod
40
extends.
An urging spring
66
is accommodated in the solenoid chamber
63
and urges the movable core
64
toward the stationary core
62
. Therefore, the guide
44
and the movable core
64
are pressed against each other by the downward force of the spring
56
and the upward force of the spring
66
for moving core. Thus, the movable core
64
and the rod
40
move integrally.
A coil
67
is wound about the stationary core
62
and the movable core
64
. The coil
67
receives drive signals from a drive circuit
71
based on command signals from the controller
70
, which is a computer. Specifically, the controller
70
outputs command signals according to external information obtained from a group
72
of external information devices. The coil
67
generates an electromagnetic force that corresponds to the value of the current from the drive circuit
71
. The electromagnetic force urges the movable core
64
toward the stationary core
62
. The electric current supplied to the coil
67
is controlled by controlling the voltage applied to the coil
67
. In this embodiment, the applied voltage is controlled by pulse-width modulation.
The group
72
of the external information devices includes, e.g., an air conditioner switch
73
, a temperature adjuster
74
for setting a desired temperature in the passenger compartment, a temperature sensor
75
detecting the temperature in the passenger compartment, a rotational speed sensor
76
for detecting the speed Nc of the drive shaft
6
, and a discharge pressure sensor
77
for detecting the pressure Pd in the discharge chamber
22
. Based on signals from the external information device group
72
, the controller
70
computes a cooling performance that is required for the refrigerant circuit and sends a command value (duty signal) that represents the required cooling performance to the coil
67
through the drive circuit
71
.
The position of the rod
40
in the control valve CV, i.e., the valve opening of the control valve CV, is determined as follows.
When no current is supplied to the coil
67
(Dt=0%) as shown in
FIG. 3
, the downward force of the springs
55
and
56
is dominant in determining the position of the rod
40
. As a result, the rod
40
is moved to its lowermost position and causes the valve body
43
to fully open the communication passage
47
. Accordingly, the crank pressure Pc is maximized under the current circumstances. Therefore, the difference between the crank pressure Pc and the pressure in the compression chambers
29
is great, which minimizes the inclination angle of the swash plate
12
and the compressor displacement.
When refrigeration is not necessary, for example, when the air conditioner switch
73
is off, the controller
70
outputs a signal for minimizing the displacement to the control valve CV. That is, the controller
70
commands the drive circuit
71
to set the duty ratio Dt to the coil
67
to 0%.
Thus, the compressor displacement is minimized as shown in FIG.
2
. In this state, the pressure at the side of the discharge chamber
22
is lower than a predetermined value, which closes the shutoff valve
69
. Accordingly, the circulation of refrigerant through the external refrigerant circuit
30
is stopped. That is, when the compressor displacement is minimized, the shutoff valve
69
stops the refrigerant circulation through the external refrigerant circuit
30
. Since the minimum inclination angle of the swash plate
12
is not zero, refrigerant is drawn into the compression chambers
29
from the suction chamber
21
, compressed and discharged to the discharge chamber
22
even if the compressor displacement is minimized.
Accordingly, an internal refrigerant circuit, that is, a passage having the compression chambers
29
, the discharge chamber
22
, the supply passage
28
, the crank chamber
5
, the bleed passage
27
, and the suction chamber
21
is formed in the compressor. Together with refrigerant, lubricant circulates in the internal refrigerant circuit. Therefore, even if refrigerant, which contains lubricant, does not return from the external refrigerant circuit
30
, the sliding members (for example, the pistons
20
and the cylinder bore la) are reliably lubricated.
When the electric current corresponding to the minimum duty ratio Dt(Dt>0%) within the range of duty ratios is supplied to the coil
67
, the upward electromagnetic force exceeds the downward force of the springs
55
,
56
, and the rod
40
moves upward. In this state, the resultant of the upward electromagnetic force and the upward force of the spring
66
acts against the resultant of the forces of the springs
55
,
56
, which is weakened by the upward force of the bellows
54
based on the suction pressure Ps in the pressure sensing chamber
48
. The position of the valve body
43
of the rod
40
relative to the valve seat
53
is determined such that upward and downward forces are balanced.
The control valve CV automatically determines the position of the rod
40
according to changes of the suction pressure Ps to maintain the suction pressure Ps to the target value. The target value of the suction pressure Ps can be externally changed by adjusting the duty ratio Dt of the current supplied to the coil
67
.
When the discharge pressure Pd changes from a value that is lower than a first threshold value L1 to a value that is equal to or higher than the first threshold value L1 as shown in
FIG. 4
, the controller
70
starts a protection control (discharge pressure limiting control). Specifically, regardless of the level of cooling load, or the cooling performance that is required for the refrigerant circuit, the controller
70
commands the drive circuit
71
to gradually decrease duty ratio Dt, which is sent to the coil
67
, from the current value. Accordingly, the compressor displacement is gradually decreased. As a result, the discharge pressure Pd stops increasing and then starts decreasing.
The controller
70
decreases the duty ratio Dt, which is sent to the drive circuit
71
, to the reference duty ratio DtS and then commands the drive circuit
71
to decreases the duty ratio to the coil
67
to 0%. Therefore, the compressor displacement is minimized and the discharge pressure Pd is significantly lowered. This prevents pipes of the external refrigerant circuit
30
from receiving excessive load based on a high discharge pressure Pd.
The controller
70
changes the reference duty ratio DtS in accordance with the rotational speed Nc detected by the rotation speed sensor
76
. When the rotational speed Nc is high, the speed of the pistons
20
is also high. In this state, the lubrication between the pistons
20
and the cylinder bores
1
a
is not sufficient. Therefore, the controller
70
sets the reference duty ratio DtS relatively high so that the compressor displacement is instantly minimized before the displacement is too small. That is, increasing the reference duty ratio DtS instantly minimizes the compressor displacement from a state in which a relatively great flow rate of refrigerant is flowing into the compressor. When the compressor displacement is minimized, the shutoff valve
69
is closed and refrigerant, which contains lubricant, does not flow out from the compressor to the external refrigerant circuit
30
. Thus, lubrication of the drive shaft
6
is improved when the rotational speed Nc is high. When the rotational speed Nc of the drive shaft
6
is too low, the controller
70
sets the reference duty ratio DtS relatively low for preventing refrigeration from being unnecessarily stopped.
The controller
70
stores the value of the current duty ratio Dt immediately before starting the protection control. The stored value of the duty ratio Dt is used as a target value DtR when the displacement returns to a normal value. When the discharge pressure Pd is lowered to and drops below a second threshold value L2, which is lower than the first threshold value L1 as shown in
FIG. 4
, the controller
70
commands the drive circuit
71
to send the duty ratio Dt, which is equal to the stored duty ratio DtR (see FIG.
5
), or stops the protection control. Accordingly, the compressor displacement starts being controlled in accordance with the cooling load.
The embodiment of
FIGS. 1
to
5
has the following advantages.
(1) When the duty ratio Dt sent to the drive circuit
71
drops to the reference duty ratio DtS during the protection control, the controller
70
judges that the flow rate of refrigerant that returns to the compressor form the external refrigerant circuit
30
, or the amount of lubricant that returns to the compressor, is too low and immediately minimizes the compressor displacement. Thus, the shutoff valve
69
stops the circulation of refrigerant through the external refrigerant circuit
30
. The compressor operates at the minimum displacement, which is not zero, and an internal refrigerant circuit is formed in the compressor. Therefore, lubricant is not discharged from the compressor and the sliding parts of the pistons
20
and the cylinder bores
1
a
are reliably lubricated by lubricant contained in the circulating refrigerant.
(2) The controller
70
starts the protection control at the first threshold value L1 of the discharge pressure Pd and stops the protection control at the second threshold value L2 of the discharge pressure. The first threshold value L1 is different from the second threshold value L2. In other words, there is a hysteresis. Therefore, unlike a case in which there is only one threshold value, the protection control is not started and stopped too frequently in a short period. This stabilizes the displacement control of the compressor.
(3) The controller
70
changes the reference duty ratio DtS in accordance with the rotational speed Nc detected by the rotation speed
76
. This reliably protects the air conditioner without lowering the cooling performance.
(4) Suppose the minimum inclination angle of the swash plate
12
is zero degrees and the minimum displacement is zero. In this case, when the inclination angle of the swash plate
12
is zero, the pistons
20
do not reciprocate, that is, refrigerant gas is not compressed. In this case, the crank chamber pressure Pc cannot be set different from the pressure in the compression chambers
29
. The swash plate
12
cannot be increased from zero degrees. Thus, a structure for controlling the displacement that is independent from a structure for controlling the crank chamber pressure is required, which complicates the compressor.
However, in the embodiment of
FIGS. 1
to
5
, the minimum displacement is not zero. Therefore, the displacement can be increased from the minimum displacement by controlling the crank chamber pressure Pc. In other words, the displacement is controlled by the structure for controlling the crank chamber pressure Pc, which simplifies the structure.
(5) The control valve CV includes the solenoid
60
, which changes the target suction pressure according to external signals. The bellows
54
uses the target suction pressure for determining the position of the valve body
43
. Therefore, compared to a control valve that has no solenoid, that is, a control valve that has a single target suction pressure, the control valve CV enables finer air conditioning.
(6) The control valve CV is a so-called supply control valve, which adjusts the opening degree of the supply passage
28
for controlling the crank chamber pressure Pc. Therefore, when the displacement need be minimized, the control valve CV fully opens the supply passage
28
. Thus, the supply passage
28
is used as a part of the inner refrigerant circuit, which simplifies the structure of the compressor.
(7) The drive shaft
6
is directly coupled to the engine E. When the engine E is running, the drive shaft
6
always rotates. Therefore, in the embodiment of
FIGS. 1
to
5
, the minimum displacement must be significantly small, or close to zero, compared to a compressor that has a clutch. This is because the power loss of the engine E when refrigeration is not executed must be reduced. Therefore, the flow rate of refrigerant that is returned to the compressor from the external refrigerant circuit tends to be too low when the displacement is close to the minimum value. In other words, the present invention is particularly advantageous when applied to a clutchless type compressor.
A compressor according to a second embodiment of the present invention will now be described with reference to FIG.
6
. The description of the second embodiment will focus on the differences from the first embodiment, and the same reference numbers are used to refer to parts that are similar to those in the first embodiment.
An electromagnetic clutch
90
is located between the drive shaft
6
of the compressor and the engine E. A rotor
91
of the clutch is supported by an outer wall of the front housing member
2
through a bearing
92
. A belt
93
is engaged with the engine E and the rotor
91
. A flexible hub
94
is fixed to the front end of the drive shaft
6
. An armature
95
is supported by the peripheral portion of the hub
94
. An electromagnetic coil
96
is supported by the outer wall of the front housing member
2
and located in the rotor
91
.
If the controller
70
commands the coil
96
to be excited when the engine E is running, the armature
95
is attracted by the electromagnetic force and pressed against the rotor
91
. The clutch
90
is therefore engaged and transmits power of the engine E to the drive shaft
6
. If the controller
70
commands the coil
96
to be de-excited in this state, the armature
95
is separated from the rotor
91
by the force of the hub
94
. Accordingly, the clutch
90
is disengaged and disconnects the drive shaft
6
from the engine E.
During the protection control, the controller
70
disengages the clutch
90
when the duty ratio Dt to the drive circuit
71
is decreased to the reference duty ratio DtS (see FIG.
5
). Accordingly, the compressor is stopped and the discharge pressure Pd is significantly lowered. This prevents the pipes of the external refrigerant circuit
30
from receiving excessive load due to an excessive value of the discharge pressure Pd. Also, the reciprocation of the pistons
20
is stopped. Thus, there is need to lubricate the pistons
20
and the cylinder bores
1
a.
When the discharge pressure Pd falls below the second threshold value L2, which is lower than the first threshold value L1, the controller
70
engages the clutch
90
and commands the drive circuit
71
to excite the coil
67
at the stored duty ratio DtR (see FIG.
5
). Accordingly, the compressor starts operating at a displacement that corresponds to the cooling load.
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the invention may be embodied in the following forms.
In the illustrated embodiments, the control valve CV changes the target suction value. However, the control valve CV may be used for changing a target discharge pressure. In this case, the target value of the discharge pressure Pd is determined by a target pressure changing means, and the control valve CV automatically determines the position of a valve body such that the discharge pressure Pd is maintained at the target value in accordance with the discharge pressure.
Unlike the illustrated embodiments, two pressure monitoring points may be located in the refrigerant circuit. That is, a first pressure monitoring point may be located, for example, in a discharge pressure zone, and a second pressure monitoring point may be located, for example, in a discharge pressure zone the pressure of which is lower than that of the first pressure monitoring point. In this case, a control valve that detects the pressure difference between the pressure monitoring points may be employed. The control valve has a pressure sensing member. The pressure sensing member is displaced based on the pressure difference to move a valve body such that the compressor displacement is changed to cancel the pressure difference. Therefore, the force applied to the pressure sensing member by the target pressure changing means is changed by external control. Accordingly, the target pressure, which is referred to when the position of the valve body is determined by the pressure sensing member, is varied.
The pressure sensing structure may be omitted from the control valve CV so that the control valve CV functions as an electromagnetic valve.
The control valve CV may be used as a so-called bleed control valve, which adjusts the opening degree of the bleed passage
27
for changing the crank chamber pressure Pc. That is, the control valve CV may adjust the opening of any pressure controlling passage that is connected to the crank chamber
5
, such as the supply passage
28
and the bleed passage
27
.
In the embodiment of
FIGS. 1
to
5
, the minimum inclination angle of the swash plate
12
may be zero degrees so that the minimum displacement of the compressor is zero. In this case, the pistons
20
do not reciprocate when the compressor displacement is minimized, and unnecessary cooling is not performed by rotation of the drive shaft
6
. In other words, refrigerant is not discharged to the external refrigerant circuit
30
. Also, lubrication need not be maintained between the pistons
20
and the cylinder bores la. Thus, the shutoff valve
69
may be omitted.
The controller
70
may change the reference duty ratio DtS according to the discharge pressure Pd detected by the discharge pressure sensor
77
. That is, when the discharge pressure Pd is high, lubrication between the pistons
20
and the cylinder bores
1
a
is insufficient. In this case, the controller
70
sets the reference duty ratio DtS relatively high so that the compressor displacement is instantly minimized before the displacement is too small, or before, in other words, before the flow rate of refrigerant that returns to the compressor from the external refrigerant circuit
30
(the amount of contained lubricant) is too small. When the discharge pressure Pd is relatively low, the controller
70
sets the reference duty ratio DtS relatively low so that unnecessary cooling is not performed. This structure improves the cooling performance while reliably protecting the air conditioner.
In the illustrated embodiments, the shutoff valve
69
is used to shut the outlet of the compressor. Instead, the shutoff valve
69
may be used for shutting the inlet of the compressor.
The present invention may be embodied in a control valve of a wobble type variable displacement compressor. That is, the present invention may be embodied in any type of variable displacement compressor having a tiltable drive plate that converts rotation of the drive shaft
6
to reciprocation of the pistons
20
.
In the illustrated embodiments, the pressure in the discharge chamber
22
is detected by the discharge pressure sensor
77
. However, the pressure at any point in a zone that is exposed to the discharge pressure Pd, or the high pressure zone, may be detected by the sensor
77
.
Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims
- 1. A refrigerant circuit of an air conditioner, comprising:a compressor, wherein the compressor includes: a crank chamber having a pressure; a drive shaft; a reciprocating piston; and a tiltable drive plate, which is located in the crank chamber and converts rotation of the drive shaft to reciprocation of the piston, the drive plate changes its inclination angle in accordance with the pressure in the crank chamber, and wherein the drive plate changes the stroke of the piston according to the inclination angle of the drive plate thereby changing the displacement of the compressor; an external circuit, which is connected to the compressor, wherein the compressor compresses refrigerant sent from the external circuit and discharges the compressed refrigerant to the external circuit; a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor; a pressure sensor for detecting the pressure in the high pressure zone; a control valve, which adjusts the pressure in the crank chamber; and a controller for controlling the control valve, wherein the controller sends a command value that corresponds to cooling performance required for the refrigerant circuit to the control valve, wherein the control valve operates to adjust its opening according to the sent command value, wherein, when the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, the controller executes a limiting control for limiting the pressure in the high pressure zone, wherein, during the limiting control, the controller first gradually changes the command value, which is sent to the control valve, such that the displacement of the compressor is gradually decreased, and then, when the command value is equal to a predetermined reference value, the controller sends a command value that can minimize the displacement of the compressor to the control valve.
- 2. The refrigerant circuit according to claim 1, wherein the minimum displacement of the compressor is zero.
- 3. The refrigerant circuit according to claim 1, wherein the minimum displacement of the compressor is greater than zero, wherein the refrigerant circuit includes a circulation stopping device, which stops circulation of refrigerant in the refrigerant circuit when the compressor displacement is minimum, and wherein, when the circulation stopping device stops refrigerant circulation in the refrigerant circuit, refrigerant circulates within the compressor.
- 4. The refrigerant circuit according to claim 3, wherein the circulation stopping device is a shutoff valve, which prevents refrigerant from being discharged from the compressor.
- 5. The refrigerant circuit according to claim 3, wherein the compressor includes:a suction chamber for receiving refrigerant from the external circuit; a cylinder bore for accommodating the piston, wherein a compression chamber is defined in the cylinder bore, and wherein the piston compresses refrigerant that is drawn into the compression chamber from the suction chamber; and a discharge chamber for receiving compressed refrigerant gas from the compression chamber, wherein the discharge chamber forms a part of the high pressure zone, wherein the compressed gas is sent to the external circuit from the discharge chamber, wherein, when the circulation stopping device stops circulation of refrigerant in the refrigerant circuit, an internal refrigerant circuit, which includes the discharge chamber, the crank chamber, the suction chamber, and the compression chamber, is formed in the compressor.
- 6. The refrigerant circuit according to claim 1, wherein the drive shaft is directly coupled to an external drive source so that the drive shaft is always rotated when the external drive source is running.
- 7. The refrigerant circuit according to claim 1, wherein the threshold value is a first threshold value, and wherein the controller continues the limiting control until the pressure in the high pressure zone is equal to or lower than a second threshold value, which is lower than the first threshold value, after the pressure in the high pressure zone is equal to or higher than the first threshold value.
- 8. The refrigerant circuit according to claim 1, wherein the controller changes the reference value in accordance with the speed of the drive shaft.
- 9. The refrigerant circuit according to claim 8, wherein the controller changes the reference value such that the compressor displacement, which corresponds to the reference value, is relatively increased as the speed of the drive shaft increases.
- 10. A refrigerant circuit of an air conditioner, comprising:a compressor, wherein the compressor includes: a drive shaft, which is coupled to an external drive source through a clutch mechanism; and a compression mechanism, which is actuated by the drive shaft to compress refrigerant and changes the displacement of the compressor; an external circuit, which is connected to the compressor, wherein the compressor compresses refrigerant sent from the external circuit and discharges the compressed refrigerant to the external circuit; a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor; a pressure sensor for detecting the pressure in the high pressure zone; an actuator for controlling the compression mechanism to change the displacement of the compressor; and a controller for controlling the actuator and the clutch mechanism, wherein the controller sends a command value that corresponds to cooling performance required for the refrigerant circuit to the actuator, wherein the actuator actuates the compression mechanism according to the sent command value, wherein, when the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, the controller executes a limiting control for limiting the pressure in the high pressure zone, wherein, during the limiting control, the controller first gradually changes the command value, which is sent to the actuator, such that the displacement of the compressor is gradually decreased, and then, when the command value is equal to a predetermined reference value, the controller disconnects the drive shaft from the external drive source by using the clutch mechanism.
- 11. The refrigerant circuit according to claim 10, wherein the compression mechanism includes:a piston; and a tiltable drive plate, which is located in a crank chamber of the compressor and converts rotation of the drive shaft to reciprocation of the piston, the drive plate changes its inclination angle in accordance with the pressure in the crank chamber, and wherein the drive plate changes the stroke of the piston according to its inclination angle thereby changing the displacement of the compressor.
- 12. The refrigerant circuit according to claim 11, further comprising a control valve for adjusting the pressure in the crank chamber, wherein the actuator is located in the control valve.
- 13. The refrigerant circuit according to claim 10, wherein the threshold value is a first threshold value, and wherein the controller continues the limiting control until the pressure in the high pressure zone is equal to or lower than a second threshold value, which is lower than the first threshold value, after the pressure in the high pressure zone is equal to or higher than the first threshold value.
- 14. The refrigerant circuit according to claim 10, wherein the controller changes the reference value in accordance with the speed of the drive shaft.
- 15. The refrigerant circuit according to claim 14, wherein the controller changes the reference value such that the compressor displacement, which corresponds to the reference value, is relatively increased as the speed of the drive shaft increases.
- 16. A method for controlling a variable displacement compressor used in a refrigerant circuit of an air conditioner, wherein the refrigerant circuit includes the compressor and an external circuit, which is connected to the compressor, the method comprising:sending refrigerant from the external circuit to the compressor; compressing the refrigerant by the compressor; discharging the compressed refrigerant from the compressor to the external circuit; adjusting the pressure in a crank chamber of the compressor by a control valve, wherein the control valve operates according to a command value, which represents cooling performance required for the refrigerant circuit; changing the inclination angle of a drive plate located in the crank chamber in accordance with the pressure in the crank chamber, wherein the inclination angle of the drive plate determines the displacement of the compressor; detecting the pressure in a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor; and executing a limiting control for limiting the pressure in the high pressure zone when the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, wherein, during the limiting control, the command value, which is sent to the control valve, is first gradually changed such that the displacement of the compressor is gradually decreased, and then, when the command value is equal to a predetermined reference value, a command value that can minimize the displacement of the compressor is sent to the control valve.
- 17. The method according to claim 16, wherein the minimum displacement of the compressor is zero.
- 18. The method according to claim 16, wherein the minimum displacement of the compressor is greater than zero, the method further including:stopping circulation of refrigerant in the refrigerant circuit when the compressor displacement is minimized; and circulating refrigerant within the compressor when circulation of refrigerant in the refrigerant circuit is stopped.
- 19. A method for controlling a variable displacement compressor used in a refrigerant circuit of an air conditioner, wherein the refrigerant circuit includes the compressor and an external circuit, which is connected to the compressor, the method comprising:sending refrigerant from the external circuit to the compressor; compressing the refrigerant by a compression mechanism of the compressor, wherein the compression mechanism is actuated by a drive shaft, which is coupled to an external drive source through a clutch mechanism; discharging the compressed refrigerant from the compressor to the external circuit; controlling the compression mechanism by an actuator to change the displacement of the compressor, wherein the actuator operates according to a command value, which represents cooling performance required for the refrigerant circuit; detecting the pressure in a high pressure zone, which is exposed to the pressure of refrigerant that is compressed by the compressor; and executing a limiting control for limiting the pressure in the high pressure zone when the pressure in the high pressure zone is equal to or higher than a predetermined threshold value, wherein, during the limiting control, the command value, which is sent to the actuator, is first gradually changed such that the displacement of the compressor is gradually decreased, and then, when the command value is equal to a predetermined reference value, the clutch mechanism disconnects the drive shaft from the external drive source.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-343698 |
Nov 2000 |
JP |
|
US Referenced Citations (8)
Number |
Name |
Date |
Kind |
5547346 |
Kanzaki et al. |
Aug 1996 |
A |
5890876 |
Suito et al. |
Apr 1999 |
A |
6142745 |
Kawaguchi et al. |
Nov 2000 |
A |
6213728 |
Kato et al. |
Apr 2001 |
B1 |
6224348 |
Fukanuma et al. |
May 2001 |
B1 |
6241483 |
Kato et al. |
Jun 2001 |
B1 |
6352416 |
Ota et al. |
Mar 2002 |
B1 |
6354811 |
Ota et al. |
Mar 2002 |
B1 |
Foreign Referenced Citations (5)
Number |
Date |
Country |
57-77845 |
May 1982 |
JP |
59-112156 |
Jun 1984 |
JP |
3-986 |
Jan 1991 |
JP |
3-000986 |
Jan 1991 |
JP |
5-248740 |
Sep 1993 |
JP |