As carbon dioxide concentrations in the atmosphere increase, it is becoming advantageous from social welfare, human health, and energy security perspectives to develop technologies that remove carbon dioxide from the air. Carbon dioxide conversion technologies have the added benefit of producing commodity chemicals on-site, anywhere on the globe, with no cost or hazard risk of transportation when coupled with air capture of CO2. The need for removing CO2 from the air is coupled with an increasing global utilization of renewable electricity generation methods, such as solar photovoltaics and wind turbines.
Techniques like these use intermittent energy sources, such as the sun, which sets in the evening and rises in the morning, and wind, which blows intermittently. Thus, the supply of electricity from these sources to electrical grids surges at some points and is low at others. This presents an opportunity for technologies that can intermittently utilize electricity to produce desired products on-site.
Of the available technologies to produce chemicals from carbon dioxide, hydrogenation of carbon dioxide or carbon monoxide using renewably-derived hydrogen gas from a water electrolyzer is capable of being powered completely by renewable (solar, wind, hydroelectric, etc.) electricity. A method such as this converts a carbon-based feedstock (carbon dioxide or carbon monoxide) and water into hydrocarbon chemicals using an external energy source; this is similar to the fundamental photosynthetic processes enabling life on our planet. For example, plants use photosynthesis to convert carbon dioxide, water, and solar energy into chemical energy by creating sugars and other complex hydrocarbons.
One of the major hurdles toward carbon dioxide sequestration is the effective utilization and catalytic transformation of carbon dioxide or carbon monoxide into useful chemicals. Plants achieve this via dehydrogenase enzymes, which utilize transition metals to catalyze the hydrogenation of carbon dioxide into carbon monoxide, formic acid, or a number of other building blocks for sugars. Man-made systems have attempted to copy this route, and chemical methods for carbon dioxide transformation have been known for decades. Many of these, however, have energy requirements unrealistic for any large-scale deployment.
Accordingly, a need exists for such scalable processes for CO2 utilization and conversion to higher value products, such as sugars.
In some aspects, provided herein are methods for the conversion of CO2 to sugars, the methods comprising the steps of:
In further aspects, provided herein are systems for the conversion of CO2 to sugars. In some embodiments, the above steps may be combined into single-step reactors. In some embodiments, the above steps may be further divided out into subdivisions to improve the overall conversion or economics of the process.
In certain aspects, the present disclosure provides methods for conversion of CO2 to sugars. In some embodiments, the method comprises the steps of: CO2 hydrogenation to methanol (CH3OH); dehydrogenation of CH3OH to formaldehyde (CH2O); and sugar production from formaldehyde by the formose reaction.
In certain aspects, provided herein are methods for the conversion of CO2 to sugars, the methods comprising the step of:
In certain embodiments, the method further comprising the steps of:
In further aspects, provided herein are systems for the conversion of CO2 to sugars, the systems comprising:
In yet further aspects, provided herein are methods for making a condensation catalyst, the method comprising combining a chiral ligand, e.g., a chiral mono-, bi-, or tridentate ligand that coordinates through one or more carbon, nitrogen, oxygen, phosphorus, sulfur, or selenium atoms, such as a chiral amino acid, a chiral phosphine, a chiral binaphthalene, or a chiral oxazoline, and Ca(OH2)2 in a solvent at a pH from about 7 to about 14. In certain embodiments, the solvent can be methanol or water.
CO2 hydrogenation to methanol (CH3OH), which combines gaseous CO2 and H2 (generated using water electrolysis) over Catalyst 1 to form gaseous CH3OH and H2O in a fixed-bed flow reactor (Flow Reactor 1). This process occurs at elevated temperature (250° C.) and pressure (750 psi). This reaction proceeds via the equation below:
CO2+3H2>CH3OH+H2O
Catalysts for the hydrogenation of CO2 to methanol which are suitable for the presently disclosed methods are disclosed in the following applications, each of which is incorporated by reference in its entirety: PCT Application Nos. PCT/US21/30785; PCT/US21/38802; PCT Publication No. WO 2019/010095; and U.S. patent application Ser. No. 16/383,373. This reaction is a variation of the industrial CH3OH production reaction, which uses CO and H2 rather than CO2 and H2 and has been used for several decades, enabling risk assessment for its use in space.
In certain embodiments, the reductant gas is H2. In further embodiments, the reductant gas is a hydrocarbon, such as CH4, ethane, propane, or butane. In yet further embodiments, the reductant gas is, or is derived from, flare gas, waste gas, or natural gas. In still further embodiments, the reductant gas is CH4.
In certain embodiments, the feed mixture comprises less than 25% of CO, less than 20% of CO, less than 15% of CO, less than 10% of CO, less than 5% of CO, or less than 1% of CO. In further embodiments, the feed mixture is substantially free of CO.
In certain embodiments, the reduction temperature from about 100° C. to about 450° C. In further embodiments, the reduction pressure is from about 500 psi to about 3000 psi. In yet further embodiments, the partial pressure of CO2 in the feed mixture is from about 200 to about 1000 psi, about 500 to 1000 psi, or about 750 to 1000 psi. In still further embodiments, the ratio of CO2:reductant gas in the feed mixture is from about 1:10 to about 10:1. In certain embodiments, the ratio of CO2:reductant gas in the feed mixture is from about 1:3 to about 1:1.
In certain embodiments, the alcohol comprises methanol. In further embodiments, the alcohol comprises methanol, ethanol, and n-propanol. In yet further embodiments, the reduction catalyst is a copper-based catalyst. In preferred embodiments, the reduction catalyst is a mixture of copper oxide, zinc oxide, and aluminum oxide.
Dehydrogenation of CH3OH to formaldehyde (CH2O), which is the partial autooxidation of gaseous CH3OH into CH2O over Catalyst 2, to form gaseous CH2O, which also occurs in a fixed-bed flow reactor (Flow Reactor 2). This subsystem operates at elevated temperature (approximately 300° C.) and atmospheric pressure. This reaction proceeds via the equation below:
CH3OH→CH2O+H2
Optionally, the reaction can include introduction of O2 (produced in space or on Mars as the byproduct of H2O electrolysis for H2 production) to further enhance production of formaldehyde, shown in the equation below.
Catalysts for the dehydrogenation of methanol to formaldehyde which are suitable for the presently disclosed methods are disclosed in the following patents, each of which is incorporated by reference in its entirety: U.S. Pat. Nos. 7,468,341 and 7,572,752. Suitable catalysts for this transformation include, but are not limited to, Fe2(MoO4)3/nMoO3, wherein n is an integer from 2-10.
This reaction is the method currently used in industry to produce CH2O and is a highly reliable reaction used today at large scales (millions of metric tons per year).
In certain embodiments, the dehydrogenation temperature is from about 250° C. to about 400° C. In further embodiments, the dehydrogenation pressure is from about 0.09 psi to about 100 psi. In yet further embodiments, the aldehyde comprises formaldehyde. In still further embodiments, the dehydrogenation catalyst is an iron-based catalyst. In preferred embodiments, the dehydrogenation catalyst is a mixture of iron oxide and molybdenum oxide.
Sugar Production from Formaldehyde
Sugar production from formaldehyde by the formose reaction, which uses cascading aldol reactions to react n (where n=2-10) formaldehyde molecules together using Catalyst 3 and additives. In some embodiments, this reaction occurs in a continuously stirred tank reactor (CSTR) in the liquid phase at low temperature (60° C.) and atmospheric pressure, but can also be adapted for use in a flow reactor and other reactor designs. Formaldehyde reacts to form glycolaldehyde and glyceraldehyde intermediates, which are further reacted via aldol reactions along with aldose-ketose isomerization to build different trioses, tetroses, pentoses, hexoses, heptoses, and octoses with a general form shown in the equation below:
n CH2O→HOCH2(COH)n−2OCH
In the case of production of hexoses, including D-glucose, the formose reaction takes the form shown in the equation below:
6CH2O→C6H12O6
Catalysts for sugar production from formaldehyde which are suitable for the presently disclosed methods are disclosed in the following patent, which is incorporated by reference in its entirety: GB Patent No. GB1586442A.
Additionally, coordination complexes of Ca(OH)2 and chiral ligands are particularly useful for this transformation, particularly the combination of Ca(OH)2 and L-proline. These coordination complexes can have many possible structures, as discussed below, but have the general form within a single unit of [chiral ligand]x[Ca(L)y], wherein L is a neutral ligand including, but not limited to, a solvent ligand selected from water or an alcohol, or other mono-, bi-, or tridentate ligands; x is an integer from 1-6; and y is an integer from 0-5. In certain embodiments, x is 1 and y is 4. In further embodiments, x is 2 and y is 2.
Under turnover conditions, the pH of the solution in which the reaction is taking place is between 9-12.5. Considering that the pKa2 of proline is 10.60, the proline and calcium are likely to form either a 1:1 metal di-anionic complex (Structure 1) or a 1:2 metal mono-anionic complex (Structure 2). The additional solvent molecules (H2O) will coordinate with calcium resulting in a complex with an octahedral geometry. When the solution is less basic, the calcium and proline may form a polymeric structure with acetate moieties bridging calcium cations (Structure 3).
In certain embodiments, n is an integer from 2 to about 100. In further embodiments, n is an integer from 2 to about 10. In yet further embodiments, n is an integer from 2 to about 20. In still further embodiments, n is an integer from 2 to about 50.
This reaction is a robust reaction that uses common alkali hydroxide and has been proposed to be the origin of aldoses and ketoses on Earth, thus has the consistency and durability that are required for use in space. Additionally, alkali and alkaline earth complexes are appropriate catalysts to improve the efficiency of the process for applications on Earth. These catalysts may also be viable for extra-terrestrial applications, however, additional adjustments may be required as discussed below.
In certain embodiments, the condensation temperature is from about 10° C. to about 300° C. In further embodiments, the condensation pressure is from about 0.09 psi to about 1500 psi. In yet further embodiments, the sugar comprises glycoaldehyde, glyceraldehyde, arabinose, glucose, ribose, fructose, or sorbose.
In certain embodiments, the condensation catalyst is a Group II metal salt, optionally combined with a chiral ligand, e.g., a chiral mono-, bi-, or tridentate ligand that coordinates through one or more carbon, nitrogen, oxygen, phosphorus, sulfur, or selenium atoms, such as a chiral amino acid, a chiral phosphine, a chiral binaphthalene, or a chiral oxazoline. In further embodiments, the condensation catalyst is Ca(OH)2, optionally combined with a chiral ligand, e.g., a chiral mono-, bi-, or tridentate ligand that coordinates through one or more carbon, nitrogen, oxygen, phosphorus, sulfur, or selenium atoms, such as a chiral amino acid, a chiral phosphine, a chiral binaphthalene, or a chiral oxazoline. In yet further embodiments, the condensation catalyst is [chiral ligand]x[Ca(L)y], wherein L is a neutral ligand selected from water or an alcohol; x is an integer from 1-6, and y is an integer from 0-5. In certain preferred embodiments, x is 1 and y is 4. In further preferred embodiments, x is 2 and y is 2. In further embodiments, the condensation catalyst comprises the chiral ligand and Ca(L) at a ratio from about 1:100 to about 100:1. In preferred embodiments, the chiral ligand is proline. In certain embodiments, the chiral ligand is D-proline. In further embodiments, the chiral ligand is L-proline. In preferred embodiments, L is H2O.
In certain embodiments, the condensation catalyst has the structure:
In further embodiments, the condensation catalyst has the structure:
In yet further embodiments, the condensation catalyst comprises a repeat unit having the structure:
The proof-of-concept system has the ability and flexibility to be utilized in a space environment and fit within size, weight, and power requirements needed for space launches when built in an integrated system for aerospace. All sub-systems outlined herein can be scaled down to reach the desired volume and mass requirements for use in space without impacting the production of sugar. Additionally, if a larger system is wanted for use on another planet this system could be created to be a modular design for easy transportation and construction. The reduction in size of the system will as well bring the electrical power requirements down, helping the system fit within the strict requirements on a space station or other vessel.
Although microgravity and reduced gravity conditions will impact the physical design of reactors requiring two-phase flow (including the step of separating the CH3OH from the H2O), this in an area that has been and is currently being studied on other similar units on the ISS, like the Packed Bed Reactor Experiment (PBRE), Volatile Removal Assembly (VRA), Aqueous-Phase Catalytic Oxidation (APCO) system, the Microbial Check Valve (MCV), the
Activated Carbon/Ion Exchange (ACTEX), and the IntraVenous Fluid GENeration (IVGEN) system. For the purposes of the present disclosure, a person of ordinary skill in the art may apply any suitable method of handling two-phase flow may be applied to operate the systems described herein.
The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
This reaction uses 9 liter fixed bed flow reactor equipped with CO2 and H2 cylinders along with a methanol production catalyst, which has stability equivalent to the Copper-Zinc-Alumina (CZA) industrial methanol catalyst that has been demonstrated for over 17,500 hours of use. The catalyst is added to the fixed-bed reactor in pellet form, supported by a stainless steel mesh. In brief, feed gases are pressurized using a compressor on-board the system then fed through mass flow controllers and small cartridge heaters. They are introduced to the heated fixed-bed flow reactor at temperature (250° C.) and pressure (750 psi) where they are transformed to methanol with a typically 30% of the inlet CO2 converted per pass through the reactor. The resulting gaseous mixture is passed through a condenser chilled by a closed-loop glycol chiller, then into a gas-liquid separator where the unreacted gases are sent into a recycle loop to be reintroduced to the reactor (enabling a system-level yield >90%), and the product liquid (25-60 wt % CH3OH in H2O) is collected. The product liquid has been optimized to have ideal characteristics for downstream conversion to CH2O and, ultimately, sugars.
Production and characterization data for the CH3OH process has been gathered for evaluation under conditions relevant for space applications, such as rapid on/off cycles and varied production rates.
Following production of CH3OH from CO2 in this reactor, it is distilled using two small glass laboratory stills to best meet the 7-hour time limitation. Additional methods for water removal are known in the art.
The dehydrogenation of CH3OH is carried out in a tube furnace, or can be conducted in a fixed bed reactor directly linked on to the methanol production reactor. The CH3OH generated from Example 1 is purified, evaporated and combined with compressed air. The mixed feed gases are passed through an Fe-based formaldehyde catalyst at 300° C. and atmospheric pressure, then cooled and separated to produce a typically 0.5 wt %-2.5 wt % CH2O solution of formaldehyde in a methanol-water mixture. The CH2O solution concentration of each batch was analyzed by titration with sodium sulfate and phenolphthalein to determine the formaldehyde concentration.
The formose reaction will take place in round-bottom flasks in a heated oil bath on a hot plate. Alternatively, this reaction can be conducted in a flow-through continuously stirred tank reactor (CSTR) in the field. In a septum sealed round-bottom flask equipped with a magnetic stir bar, the liquid mixture collected from Example 2 is heated to 60° C., Ca(OH)2 and L-proline are added to the solution as the formose catalyst and ligand. The process takes place under moderately positive pressure (1-2 psi) and the reaction is stirred for 0.2-2 hours. The stirred suspension turns yellow to light brown, indicating the optimal end stage of the process for glucose recovery. The solution is then cooled down to room temperature and quenched with a 2 M H2SO4 solution. The resulting acidic suspension is filtered to give a clear solution. The sugars are analyzed by HPLC (Shimadzu with Rezex ROA-Organic Acid H+ (8%) column (300 mm*7.8 mm) equipped with an ion exchange column for removing residual catalysts following literature procedures for HPLC analysis of sugars. The sugar standards (D- and L-glucose, galactose, fructose, ribose, and allulose, etc.) were purchased from Sigma Aldrich and used without further purification. The solid sugar products can be produced by removing solvent under reduced pressure.
Further separation of D and L enantiomers can be done by (1) chiral resolution with SASP (reaction-crystallization-hydrolysis); or (2) chiral preparative HPLC or chiral capillary electrophoresis. The prior method's time frame is far beyond the 7-hour time limit and will not be discussed here.
Instead of chiral HPLC, optical rotation can also be used, which is measured using an Anton Paar MCP 200 system. A clear separation of glucose enantiomers was observed using CHIRALPAK® AD-3 (250×4.6 mm i.d., 3 μm) (
Formose Reaction with 1:1 Proline to Ca(OH)2 (For Glucose Formation)
To a 250 mL round bottom flask equipped with a stir bar, Ca(OH)2 powder (0.1 g), L-Proline (0.1 g) and methanol (0.5 mL) was added to an aqueous formaldehyde solution (0.87 mol/L, 5.0 mL). The resulting suspension was heated at 60° C. using a hot oil bath while vigorously stirring. After 27 minutes, the milky white suspension turned yellow. The mixture was removed from the oil bath and quenched with an H2SO4 solution (1 mol/L, 1.5 mL). The solution was then filtered to give a light-yellow clear solution.
75 μL of the light-yellow clear solution was diluted with water to 1.5 mL. The resulting solution was passed through an ion exchange resin pad to remove access proline. The samples are analyzed by HPLC (Shimadzu with Rezex ROA-Organic Acid H+ (8%) column (300 mm*7.8 mm) equipped with an ion exchange column for removing residual catalysts following literature procedures for HPLC analysis of sugars. The sugar standards (D- and L-glucose, galactose, fructose, ribose, and xylose, etc.) were purchased from Sigma Aldrich and used without further purification. The solid sugar products can be produced by removing solvent under reduced pressure.
Further separation of D and L enantiomers can be done by (1) chiral resolution with SASP (reaction-crystallization-hydrolysis); or (2) chiral preparative HPLC or chiral capillary electrophoresis. Instead of chiral HPLC, optical rotation can also be used, which is measured using an Anton Paar MCP 200 system. A clear separation of glucose enantiomers was observed using CHIRALPAK® AD-3 (250×4.6 mm i.d., 3 μm) (
The completed reaction product using a ratio of 1:1 proline to Ca(OH)2 was yellow-brown colored and has a sweet odor, similar to that of honey. The reaction product was stored in a centrifuge tube and stored at 20° C. After approximately 168 hours, a white particulate growth was observed at the bottom of the centrifuge tube. The microbial growth continued to increase in size in the centrifuge tube containing the reaction product for approximately 400 hours and qualitative observation suggests that the microbial growth consumed the sugar products.
a) Selected examples shown in this table.
b) From screening this reaction over 20 times, we have identified several different sugar yield conditions. We describe one of them here and noted below. Both D- and L- enantiomers are present, but the ratios may vary.
CH3OH reaction mass balance for glucose process-optimized reactor liquid is:
CO2(0.53 kg)+3H2(0.07 kg)→CH3OH (0.15 kg)+H2O (0.445 kg)
Note that the stoichiometric mass balance is 1.37 kg CO2 and per kg CH3OH, the reaction is thus operating sub-stoichiometric to optimize sugar production using current equipment. Table 4 gives the following approximate energy requirements per kg of CH3OH produced, estimated based on the duty of components in the CO2 conversion skid and laboratory-scale equipment.
All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 63/126,738, filed Dec. 17, 2020, the contents of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/63713 | 12/16/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63126738 | Dec 2020 | US |