The present invention generally involves a system and method for cooling nozzles in a combustor. In particular, the present invention impinges a fluid on a nozzle surface to remove heat from the nozzle surface.
Gas turbines are widely used in commercial operations for power generation.
During full speed base load operations, the flow rate of the fuel and compressed working fluid mixture through the primary 28 and secondary 30 nozzles is sufficiently high so that combustion occurs only in the downstream chamber 36. During reduced power operations, however, the primary nozzles 28 operate in a diffusion mode in which the flow rate of the fuel and compressed working fluid mixture from the primary nozzles 28 is reduced so that combustion of the fuel and the compressed working fluid mixture from the primary nozzles 28 occurs in the upstream chamber 34.
Lower reactivity fuels, such as natural gas, typically have lower flame speeds. Due to lower natural gas flame speed, the flow rate of the fuel and compressed working mixture from the primary nozzles 28 operated in diffusion mode is sufficiently high so that combustion in the upstream chamber 34 occurs at a sufficient distance from the primary nozzles 28 to prevent the combustion from excessively heating and/or melting the primary nozzles 28. However, higher reactivity fuels, such as synthetic gas, hydrogen, carbon monoxide, ethane, butane, propane, or mixtures of higher reactivity hydrocarbons, typically have higher flame speeds. Increased flame speed of the higher reactivity fuels moves the combustion in the upstream chamber 34 closer to the primary nozzles 28. Local flame temperature under diffusion mode operation in the upstream chamber 34 can be much greater than the melting point of the primary nozzle 28 materials. As a result, primary nozzles 28 operated in diffusion mode may experience excessive heating, resulting in premature and/or catastrophic failure.
Therefore the need exists for an improved fuel flow system through the nozzles that can cool the nozzles and prevent the nozzles from melting.
Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One embodiment within the scope of the present invention is a fuel nozzle. The fuel nozzle includes a rear wall, a front wall downstream of the rear wall, and a side wall between the rear wall and the front wall. An annular cavity is defined at least in part by the rear wall, front wall, and side wall. A plenum extends through the rear wall into the annular cavity, and at least one passage through the plenum provides fluid communication between the plenum and the annular cavity. A plurality of orifices through the side wall and circumferentially spaced around the side wall provide fluid communication through the side wall.
Another embodiment within the scope of the present invention is a fuel nozzle that includes a nozzle body and a cavity defined at least in part by the nozzle body. A plenum extends through the nozzle body into the cavity. The nozzle further includes at least one passage through the plenum that provides fluid communication between the plenum and the cavity. A plurality of orifices through the nozzle body and circumferentially spaced around the nozzle body provide fluid communication through the nozzle body.
An alternate embodiment within the scope of the present invention is a method for cooling a face of a nozzle. The nozzle includes a nozzle body that defines a cavity. The method includes flowing a fuel through the cavity and inserting a plenum through the nozzle body into the cavity. The method further includes flowing a fluid through the plenum so that the fluid impinges on the face of the nozzle to remove heat.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
The nozzle body 42 generally includes a rear wall 48, a front wall 50 downstream of the rear wall 48, and a side wall 52 between the rear wall 48 and the front wall 50. The rear 48, front 50, and side 52 walls may be of a unitary construction or one or more separate components, as shown in
A plenum 60 extends through the rear wall 48 into the annular cavity 44. The plenum 60 may be a separate and/or removable component from the rear wall 48, or the plenum 60 and the rear wall 48 may be a unitary construction, as shown in
Fuel supplied to the nozzle 40 may thus flow into the annular cavity 44 through the pre-orifices 56 in the rear wall 48. In addition, a fluid, such as fuel, steam, water, or compressed air, may be supplied to the plenum 60 and flow through the passage 62 in the plenum 60 into the annular cavity 44. The passage 62 in the plenum 60 is proximate to the front wall 50 so that fluid flowing through the plenum 60 and through the passage 62 in the plenum 60 impinges on the front wall 50, thus cooling the front wall 50. The passage 62 through the plenum 60 may be within 1 inch and preferably within 0.5 inches of the front wall 50 to enhance the impingement cooling provided by the fluid through the passage 62 onto the front wall 50. To control cooling and attain an optimal front wall 50 thermal profile, fluid flow through the passage 62 may be adjusted by regulating the relative flow areas of the surrounding pre-orifices 56. As previously discussed, the fuel from the pre-orifices 56 in the rear wall 48 and the fluid from the passage 62 in the plenum 60 then flows out of the orifices 58 in the side wall 52 where it mixes with the compressed working fluid flowing across the swirler vanes 46.
The embodiment shown in
The present invention may be used as an original design for a nozzle, or it may be used to modify an existing nozzle to provide impingement cooling to the nozzle. To modify an existing nozzle, the rear wall of the center body may be machined to provide an opening for inserting the plenum through the nozzle body into the cavity. Fluid may then be supplied to the plenum to flow through the plenum and impinge on the face of the nozzle body to remove heat from the front wall of the nozzle body. Additional modifications to an existing model may add protrusions or projections on the front wall of the nozzle body to distribute the fluid flowing across the nozzle body and enhance the impingement cooling provided by the fluid.
It should be appreciated by those skilled in the art that modifications and variations can be made to the embodiments of the invention set forth herein without departing from the scope and spirit of the invention as set forth in the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2613737 | Schwietert | Oct 1952 | A |
3763650 | Hussey et al. | Oct 1973 | A |
3777983 | Hibbins | Dec 1973 | A |
4105163 | Davis, Jr. et al. | Aug 1978 | A |
4292801 | Wilkes et al. | Oct 1981 | A |
4708293 | Graziadio et al. | Nov 1987 | A |
5146741 | Sood | Sep 1992 | A |
5351489 | Okamoto et al. | Oct 1994 | A |
5400968 | Sood | Mar 1995 | A |
5452857 | Furuse et al. | Sep 1995 | A |
5467926 | Idleman et al. | Nov 1995 | A |
6059566 | Cummings, III | May 2000 | A |
6178752 | Morford | Jan 2001 | B1 |
6363724 | Bechtel et al. | Apr 2002 | B1 |
7036753 | Huffman | May 2006 | B2 |
7828227 | Brown | Nov 2010 | B2 |
7861528 | Myers et al. | Jan 2011 | B2 |
20060191268 | Widener et al. | Aug 2006 | A1 |
20090224082 | MacMillan et al. | Sep 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110083442 A1 | Apr 2011 | US |