Embodiments according to the invention relate to error correction and error detection of digital signals and particularly to an apparatus and a method for correcting at least one bit error within a coded bit sequence.
Due to the high integration density of electronic circuits and storages, the frequency of errors increases.
Apart from 1-Bit-errors, increasingly also 2-Bit-errors and general multi-bit errors are to be considered, i.e. to be corrected and to be detected. In particular, in error correction it is important to correct the occurred errors quickly, if possible within the current clock cycle in order to prevent a delayed processing of the corrected data as compared to the uncorrected data.
Frequently, data are written into a storage under an address and read out after some time. Here it is possible that the data when read out of the storage are faulty or corrupt and have to be corrected after reading it out.
Here, both one bit errors, two bit errors and generally multi-bit errors occur, which are caused randomly with decreasing probability, and also errors occur in which all memory cells take on the value 0 erroneously, which is to be referred to as “All-0”, and also errors where all memory cells take on the value 1, to be referred to here as “All-1”.
It is also of special interest to detect possible address errors with a high probability, as a faulty address for example when reading out of a storage, may lead to completely different data. It is possible to correct one bit errors by Hamming code or Hsia-codes and 2-Bit-errors relatively fast by BCH-Codes implemented in parallel.
Disadvantageous with prior solutions for 1-bit and 2-bit error correction is, for example, that the errors “All-0” and “All-1” are not part of error detection. Generally, it is of high interest to improve the reliability of error correction and error detection concepts.
An embodiment of the invention provides an apparatus for correcting at least one bit error within a coded bit sequence. The apparatus comprises an error syndrome generator and a bit error corrector. The error syndrome generator is configured to determine an error syndrome of a coded bit sequence derived by a multiplication of a check matrix with the coded bit sequence. The check matrix comprises a first sub-matrix, a second sub-matrix and a third sub-matrix. Each sub-matrix comprises a plurality of lines, wherein each line comprises a plurality of binary components. Further, at least a first predefined component or a second predefined component of each line of the first sub-matrix comprises a first bit value. The second sub-matrix comprises lines being linearly independent from each other and the first predefined component and the second predefined component of each line of the second sub-matrix comprises a same second bit value. The third sub-matrix comprises lines being linearly independent from each other and the first predefined component or the second predefined component of each line of the third sub-matrix comprises the first bit value. Further, either an XOR-sum of the first predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value and an XOR-sum of the second predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value, if the first bit value is equal to 1, or an XNOR-sum of the first predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value and an XNOR-sum of the second predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value, if the first bit value is equal to 0. Additionally, a result of a multiplication of the check matrix and a test vector is equal to a result of a multiplication of the second sub-matrix and a resulting vector, wherein at least one component of the resulting vector comprises the second bit value. Further, the bit error corrector is configured to correct a bit error within the coded bit sequence based on the determined error syndrome of the coded bit sequence.
By using an error syndrome determined according to a check matrix with properties described above, the error correction and error detection abilities of the proposed concept may be significantly better than with known concepts. For example, the proposed concept enables one to differentiate every 1-bit error from All-1-errors or All-0-errors. Thus, it may not be the case that a word, which is read out of a storage, in case of a correctable 1-bit error is mixed up with an All-0-error or an All-1-error.
Embodiments according to the invention will be detailed subsequently referring to the appended drawings, in which:
a-14i are schematic illustrations of a determination of correction values; and
In the following, the same reference numerals are partly used for objects and functional units having the same or similar functional properties and the description thereof with regard to a figure shall apply also to other figures in order to reduce redundancy in the description of the embodiments.
Before the proposed concept is described in greater detail, some theoretical basics and basic terms on linear block codes, in particular Hamming codes, Hsiao codes and BCH-codes are briefly presented. For example, these are also described in “Fujiwara, E., Code Design for Dependable Systems, Wiley, 2006, p. 49-53, p. 98-101 and in Tzschach, H. and Haflinger, G., Codes für den störungsgesicherten Datentransfer, Oldenburg Verlag, 1993, p. 111-121”.
A Hamming code is a linear block code with a code distance 3. If m is the number of check bits, its length is n=2m−1. The number of data bits is k=2m−1−m. As any linear code, the Hamming code may as usual be described by a generator matrix G, briefly G-matrix, and a check matrix H (also called parity-check matrix), briefly H matrix. The check matrix of a unshortened Hamming code is an (m,n) matrix whose columns are any possible different 2m−1 binary vectors unequal to 0. These columns are also described as m-digit binary numbers, and the following applies
H=(h1, . . . h2
wherein ibin designates the representation of i as an m-digit binary member.
A Hamming code may be shortened, as any other linear block code by eliminating a certain number of columns in the check matrix of the unshortened code. Apart from that, columns may also be exchanged in thus the check matrix may be transformed.
From the check matrix of a linear code a generator matrix may be determined, briefly called G matrix. The generator matrix is a (k,n) matrix. If k information bits u1, . . . , uk are present, the same are coded by the generator matrix into a code word v
v(v1, . . . ,vn)u·G=(u1, . . . ,uk)·G
If a word v′=v1, . . . vn is checked whether it is a code word, a syndrome S is formed, with
S=H·v′T
with S=S1, . . . , Sm. If S=0, no error is detected. If S=hi. a 1-bit error is present in the i-th bit of v′.
The error correction of the bits v′1, . . . , v′n may be done by correction circuits K1, . . . , Kn which determine a correction value Δv1 from the error syndrome S, which is XORed (linked by a logical XOR function) with v′i. For i=1, . . . , n in case of a 1-bit error the correction circuit outputs a value 1, if S=hi. If the error syndrome is equal to 0, the correction circuit outputs the value 0.
A Hsiao-code is a linear code with a code distance of 4. If the Hsiao-code has m check bits, its check matrix H consists of all m-digit binary vectors comprising an odd number of ones. The length of an (unshortened) Hsiao-code with m check bits is n=2m−1, as there are 2m−1 different m-digit binary vectors having an odd number of ones. By deleting columns and by reordering columns of the unshortened Hsiao-code, a check matrix of a shortened Hsiao-code is obtained. Testing a word v′=v1, . . . , vn′ is again done by checking the error syndrome
S=H·v′T
If S=hj, i.e. equal to the j-th column of the check matrix, a 1-bit error is corrected in the j-th bit, by XOR-ing (applying a logical XOR-function) a correction value Δvg=1 with v′j. This correction value Δvj may be determined from the error syndrome S by a correction circuit Kj. The correction circuit KJ then outputs a value 1, if S=hj. If S is a binary vector with an even number of ones, an incorrectable error is indicated.
As the application of the proposed concept to BCH-codes (Bose-Chaudhuri-Hocquenghem-Codes) is also of special interest, some characteristics of BCH-codes are to be described. For example, they are also described in “Tzschach, H. and Haβlinger, G.: Codes für den störungssicheren Datentransfer, Oldenburg Verlag 1993, p. 111-121” and “Lin, S., Costello, D.: Error Control Coding, Prentice Hall, 1983, chapter 6”.
A BCH-code is a special cyclic code and thus a linear code. A BCH-code may be described as a cyclic code by a special generator polynomial G(z) and as a linear code by a generator matrix G and by a check matrix H.
In case of a 2-bit error correcting BCH-code, the generator polynomial may in its simplest form be represented as
G(z)=(z)=mα(z)·mα
Here, mα(z) is a primitive polynomial also serving as a modular polynomial of the considered Galois field, α is a primitive element of the Galois field and root of the polynomial. The polynomial mα
G(z)=mα(z)·mα3(z)·(z+1) 2
Without integrating the overall parity, the check matrix may be represented in its separated form as
wherein α is a primitive element of the Galois field GF(2M) and the exponents of α are each to be interpreted modulo 2M−1. The parity may be included in the error detection by selecting the check matrix as
wherein in the last row there are only ones.
A 1-bit error in the i-th bit position is described as [i], an L-bit error in the positions i1, i2, . . . , ii as [i1, i2, . . . , iL]. To each error [ii, . . . , iL] an n-component error vector e(i1, . . . , iL)=(e0, . . . , en−1) is associated, wherein
The component ej of the error vector e[i1, . . . , iL] is equal to 1 exactly when the corresponding j-th bit is faulty.
To an error [ii, . . . , iL] with the error vector e=e[ii, . . . , iL] an error syndrome
is associated.
By deleting columns and by reordering columns of the check matrix HBCHsep, a shortened BCH-code is obtained which is adapted to a required word width.
If the parity is not considered, the code distance is 5 and if the parity is considered, the code distance is 6. Then, 1-bit errors and 2-bit errors may be corrected using the syndrome. The syndromes of all 3-bit errors, parity included, are different from the syndromes of all 1-bit and 2-bit errors, but they may be the same among themselves.
The encoding of a BCH-code and a shortened BCH-code as a special linear code may be done with the help of a generator matrix and the decoding with the help of a check matrix. The connection between the generator polynomial and generator matrix and text matrix is, for example, described in Lin, S. and Costello, D.: Error Control Coding, Prentice-Hall, 1983, p. 92-95″.
In the following, the inventive concept is described by some general and some detailed embodiments.
By using an error syndrome 112 derivable by a check matrix described above, an error correction circuit for 1-bit and 2-bit errors can be realized, which is able to detect also the errors All-0 and All-1, for example. In other words, the apparatus 100 enables to differentiate every 1-bit error from errors All-1 and All-0. Thus, for example, it may not be the case anymore that a word read out of a storage in case of a correctable 1-bit error is mixed up with an All-0 or All-1 error. The detection and/or correction of All-0 and All-1 errors is of high interest, because these failures are very common.
The first bit value and the second bit value may be logical 0 or logical 1, or a high level or a low level of a signal in the circuitry. Therefore, there are two possible cases. Either the first bit value is equal to 1 (logical 1) and the second bit value is equal to 0 (logical 0) or the first bit value is equal to 0 and the second bit value is equal to 1. Both cases represent equivalent implementations of the described concept.
This shows that the described concept can be realized using positive or negative logic. The only difference is that the XOR-sum is used, if the first bit value is equal to 1, and the XNOR-sum is used, if the first bit value is equal to 0. In this connection, an XOR-sum of the first predefined components of all lines means applying the logical XOR function (exclusive-OR-function) to the first predefined components of all lines resulting in a bit value (either 0 or 1). Consequently, the XNOR-sum of the first predefined components of all lines means applying the logical XNOR function (exclusive-not-OR-function) to the first predefined components of all lines resulting in a bit value (either 0 or 1). Same is valid for the second predefined component. This may be realized, for example, by an XOR-gate or an XNOR-gate with a number of inputs corresponding to the number of lines of the matrices.
Further, a line of a matrix may be a row or a column of a matrix. Since a matrix is easy to transpose, the inventive concept can be realized independent from whether a line of a matrix is a row or a column. Therefore, there are again two possible cases. Either each mentioned line of a matrix is a column of the respective matrix and the same components (e.g. first predefined components or second predefined components) of each line of a matrix represents a row of this matrix. Otherwise each line of a matrix is a row of the respective matrix and the same components of the lines of a matrix represent a column of this matrix.
Consequently, in connection with the described concept, of each line of the first sub-matrix, of the second sub-matrix and of the third sub-matrix is a column of the respective sub-matrix. The first predefined components of the lines of the first sub-matrix Hu, of the second sub-matrix Ha and of the third sub-matrix Hc represent a row of the check matrix H and the second predefined components of the lines of the first sub-matrix Hu, of the second sub-matrix Ha and of the third sub-matrix Fr represent another row of the check matrix H. Alternatively, each line of the first sub-matrix Hu, of the second sub-matrix Ha and of the third sub-matrix Hc is a row of the respective sub-matrix. The first predefined components of the lines of the first sub-matrix Hu, of the second sub-matrix Ha and the third sub-matrix Hc represent a column of the check matrix H and the second predefined components of the lines of the first sub-matrix Hu, of the second sub-matrix Ha and of the third sub-matrix Hc represent another column of the check matrix H.
Each line of a matrix comprises a plurality of binary components. In other words, each component is either equal to 1 or equal to 0. In this connection, a first predefined component and a second predefined component may be actually the first and the second component of a line, but they can also be arbitrary other components (e.g. the last and the next to last component or the third component and the fifth component or another predefined component combination). However, the first predefined component of the first sub-matrix, the second sub-matrix and the third sub-matrix are the same components within the lines of the respective matrix, which is accordingly valid for the second predefined components of the lines of the first sub-matrix, the second sub-matrix and the third sub-matrix. For example, if the first predefined component is the n-th component of a line of the first sub-matrix, then the first predefined component of a line of the second sub-matrix means also the n-th component of the line. Same is valid for the third sub-matrix as well as for the whole check matrix.
The check matrix may also be called parity-check matrix.
For example, the check matrix may be represented in a separated form. Further, the check matrix may be a check matrix of a shortened Hamming code, a shortened Hsiao-code or a shortened BCH-code, for example.
The error syndrome generator 110 may determine the error syndrome 112 by multiplying the check matrix with the coded bit sequence 102. Alternatively, the error syndrome generator 110 may comprise a storage containing a look-up table. This look-up table may contain information about error syndromes corresponding to different coded bit sequences 102. In other words, the look-up table may contain for each possible coded bit sequence the corresponding error syndrome derived by a multiplication of the check matrix with the coded bit sequence 102. In this example, the error syndrome generator 110 may easily determine the error syndrome 112 by taking the stored error syndrome associated with the coded bit sequence 102.
The error syndrome generator 110, the bit error corrector 120 and/or other optional elements described later on may be independent hardware units or part of a computer or microcontroller as well as a computer program or a software product for running on a computer or microcontroller.
The error syndrome generator 110, the bit error corrector 120 and/or other optional components described later on may be implemented independent from each other or at least partly together. For this, for example, the functionality of the error syndrome generator 110, the bit error corrector 120 and/or other optional components described below may be at least partly united to a combined hardware unit or software unit by a synthesis tool.
During a multiplication of the check matrix H with the coded bit sequence 102, a first group of bits of the coded bit sequence 102 is multiplied with the first sub matrix, a second group of bits of the coded bit sequence is multiplied with the second sub-matrix and a third group of bits of the coded bit sequence is multiplied with the third sub-matrix. In other words, the error syndrome of the coded bit sequence is derived based on a multiplication of the first sub-matrix with a first group of bits of the coded bit sequence, a multiplication of the second sub-matrix with the second group of bits of the coded bit sequence and a multiplication of the third sub-matrix with a third group of bits of the coded bit sequence.
In some embodiments of the invention, the first group of bits may represent information bits, the second group of bits may represent address bits and the third group of bits may represent check bits. Therefore, the first group of bits may also be called information bits or (useful) data bits, the second group of bits may be called address bits and the third group of bits may be called check bits.
For example, the coded bit sequence or part of the coded bit sequence may be stored by an addressable storage, also called a storage unit, memory or memory unit (e.g. read only memory, random access memory or non volatile memory).
The first group of bits (data bits) may be independent from the second group of bits (address bits). Therefore, only the first group of bits and the third group of bits of the coded bit sequence may be stored at an address of the addressable storage indicated by the second group of bits. Alternatively, the coded bit sequence may also be coded by an inner code, so that at least one bit of the first group of bits depends on at least one bit of the second group of bits.
In the following, an embodiment of the invention is described in more detail. In this example, the lines of the matrices are columns, the first predefined components of the lines of the matrices represent the first row of the matrices, the second predefined components of the lines of the matrices represent the second rows of the matrices, the first bit value is equal to 1 and the second bit value is equal to 0. If the description of the detailed embodiment several additional and/or optional features can be implemented all together or one or some of them may be implemented independent from the other features described.
It is illustrated in
v=(u,a)·G
In the storage 12 under the address a the code word v is stored, whose bits depend both on the useful data (information bits) and also on the address (address bits). If the generator matrix is used in its systematic form
G=(Ik+1,Pk+1,m)
The code word v has the form v=u, a, c and the check bits c added to the useful data bits and the address bits are designated by
c=(u,a)·P,
while the useful data bits u and the address bits a, are not modified in this example. Ik+l is the (k+1) dimensional unity matrix and P is (k+l,m) matrix determining the test equations of the code.
The encoding including the address bits for a generator matrix in the systematic form is illustrated in
ST=(s1,s3)T=(S1,S2, . . . ,Sm)T=H·(u′1, . . . ,u′ka′1, . . . ,c′1, . . . ,c′m)T.
The address bits a′1, . . . , a′l−1 provided by the address generator and the constant value 1 form, as described in detail later, the address bits a′1, . . . , a′l. The check matrix H of the shortened BCH-code consists of a first (m,k) sub-matrix Hu, a second (m,l) sub-matrix Ha and a third (m,m) sub-matrix Hc, wherein the first k columns of the check matrix H form the sub-matrix Hu, the subsequent/columns form the sub-matrix Ha and the last m columns the sub-matrix Hc. A sub-matrix may also be called a partial matrix. The following applies here:
For the components S1, S2, . . . , Sm of the syndrome S=(S1, . . . , Sm)=(s1, s3) applies
(s1,s3)T=(S1, . . . ,Sm)T=(Hu,Ha,Hc)·(ul, . . . ,uk,a1, . . . ,al,cl, . . . ,cm)T,
and the syndrome generator 31 realizes at its m outputs for i=1, . . . , m the Boolean functions
Si=hi,luu′l⊕ . . . ⊕hi,kuu′j⊕hi,laa′l⊕ . . . ⊕hi,laa′l⊕hi,lcc′l⊕ . . . hi,mcc′m
Which are unambiguously determined by the elements hi,ju, hi,ja hi,jc of the sub-matrices Hu, Ha, Hc. A concrete implementation, e.g. by XOR-gates, is easy realizable, so that the proposed syndrome generator is easily described by the concrete form of the matrices Hu, Ha, Hc.
The matrices Hu, Ha, Hc are determined by deleting certain columns and by reordering columns from the columns of the (m,2M−1) check matrix HunverkBCH of an unshortened 2-bit error correcting BCH-code of length 2M−1 such that m+l+k<2m−1. Here, the check matrix of the unshortened code is selected in its separated form, for example. The matrix HunverkBCH then has the following form
As the i-th column of the matrix H1 is determined by αi, i=0, . . . , 2m−2 and α is a primitive element of the Galois field GF(2M), all 2M−1 M-digit binary vectors, expect for 0, occur as columns of H1. Now a j-th component and a k-th component of the first M components of the check matrix are selected, wherein j k. The j-th component is designated as the first (selected) component (first predefined component) and the k-th component as the second (selected) component (second predefined component). As α is a primitive element of the Galois field GF(2M), and all 2M−1 possible m-digit binary vectors occur as columns of the check matrix H1, there are for each of the values 01, 10 and 11 2M−2 columns of the check matrix H1 taking on the value 01, 10 and 11 in the two selected components (predefined components). Apart from that, there are 2M−2−1 columns of the matrix H1 taking on the value 00 in the two selected components. All columns of the check matrix HunverkBCH are classified into four disoints sets Sp00, Sp10, Sp01 and Sp11, wherein Sp00 contain all 2M−2−1 columns with the first two components 00, Sp10 all 2M−2 with the first two components 10, Sp01 all 2M−2 columns with the first two components 01 and Sp11 all 2M−2 columns with the first two components 11.
According to the described concept, l linearly independent columns h1a, . . . , hla form the matrix Ha
Ha=(h1a, . . . ,hla),
wherein hjaεSp00 applies.
As the first two components of Sp00 are equal to 00 (first predefined component and second predefined component of each line of the first sub-matrix comprises the same second bit value), there are m−2 linearly independent columns, and l≦m−2 applies. For l=m−2, the (l,l) matrix {tilde over (H)}a, resulting from Ha, by deleting the first two lines (which say 0, . . . 0) may be invertible.
In other words, a number of bits of the second group of bits of the coded bit sequence may be smaller than or equal to a number of bits of the third group of bits of the coded bit sequence minus 2.
The columns of the matrix Hc,
Hc=(h1c, . . . ,hmc),
are selected so that they are linearly independent and that their first two components (first predefined component and second predefined component) are unequal 00 (first predefined component or second predefined component of each line of the third sub-matrix comprises the first bit value), so that for i=l, m the following applies
hicε{Sp10∪Sp01∪Sp11}
The columns of the matrix Hc form the set SH
The columns of the matrix Hu,
Hu=(h1u, . . . ,hku),
are selected so that the first two components are unequal 00 (first predefined component or second predefined component of each line of the second sub-matrix comprises the first bit value), so that for i=1, . . . , k the following applies
hiuε{Sp10∪Sp01∪Sp11}\SpH
In other words, the lines (in this example, the columns) of the first sub-matrix are all different from the lines of the third sub-matrix.
In addition to that, the columns of the matrices Hu, Ha, Hc are determined so that the following applies:
In other words, each component of the test vector being multiplied with the component of a line of the first sub-matrix and of the third sub-matrix comprises the first bit value and each component of the test vector being multiplied with a component of a line of the second sub-matrix comprises the second bit value.
In the following it is to be described how the matrices Hu, Ha, Hc of the inventive syndrome generator may be determined practically.
From the sets Sp10, Sp01 and Sp11, the sets Spe10, Spe01, Spe11 are formed by deleting two random columns each and summarizing the deleted column into the sets Sp210, Sp201 and Sp211. Thus, the set Sp201 contains the two columns which were deleted from the set Sp01 in order to determine the set Spe01.
From the set {Spe10∪Spe01∪Spe11} m linearly independent columns are determined, designated by h1c, . . . hmc and which form the matrix (third sub-matrix)
Hc=(h1c, . . . ,hmc).
As a set, these columns are combined into the set SpH
From the set Spe00 l columns are determined which are linearly independent. These columns are designated by h1a, . . . , hla and they form the matrix (second sub-matrix)
Ha=(h1a, . . . ,hla).
The matrix Hu (first sub-matrix) consists of k columns hiu, . . . , hku, wherein
hlu={Spe10∪Spe01∪Spe11}\SpH
apply and wherein at least one column from Spe10, at least one column from Spe01 and at least one column from Spe11 is contained in {hlu, . . . , hku}.
Thus, Hu contains at least one column whose first two components are equal to 10, at least one column whose first two components are equal to 01 and at least one column whose first two components are equal to 11.
More general, the first sub-matrix comprises at least one line with the first predefined component being equal to the first bit value and the second predefined component being equal to the second bit value, at least one line with the first predefined component being equal to the second bit value and the second predefined component being equal to the first bit value and at least one line with the first predefined component and the second predefined component being equal to the first bit value.
Now, the XOR-sum of the first and the second components of the columns of Hu and Hc are determined. Depending on the value of this XOR-sum, the following four cases are considered:
From the matrices Hu and Hc obtained so far, now the vector a′1, . . . , a′l is determined by solving the linear equation system
If i, 1≦i≦l so that a′i=0, then by the check matrix H=(Hu Ha Hc) determined so far, the syndrome generator is determined. At the input 314 of
Then, in Hu a column hju with the value of the first two components (0,1) is for example replaced by a column hεSp201 which was not part of Hu before. The matrix Hu modified this way is designated by Hu′. The solution of the linear equation system
then inevitably leads to a solution with
as
and hju+h≠0.
If a1′, . . . , al′ is the solution of equation (9), then after this modification of Hu into Hu′ a′i=0. As illustrated in
The just determined H-matrix may then determine, for example, the XOR trees implementing the syndrome generator. In this example, the syndrome generator has, for example, the following advantageous characteristics:
The concept described for determining a syndrome generator by determining its check matrix may be generalized relatively easily, if further conditions regarding columns of the check matrix are to be fulfilled. As an example of such a condition the case is regarded that in each column of the check matrix the number of ones in a subset of components (predefined plurality of components) of the column is odd. In other words, an XOR-sum of a predefined plurality of components of each line of the check matrix H is equal to a same bit value. As an example for such a subset, here the lower N components of each column are regarded belonging to the matrix H3. The number of one in the lower N components thus is to be odd. If this condition is fulfilled, the parity P may be determined as an XOR-sum via the components of the sub-syndrome s3, which may be done by an XOR tree with only N inputs. For the determination of the overall parity from the data bits, the address bits and the check bits, however, an XOR tree with n inputs is required, wherein n is the length of the code.
For example, for a parity bit a row may be added to the check matrix comprising only ones. In other words, a predefined same component of all lines of the check matrix may comprise a same bit value.
From the columns of the check matrix HunverkBCH with 2M−1 columns, the columns of this matrix are determined fulfilling the required condition. It is here the columns comprising an odd number of ones in the N bottom components. Depending on whether the first two components of these columns are 00, 10, 01 or 11, these columns are associated to the set Sp*00, Sp*10, Sp*01 and Sp*11.
Based on these sets Sp*00, Sp*10, Sp*01 and Sp*11, just as described for the set Sp00, Sp10, Sp01, Sp11, check matrix H*=(H*u, H*a, H*c) and thus an syndrome generator may be determined, so that the columns of its check matrix H* comprise an additional characteristic. Here it is the characteristic that the bottom N components comprise an odd number of ones.
A concrete example is described for N=7 and the Galois field GF(27). As a modular polynomial, the primitive polynomial mα=z7 z3+1 is used, for example, indicated in
“Peterson, W., and Weldon, E.: Error Correcting Codes, 2. Auflage, MIT Press, 1972, Annex C, S. 476”. The length of the unshortened code is n=27−1=127. The H-matrix of the unshortened BCH-code for the 2-bit error correction then is
wherein the exponents j of αj are to be regarded as modulo 127, so that for example the exponent 3·126 means (3·126) modulo 127=124. The values α1 and α3i in the column αi, α3i are initially illustrated in the vector illustration as 2 seven digit binary vectors, combined into a 14-digit binary vector and regarded as a 14-digit binary number. This 14 digit binary number may be represented as a decimal number.
The following applies
(α0,α0)=(00000010000001)bin=129
(α1,α3)=(00000100001000)bin=264
(α0,α0)=(00001001000000)bin=576
Wherein the 129 is the decimal value for the first column, 264 is the decimal value for the second column and 576 is the decimal value for the third column.
Here, the left most bit is the first bit and the right most bit is the fourteenth bit. The first bit and the second bit are underlined. These are the bits whose XOR-sum across all columns of the check matrix of the shortened BCH-code are 0,0. The columns of the unshortened H-matrix are then given by the following decimal numbers.
129, 264, 576, 1060, 2098, 4107, 8280, 1261, 2398, 4701, 9285, 3212, 6496, 12854, 8363, 1482, 2932, 5663, 11377, 7351, 14627, 13962, 10704, 6061, 12154, 6895, 13646, 11988, 6541, 13160, 8950, 399, 888, 1663, 3143, 6172, 12393, 9470, 3535, 7004, 13901, 10444, 5572, 11012, 4768, 9490, 3737, 7489, 14892, 12530, 9647, 4074, 8038, 15878, 14512, 13723, 12241, 7077, 14138, 10955, 4604, 9055, 725, 1285, 2600, 5202, 10301, 5363, 10535, 5802, 11586, 7860, 15675, 16067, 14780, 14331, 11239, 5006, 10096, 2751, 5475, 10798, 4322, 8486, 1698, 3330, 6672, 13321, 11464, 7652, 15126, 12985, 8659, 1973, 3891, 7683, 15384, 15561, 15852, 16342, 15261, 13281, 9150, 1003, 1902, 3654, 7188, 14377, 13530, 11773, 8151, 16149, 15009, 12698, 10201, 3045, 5918, 11897, 6391, 12551, 9912, 2523, 4981, 9751, 2225, 4371, 8721
Based on these 127 columns, now the sets Sp00, Sp10, Sp01 and Sp11 are formed, whose first two components in binary representation are 00, 10, 01 and 11. Thus, for example the columns 129, 264 and 567 are part of set Sp00, as the first two components of these numbers are equal to 00 in a binary representation.
Based on the sets Sp00, Sp10, Sp01 and Sp11, the sets Sp*00, Sp*10, Sp*01 and Sp*11 are determined by the additional condition that the columns of the check matrix in their binary representation in the bits 8-14 comprise an odd number of ones. Thus, the columns 1, 2 and 3 (129, 264, 567) belong to Sp*00, as these columns belong to Sp*00 and in addition to that comprise, in the bits 8-14 one 1 each, i.e. an odd number of ones.
The following applies:
Sp*00)={129, 264, 576, 2098, 1261, 2398, 1482, 1663, 3535, 3737 3330, 1003, 1902, 3654 2523, 2225}
Sp*10={8280, 9285, 12154, 11988, 8950, 10444, 11012, 9647, 12241, 10301, 11239, 10096, 8486, 9150, 11897, 9912}
Sp*01={4107, 4701, 5663, 7351, 6541, 6172, 4768, 7077, 4604, 5202, 5363, 5802, 7860, 5006, 4322, 6672, 7652, 8151, 4981, 4371}
Sp*11={14627, 13160, 14892, 15675, 16067, 15126, 15561, 13281, 14377, 16149, 12698, 12551}
From the set Sp*10, the set Spe10 is formed, by removing the two columns 9647, 12241 and combining these two columns into the set Sp210={9647, 12241}. The following applies.
Spe10={8280, 9285, 12154, 11988, 8950, 10444, 11012, 10301, 11239, 10096, 8486, 9150, 11897, 99121}.
From the set Sp*01, the set Spe01 is formed, by removing the two columns 7077, 4604 and combining these two columns into the set Sp201={7077, 4604}. The following applies:
Spe01={4107, 4701, 5663, 7351, 6541, 6172, 4768, 5202, 5363, 5802, 7860, 5006, 4322, 6672, 7652, 8151, 4981, 4371}.
From the set Sp*11, the set Spe11 is formed, by removing the two columns 16149, 13281 and combining these two columns into the set Sp211={16149, 13281}. The following applies:
Spe10={14627, 13160, 14892, 15675, 16067, 15126, 15561, 14377, 12698, 12551},
From the set Sp*00, m−2=14−2=12 linearly independent vectors are selected forming the matrix Ha. The following applies:
Ha=(129, 264, 576, 2098, 1261, 2398, 1482, 3737, 3330, 1003, 3654, 2225).
From the set Spe10∪Spe01∪Spe11 14 linearly independent columns are determined forming the matrix Hc. The following applies:
Hc=(8280, 4107, 6672, 9285, 4768, 11012, 6172, 5202, 8486, 4371, 4322, 10444, 12551, 14377).
These columns form the set SpH
SpH
From the set {Spe10∪Spe01∪Spe11} \SpH
Hu=(4701, 14627, 6541, 13160, 14892, 10301, 5802, 5006, 10096, 12698, 9912, 5663, 11988, 8950, 15675, 7351).
For the XOR-sum of the first two components of the columns of Hu and Hc the value 10 results. To obtain a value 00 for this sum, a column with the first two components 10 is replaced by a column with the first two components 11 of Spe11, so that the XOR-sum now is 00. Concretely, column 7351 is replaced by column 16149 of Spe11. The matrix Hu is now:
Hu=(4701, 14627, 6541, 13160, 14892, 10301, 5802, 5006, 10096, 12698, 9912, 5663, 11988, 8950, 15675, 16149)
From the thus determined matrices Hu, Ha, Hc now the vector a1, . . . , al, is determined for which
applies.
Due to
SAll1=00010000110110
for a′1, . . . , a′12 is determined as the solution of the linear equation system
SAll1=Ha·(a′1, . . . ,a′12)
for a′1, . . . , a′12=101000000011. As e.g. a′2=0, the syndrome generator is determined by the just determined check matrix simply by an implementation of the corresponding linear equations with a synthesis tool, for example.
The parity signal results in the presented embodiment as an XOR operation of the components of the sub-syndrome s3, i.e. by an XOR operation of the components 8 to 14 of the syndrome S. If the side condition 8 to 14 of the columns of the text matrix contain an odd number of ones is not required, the check matrix may also be supplemented by a line consisting of all ones. In a 2-bit error correcting BCH-code, then an odd number of check bits is obtained.
It is illustrated in
More general, the NOR-gate 34 and the AND-gate 35 may also be called same-bit-value-detector. A same-bit-value-detector may provide a signal indicating whether or not all bits of the first group of bits and all bits of the third group of bits of the coded bit sequence comprise a same bit value (All-0 or All-1).
Here, hiu is the i-th column of the matrix Hu and h a column of the matrix Hu or a column of the matrix Hc, wherein h≠hiu.
Correction circuits are for example also described in “Okamo, H. and Imai, H.: A Construction Method for Decoders of BCH-Codes for Bose Chaudhuri-Hocqueng hem and Reed Salomon Codes, IEEE Trans. Comp. C 36, No 10, pp. 1165-1171, 1985”.
Thereby, hjc is th jth column of matrix Hc and h is a column of the matrix Hu or the matrix Hc with h≠hjc.
wherein ha is a column of matrix Ha, h a column of the matrices Hu, Ha, Hc with h≠ha and h* and h″ are columns of matrices Hu and with h*≠h″.
For i=1, . . . , l, for the correction value Δai the following applies
Thereby, hia is the ith column of matrix Ha and h is a column of matrices Hu, Ha, Hc with h≠hia.
In
ukorrOR=Δu2ΔvΔu2v . . . vΔuk
at its output.
In
ukorrXOR=Δu1⊕Δu2⊕ . . . ⊕Δuk
at its output.
In
ckorrOR=Δc1vΔc2v . . . vΔcm
at its output.
In
ckorrXOR=Δc1⊕Δc2⊕ . . . ⊕Δcm
at its output.
Since the used BCH code is shortened, it can happen that a multi-bit error is mapped to the syndrome S(1) of a 1-bit error, wherein S(1) is equal to a column of the check matrix of the unshortened BCH code, which had been deleted when reducing the matrix. This situation can be detected easily when the signals ukorrekOR and ckorrOR are both equal 0, but the error syndrome S(1) of a 1-bit error exists.
The proposed concept is now to be described at a particularly simple example of a unshortened Hamming code having four information bits u1, u2, u3, u4, four check bits c1, . . . , c4 and two address bits a1, a2. The word width k=4, m=4 and l=2 are selected to be small intentionally in order to be able to illustrate the concept as clearly as possible.
The check matrix of the unshortened Hamming code is
The set Sp*00 of the columns of the check matrix whose first two components are equal to 0,0 is
Sp00={(0010)T,(0001)T,(001)T}.
The set Sp01 of the columns of the check matrix whose first two components are equal to 0,1 is
Sp01={(0110)T,(0101)T,(0111)T,(0100)T}.
The set S10 of the columns of the check matrix whose first two components are equal to 1,0 is
Sp10={(1010)T,(1001)T,(1011)T,(1000)T}.
The set Sp11 of the columns of the check matrix whose first two components are equal to 1,1 is
Sp11={(1110)T,(1101)T,(1111)T,(1100)T}.
As columns of the (second) sub-matrix Ha, two linearly independent columns are selected from SP00, e.g. columns (0010)T, (0001)T.
As columns of the (third) sub-matrix Hc, four columns are selected from Sp10 and Sp01, namely columns (0100)T,(0111)T, (1000)T, (1001)T, that are linearly independent. As columns of the (first) sub-matrix Hu, four columns are selected from Sp11, namely columns (1100)T, (1101)T, (1110)T, (1111)T. In the first two components, each of the values 10, 01, 11 occurs an even number of times, so that the XOR-sum of the first and second components of the matrix
is equal 00. For the syndrome S=S1, S2, S3, S4, results with
S=h·(u,a,c)T
S1=u1+u2+u3+u4+c1+c4
S2=u1u2+u3+u4+c2+c3
S3=u2+u4+a1+c3
S4=u3+u4+a2+c3+c4
For the two-dimensional binary vector a′1, a′2, determined according to equation (7), the following results
and, hence,
with the solution a′1=1 and a′2=0.
Since a′2=0, constantly a2=1 is set, which results in equations
S1=u1+u2+u3+u4+c1+c4
S2=u1+u2+u3+u4+c2+c3
S3=u2+u4+a1+c3
S4=u3+u4+1+c3+c4
which logically describes a syndrome generator according to the described concept, whose implementation may be realized, for example, with a commercially available synthesis tool.
The available addresses are here only addresses a1, a2=0, 1 and a1, a2=1, 1. The syndrome of the vector (0000a1a20000) is S=(00a11) and, hence, unequal 0. The syndrome of the vector (1111a1,a21111) is equal S=(00ā11) and, hence, unequal 0. Hence, the vectors (0000a1,a20000) and (1111a1,a21111) are never code vectors.
Vector 0000a1, a20100 will be considered as an example of a vector having a one in the bits stored in the memory. The associated syndrome is S(10a11). The same has at least 2 ones. By checking all possible 1-bit errors, it is easier to confirm that no 1-bit error can modify the vector 0000a1, a20100 into a code word with the error syndrome S=0.
A respective statement applies for all vectors having exactly one 1 in bits u1, u2, u3, u4, c1, c2, c3, c4. An example for the circuit for determining the correction values K1u, K2u, K3u, K4u, K1a, K1c, K2c, K3c, K4c, is shown in
The correction circuit K1u81 outputs the correction values Δu1=1 exactly when S=1100.
The correction circuit K2u82 outputs the correction values Δu2=1 exactly when S=1110.
The correction circuit K3u83 outputs the correction values AΔu3=1 exactly when S=1101.
The correction circuit K4u84 outputs the correction values Δu4=1 exactly when S=1111.
The correction circuit K1a85 outputs the correction values Δa1=1 exactly when S=0010.
The correction circuit K1c86 outputs the correction values Δc1=1 exactly when S=1000.
The correction circuit K2c87 outputs the correction values Δc2=1 exactly when S=0100.
The correction circuit K3c88 outputs the correction values Δc3=1 exactly when S=0111.
The correction circuit K4c89 outputs the correction values Δc4=1 exactly when S=1001.
The illustrated concept is also applicable when bits u=u1, . . . , uk consist of K payload data and q bits derived therefrom. Then with k=K+q, the following applies
u1, . . . ,uk=u1, . . . ,uK,w1, . . . ,wq.
Bits w1, . . . , wq can also be referred to as inner check bits and these bits as check bits of an inner code that are determined from bits u1, . . . , uK by
Thereby, are ƒ1, . . . , ƒq K-digit boolean functions and k=K+q applies. If the boolean functions ƒ1, . . . , ƒq are linear, then the inner code is linear. If at least one of these functions is non-linear, then the code is non-linear.
Bits u1, . . . , uk, =u1, . . . , uK, w1, . . . , wq are corrected, for example, by a shortened BCH code correcting a 2-bit error by using its check bits c1, . . . , cm. For obtaining a particularly high probability for error detection of errors in bits u1, . . . , uk, after the possible error correction by the BCH code, error detection in bits u1, . . . , uk, can be performed by using the check bits of the inner code, without having to increase the number of check bits of the external code.
As an example, a non-linear code described in document DE 10 2006 005 836 or “Gössel, M., Otcheretny, V., Sogomonyan, E. and Marienfeld, D.: New Methods of Concurrent Checking, Springer Verlag 2008, p. 49-53” may be used, where, here, two internal check bits are determined by
w1=u1u2⊕u3u4⊕ . . . uK−1uk
and
w2=u2u3⊕u4u5⊕ . . . ⊕uKu1
Any arbitrary error that does not corrupt simultaneously all bits u1, . . . , uk can then be detected advantageously at least with the probability ½ as, for example, described in “Gössel, M., Otcheretny, V., Sogomonyan, E. and Marienfeld, D.: New Methods of Concurrent Checking, Springer Verlag 2008, p. 49-53”. It is also possible to include the address bits into the determination of the check bits of the inner code. For example, w1 and w2 can be determined as
w1=u1u2⊕u3u4⊕ . . . ⊕uK−1uK⊕a1a2⊕ . . . ⊕al−1al
and
w2=(u2u3⊕u4u5⊕ . . . ⊕uKa1⊕a2a3⊕ . . . ⊕alu1)
It is also possible that wl, . . . , wq bits only depend on address bits a1, . . . , al and not on bits ul, . . . , uk. For example, bits w1, w2 can be determined by
w1,w2=(a1+2a2+ . . . +2l−lal)mod 3
By using the proposed concept, an error correction circuit for 1-bit and 2-bit errors in which the address bits are integrated into error detection, wherein also the errors All-0 and All-1 may be detected as being errors in any address values, may be enabled.
Further, the described concept may enable to write, under any address any data, in particular also the value (0, . . . , 0), (1, . . . , 1) into all data bits without all memory cells being occupied by 0 (1), so that All-1 (All-0) is under no address a valid codeword in all memory cells.
Likewise, the circuitry may enable to differentiate every 1-bit-error from errors “All-1” and “All-0”, which is advantageous. Thus, it may not be the case that a word read out of storage in case of a correctable 1-bit error is mixed up with an error “All-0” or in “All-1”.
In the following, the very detailed example described before is explained in more general words also indicating some of the optional or additional features.
There is a circuitry for generating a m-digit syndrome S=(Sl, . . . ,Sm) of a code C correcting at least a 1-bit error of a code word of the length n having a check matrix H for correcting errors of bits stored in an addressable memory. A first group u=u1, . . . , uk bits, a second group a=a1, . . . , al of l bits and a third group c=cl, . . . , cm of m bits exist, and the first group of k bits and the third group of m bits are stored in addressable memory under the address a. In the error-free case, bits c=cl, . . . , cm are derived logically from bits u=u1, . . . , uk and a=a1, . . . , al by XOR connections, n=k+l+m, wherein the circuitry has n inputs, where the bits u1, . . . , uk, a1, . . . , al, cl, . . . , cm are applied, wherein bits u1, . . . , uk, cl, . . . , cm are output from the memory when applying the address a1, . . . , al and the values of the error syndrome S=S1, . . . , Sm, are determined by
S=H·(u,a,c)T
and (u,a,c)T is the transposed column vector of the row vector (u,a,c) and the check matrix H.
The check matrix H consists of three sub-matrices Hu, Ha, Hc, wherein the sub-matrix Hu consists of k first columns of H, the sub-matrix Ha consists of l second columns of H and the sub-matrix Hc consists of the residual m columns of H, so that
H=(Hu,Ha,Hc)
applies.
Further, there is a first predefined component and a second predefined component of columns of Hu and Hc each unequal [0,0] and such that the XOR-sum of these first predefined components of the columns of Hu and the columns of Hc component-by-component and the XOR-sum of the second predefined components of the columns of Hu and Hc component-by-component are each equal to 0.
The values of the first predefined component and the values of the second predefined component of columns of Ha are each equal to [0,0].
The l columns of matrix Ha are linearly independent.
The m columns of matrix Hc are linearly independent.
Further, there is a bit position r, 1≦r≦l that
applies, wherein
a′1, . . . ,a′r−1,a′r+1, . . . ,a′lε{0,1}
with m+l+k≦2m−1 and l≦m−2.
According to an aspect, k correction circuits K1u, . . . , Kku having each m inputs and an output for generating correction values Δu1, . . . , Δuk for XOR connection with bits ul, . . . , uk read out from the memory are simultaneously connected to m outputs of the circuit mentioned before outputting the m components of the error syndrome S=Sl, . . . , Sm.
Further, the correction circuits Klu, . . . , Kku, when C is a 1-bit error correcting code, in the case of a 1-bit error or no error for j=l, . . . , k realize a m-digit boolean function Kju(S) with
wherein hju is jth the column of the sub-matrix Hu.
Alternatively or additionally, the correction circuits Klu, . . . , Kku, when C is a 1-bit error and 2-bit error correcting code, in the case of a 1-bit error or a 2-bit error or no error for j=1, . . . , k realize a m-digit boolean function Kju(S) with
wherein hju is the jth column of Hu and h is an arbitrary column of Hu or Hc.
According to another aspect, the circuitry is configured such that the logical rth address bit ar is set to 1 when a1, a2, . . . , ar−l, . . . , al=0, . . . , 0 and when
a1,a2, . . . ,ar−l, . . . ,ar+1 . . . ,al=a′1,a′2, . . . ,a′r−1,a′r+1 . . . ,a′l
wherein
a′1,a′2, . . . ,a′r−1,a′r+1 . . . ,a′l
is determined such that
applies.
Further, it may be configured such that ar is constantly set to 1.
According to a further aspect, a further sub-circuit Fo having k+m inputs and an output for detecting the allocation All-0 of a memory cells exists, realizing an (k+m)-digit boolean function F0, (u,c), for which the following applies:
F0(u,c)=
According to an aspect, a further sub-circuit F1 having k+m inputs and an output for detecting the allocation All-1 of a memory cells exists, realizing an (k+m)-digit boolean function F1(u,c), for which the following applies:
F1(u,c)=u1u2 . . . ukc1 . . . cm.
Further, the check matrix H may be supplemented by a row
According to another aspect, there are q components i1, i2, . . . , iq of the columns of the check matrix H, so that for every column h of the check matrix H, the XOR-sum of the values of these components is each equal 1.
Additionally, a circuit component having q inputs and an output for forming the XOR-sum of the q components si1, . . . , siq of the error syndrome for forming the parity P,
P=si1⊕ . . . ⊕siq
may exist.
According to an aspect, a further sub-circuit for address error detection (same-bit-value-detection) may exist, which outputs an error signal at its output in the case of an address error.
Further, the sub-circuit for address error detection in the case that the code C is a 1-bit error detecting code may output, in the case of a 1-bit error or no error, the value Ea(S) with
wherein ha is an arbitrary column of sub-matrix Ha.
Additionally, the sub-circuit for address error detection in the case that the code C is a 1-bit error and 2-bit error correcting code may output, in the case of a 1-bit error, a 2-bit error or no error, the value Ea(S) with
wherein ha is an arbitrary column of matrix Ha, h an arbitrary column of matrices Hu, Ha, Hc with h≠ha.
According to another aspect, I additional correction circuits K1a, . . . , Kla having m inputs and one output exist, so that for j=1, . . . , l the correction circuit Kja for the case that C is a 1-bit error correcting code realizes a I-digit boolean function Kja(s), for which
applies, wherein haj is the jth column of check matrix Ha, and H an arbitrary column of matrices Hu and Hc with h′≠hja.
According to a further aspect, l additional correction circuits K1a, . . . , Kla having m inputs and one output exists, so that for j=1, . . . , l the correction circuit Kja for the case that C is a 1-bit error and 2-bit error correcting code realizes a I-digit boolean function Kja(s), for which
applies, wherein haj is the jth column of check matrix of Ha and h an arbitrary column of matrices Hu and Hc with h′≠hja.
Additionally, the l outputs of correction circuits K1a, . . . , Kla may be guided into inputs of a circuit having l inputs and one output, realizing the logical OR-connection of its inputs.
According to an aspect, m additional correction circuits K1c, . . . , Kmc having m inputs and one output exist, wherein in the case that C is a 1-bit error correcting code for j=l, . . . , m, the correction circuit Kjc realizes a m-digit boolean function Kjc(S), for which, in the case for 1-bit error or no error, the following applies
and hc is the jth column of sub-matrix Kc.
According to another aspect m additional correction circuits Klc, . . . , Kmc having m inputs and one output exist, wherein, in the case that C is a 1-bit and a 2-bit error correcting code, for j=l, . . . , m the correction circuit Kjc realizes a m-digit boolean function Kjc(S), for which the following applies in the case of a 1-bit error, a 2-bit error or no error:
wherein hjc is the small jth column of sub-matrix Hc and h an arbitrary column of sub-matrices Hu or Hc with h≠hjc.
According to a further aspect, the k outputs of the correction circuits Klu, . . . , Kku are guided into the inputs of a circuit having k inputs and one output, realizing a logic OR connection of its inputs.
According to an alternative aspect, the m outputs of correction circuits Klu, . . . , Kku are guided into the inputs of a circuit having k inputs and an output realizing a logical XOR connection of its inputs.
Further, the m outputs of the correction circuits Klc, . . . , Kmc may be guided into the inputs of a circuit having m inputs and one output realizing a logic OR-connection of its inputs.
Additionally, the m outputs of correction circuits Klc, . . . , Kmc may be guided into the inputs of a circuit having m inputs and one output realizing a logic XOR-connection of its inputs.
According to an aspect, the uk, . . . , uk−v bits are stored in the memory are determined from the bits u1, . . . , uk−v−1 stored in the memory and the address bits a1, . . . , al by v+1 circuits ƒk, ƒk−1, . . . , ƒk−v each having k−v+1 inputs and one output, realizing the (k−v+1)-digit boolean functions
Additionally, the boolean functions ƒk, . . . , ƒk−v may not depend on address bits a1, . . . , al.
Further, the boolean functions ƒk, . . . , ƒk−v may not depend on bits u1, . . . , uk−v−1.
Additionally, at least one of the boolean functions ƒk, . . . , ƒk−v may be non-linear.
Further, may be equal to 1.
Additionally, fk may be defined by:
ƒ(u1, . . . ,uk−2,a1, . . . ,al)=(u1u2⊕u3u4⊕ . . . ⊕uk−3uk−2⊕a1a2 . . . ⊕al−1al)
and optionally fk−1 may be defined by:
ƒk−1(u1, . . . ,uk−1,a1, . . . ,al)=(u2u3⊕u4u5⊕ . . . ⊕uk−4)uk−3⊕uk−2a1⊕a2a3 . . . ⊕alu1)
According to an aspect, the check matrix Hunverk of the not shortened BCH code has the form
and the respective exponent j is to be interpreted from αj modulo 2M−1.
According to another aspect, the correction circuit Kiu are at least partly implemented together, the correction circuits Kjc and Kiu are at least partly implemented together and/or the correction circuits Kjc, Kiu and Kja are at least partly implemented together.
Some embodiments according to the invention relate to an apparatus for correcting at least one bit error within a coded bit sequence comprising a means for determining an error syndrome and a means for correcting bit errors. The means for determining an error syndrome may determine an error syndrome of a coded bit sequence derived by a multiplication of a check matrix with the coded bit sequence. The check matrix comprises a first sub-matrix, a second sub-matrix and a third sub-matrix, each sub-matrix comprising a plurality of lines, each line comprising a plurality of binary components. At least a first predefined component or a second predefined component of each line of the first sub-matrix comprises a first bit value. Further, the second sub-matrix comprises lines being linearly independent from each other. The first predefined component and the second predefined component of each line of the second sub-matrix comprises a same second bit value. The third sub-matrix comprises lines being linearly independent from each other and the first predefined component or the second predefined component of each line of the third sub-matrix comprises the first bit-value. Further, either an XOR-sum of the first predefined components of all lines of the sub-matrix and the third sub-matrix is equal to the second bit value and an XOR-sum of the second predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value, if the first bit value is equal to 1, or an XNOR-sum of the first predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value and an XNOR-sum of the second predefined components of all lines of the first sub-matrix and the third sub-matrix is equal to the second bit value, if the first bit value is equal to 0. Additionally, a result of a multiplication of the check matrix and the test vector is equal to a result of a multiplication of the second sub-matrix and a resulting vector, wherein at least one component of the resulting vector comprises the second bit value. The means for correcting bit errors may correct a bit error within the coded bit sequence based on the determined error syndrome of the coded bit sequence.
Some further embodiments according to the invention may relate to a decoder 1500 for decoding a faulty, coded bit sequence as it is shown in
Additionally, the method 1600 may comprise further steps representing one or more of the optional aspects of the proposed concept described above.
Although some aspects of the described concept have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus.
Depending on certain implementation requirements, embodiments of the invention can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, for example a floppy disk, a DVD, a Blue-Ray, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed. Therefore, the digital storage medium may be computer readable.
Some embodiments according to the invention comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.
Generally, embodiments of the present invention can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a non-transitory machine readable carrier, such as a disc or other media.
Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier.
In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.
A further embodiment of the inventive methods is, therefore, a non-transitory data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein.
A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet.
A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein.
A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.
In some embodiments, a programmable logic device (for example a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods are preferably performed by any hardware apparatus.
The above described embodiments are merely illustrative for the principles of the present invention. It is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, to be limited only by the scope of the impending patent claims and not by the specific details presented by way of description and explanation of the embodiments herein.
Number | Name | Date | Kind |
---|---|---|---|
3623155 | Hsiao et al. | Nov 1971 | A |
3714629 | Hong et al. | Jan 1973 | A |
5657331 | Metzner et al. | Aug 1997 | A |
7721177 | Gammel et al. | May 2010 | B2 |
7849388 | Esumi et al. | Dec 2010 | B2 |
8230292 | Fujiwara et al. | Jul 2012 | B2 |
20030023930 | Fujiwara et al. | Jan 2003 | A1 |
20060282756 | Gammel et al. | Dec 2006 | A1 |
20070110188 | Esumi et al. | May 2007 | A1 |
20070162821 | Hwang et al. | Jul 2007 | A1 |
20090049369 | Goessel et al. | Feb 2009 | A1 |
20090106633 | Fujiwara et al. | Apr 2009 | A1 |
20090228758 | Choi et al. | Sep 2009 | A1 |
20110119559 | Kamoshida | May 2011 | A1 |
20120117431 | Bremler-Barr et al. | May 2012 | A1 |
Entry |
---|
Anfinson et al., “A Linear Algebraic Model of Algorithm-Based Fault Tolerance”, 1988, IEEE. |
Chen et al., “Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review”, Mar. 1984, IBM j> Res. Develop, vol. 28, No. 2. |
Hsiao, M. Y., “A Class of Optimal Minimum Odd-weight-column SEC-DED Codes”, Jul. 1970, IBM Journal of Research and Development, vol. 14, Iss. 4, pp. 395-401. |
Number | Date | Country | |
---|---|---|---|
20120117448 A1 | May 2012 | US |