This invention generally relates to liquid chromatography, and more specifically to a mechanism and method for fluidically coupling a chromatographic column to fluid-carrying tubing within a liquid chromatograph system.
Liquid chromatography (LC) is well-known in the fields of chemical separation, compound purification and chemical analysis. A central component of a liquid chromatography system is a chromatographic column. The column comprises a capillary tube that is packed with a permeable solid material that either is, itself, a chromatographic stationary phase or otherwise comprises or supports a chromatographic stationary phase. A fluid mixture comprising both a compound of interest for purification or separation as well as a chromatographic mobile phase is caused to flow through the column under pressure from an input end to an output end. Generally, the chemical properties of the stationary phase and the mobile phase are such that the degree of partitioning of the compound of interest between the mobile phase and the stationary phase is different from the degree of partitioning of other compounds within the fluid. As a result, the degree of retention or time of retention of the compound of interest within the column is different from the degree or time of retention of the other compounds, thus causing a physical separation of the compound of interest from the other compounds.
Although chromatograph columns may be re-used for multiple analytical or purification runs, any particular column ultimately needs to be removed from an LC system and replaced with a different one. For instance, physical or chemical degradation of a column packing material or stationary phase or build up of chemical contamination or particulate matter as a result of extended usage may render a column un-usable. As another example, a change in the type of analysis or separation, perhaps corresponding to a different compound of interest, may require replacement of an existing column with a different one whose stationary phase chemistry is better optimized for the new requirements. Especially in high-volume or high-throughput laboratory environments, it may be necessary to frequently connect and disconnect various chromatographic columns. In order to connect or disconnect a column to or from an LC system, it is necessary to make or break fluid couplings between both ends of the column and fluid-carrying tubing lines. Efficiency considerations dictate that such connecting and disconnecting of columns should be as simple and quick as possible and should be able to be performed with minimal system disruption caused by leaking fluid or breakage of components.
Currently, to attach a column to an LC system in a conventional fashion, a user must first properly assemble a compression fitting and ferrule onto the end of a fluid-carrying length of tubing. It is important that the tubing has been cleanly and squarely cut prior to assembly. The assembly must be inserted into a column end fitting while ensuring the assembly (tube, fitting and ferrule) does not fall apart. Then, while pressing the tubing into the column end fitting, the user must tighten the compression fitting into the column end fitting using two properly sized wrenches. The user must be careful not to under tighten the compression screw such that the assembly will be loose and not able to seal. The user must also be careful not to over tighten the compression screw because doing so presents a risk of the assembly galling, the compression screw breaking or the tubing collapsing.
Thereafter, once the first assembly has been properly fitted into the column end fitting, removing the column from the LC system requires the user to again use two wrenches to loosen and disconnect the tubing. Although this procedure may be repeated multiple times with a single assembly, ultimately the wear and material fatigue caused by multiple manual handlings requires replacement of the assembly (the column, tubing or fittings) to mitigate the consequent increased risk of galling, breakage or tube collapse.
Using the current column attachment process, the ferrule is used to both hold the tubing in the column end fitting and create a positive seal. Therefore enough force must be applied to the ferrule to ensure a friction/deformation fit with the tubing to hold the tubing in place. Typically, that force is much greater than necessary to ensure a positive seal between the tube, ferrule and column end fitting, dramatically shortening the number or times a particular assembly can be re-used.
The present disclosure teaches a device and method for using it which facilitates the rapid connecting and disconnecting of a chromatograph column to fluid-carrying tubing lines of an LC in such a manner that does not negatively affect chromatography performance and that ensures that resulting connections are capable of sealing at pressures exceeding those found in the LC system. The device is capable of first positioning a tube into the column end fitting such that the tube will be in contact with the column end fitting. Once contact is made the device then applies a spring force (a first force) to the tube which exceeds the opposing force that will be created when the column is at maximum operating pressure. Preferably, the first force should be just great enough to hold the tubing in place at a specified operating pressure. Next, the device ensures that a deformable sealing member (which may be a ferrule) comes in contact with the same column end fitting, encircling the tube. A separate independent spring force (a second force) is applied to the deformable sealing member or ferrule to ensure a proper fluid seal is made between the tube, the sealing member or ferrule and the column end fitting to prevent any leakage at the maximum operating pressure of the column. Preferably, the second force should be just great enough so as to create the proper fluid seal at the specified pressure. The positioning of the tube, sealing member or ferrule, and column end fitting and the spring forces for the tube and sealing member or ferrule are provided by a pushing and latching (or locking) mechanism, for instance a lever contained within the device which provides an appropriate amount of motion and mechanical advantage such that an operator does not require a tool.
In a first aspect of the present teachings, an apparatus for coupling a liquid chromatography column comprising an end fitting to a tubing is disclosed, the apparatus comprising: at least one body member comprising at least one chamber; a first spring within the at least one chamber, the first spring configured so as to apply a first force to the length of tubing towards the column end fitting; a second spring within the second chamber, the second spring configured to apply a second force to a deformable sealing member towards the column end fitting; a moveable support member affixed to the at least one body member; and a pushing and latching or locking mechanism configured to push the at least one body member, first and second springs and moveable support member towards the column end fitting.
In a second aspect of the present teachings, there is disclosed an apparatus for coupling a liquid chromatography column comprising an end fitting to a tubing, the apparatus comprising: a piston comprising at least one chamber; a first spring within the at least one chamber, the first spring configured so as to apply a first force to the length of tubing towards the column end fitting; a second spring within the at least one chamber, the second spring configured to apply a second force to a deformable sealing member towards the column end fitting; a pushing and latching mechanism configured to push the piston, the first spring and the second spring towards the column end fitting; and a housing comprising a supporting structure for the end fitting and having a bore or cavity within which a portion of the piston slidably moves during the pushing of the piston by the pushing and latching mechanism.
In a third aspect of the present teachings, there is disclosed an apparatus for coupling a liquid chromatography column comprising a first end having a first end fitting and a second end having a second end fitting to a first tubing and to a second tubing, the apparatus comprising: a base and a first and a second coupling apparatus affixed to the base, each coupling apparatus for coupling one of the first and second end fittings to one of the first and second tubings, each coupling apparatus comprising at least one body member comprising (a) at least one chamber, (b) a first spring within the at least one chamber, the first spring configured so as to apply a first force to the length of tubing towards the column end fitting; (c) a second spring within the at least one chamber, the second spring configured to apply a second force to a deformable sealing member towards the column end fitting; and (d) a pushing and latching mechanism configured to push the at least one body member, the first spring and the second spring towards the column.
In a fourth aspect of the present teachings, there is disclosed a method for coupling a tubing having a tubing end to a liquid chromatography column comprising the steps of: (a) passing a portion of the tubing, including the tubing end, through a coupling apparatus comprising: (i) at least one chamber; (ii) a first spring within the at least one chamber capable of transmitting a spring force to the tubing; (iii) a second spring within the at least one chamber; and (iv) a deformable sealing member capable of receiving a second force from the second spring; (b) inserting the tubing end into a hollow receptacle of an end fitting of the liquid chromatography column; (c) moving the coupling apparatus towards the chromatography column such that the first spring urges the tubing into the receptacle such that a pressure of the tubing end against the end fitting exceeds a maximum operating fluid pressure of the chromatography column; and (d) further moving the coupling apparatus towards the chromatography column such that the second spring causes the deformable sealing member to form a fluid seal between the column and the receptacle.
The above noted and various other aspects of the present invention will become apparent from the following description which is given by way of example only and with reference to the accompanying drawings, not necessarily drawn to scale, in which:
The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiments and examples shown but is to be accorded the widest possible scope in accordance with the features and principles shown and described. To fully appreciate the features of the present invention in greater detail, please refer to
The column 7 shown in
Still referring to
The coupling apparatus 100 shown in
The support member 116 of the apparatus 100 (
In contrast to the slidable nature of the coupling between the support member 116 and the base or housing 108, the column support member 106 is rigidly fixed in place with respect to the base or housing 108. As shown in
Returning now to the discussion of
Prior to assembly of the distal body member 110 onto the intermediate body member 112, a ferrule 122a is placed into a hollow interior portion of the intermediate body member. The purpose of the ferrule 122a is to transfer force provided by the first spring 118a through the bushing or washer 120a to a tubing 6 such that the tubing is pressed into the column end fitting 104 with sufficient force so that the pressure between the tubing and the end fitting exceeds the fluid pressure—typically 15000 psi for HPLC systems—achieved in the column under normal operating conditions. Since the body of the tubing is generally constructed of metal, the ferrule 122a is preferably constructed of a metal—for instance, stainless steel—having a hardness that is equivalent to or greater than that of the tubing. With such choice of material, force applied to the ferrule 122a in the direction of the column 103 will tend to cause the ferrule 122a to wedge itself into the tubing wall so as create a tight metal-to-metal friction seal. In alternative embodiments, the ferrule 122a may be replaced by a shape on or integral with the tubing 6, such as a ridge, groove, ring, etc. In operation, the formed shape portion of the tubing may engage with a clamp, ring, washer, bushing etc. in contact with the first spring 118a in order to transfer spring force to the tubing 6.
In operation, the apparatus 100 also comprises a deformable sealing member 122b, which may be a second ferrule, which is placed on the tubing 6 just prior to positioning the tubing end into the column end fitting 104. The purpose of the deformable sealing member 122b is to deform, under application of force provided by the second spring 118b through the bushing or washer 120b so as to form a leak-tight seal between the tubing, end fitting and column. Accordingly, the deformable sealing member 122b is preferably constructed of an elastic polymer material such as polyether ether ketone (PEEK).
When the apparatus 100 is not in operation providing coupling between a tubing and a column, the pre-loaded spring forces are respectively taken up between the end cap 117 of the distal body member 110 and the intermediate body member 112 and between the intermediate body member and the proximal body member 114. A user may place the apparatus 100 in operation (with the tubing 6 and the ferrule 122a already in place within the apparatus and the deformable sealing member 122b already in place on the tubing) by operating a mechanism 124 (comprising both a pushing mechanism and a locking or latching mechanism) which pushes the three body members (and, consequently, also the support member 116, the tubing 6 and the hardware within the body members) in the direction of the fixed column 103 and its end fitting 104.
Once the tubing comes into contact with the end fitting, further application of force (by continued operation of the pushing and latching mechanism) causes the tubing to apply an increasing force against the first spring 118a through the ferrule 122a and the first bushing or washer 120a. Once the opposing force provided by the tubing exceeds the pre-loaded spring force on spring 118a, continued operation of the pushing and latching mechanism will cause the spring to compress, thereby enabling movement of the apparatus such the deformable sealing member 122b comes into contact with both the proximal body member 114 and the column end fitting 104. Further operation of the pushing and latching mechanism causes both compression of the first spring 118a as well as application of an increasing opposing against the second spring 118b through the deformable sealing member 122b and the second bushing or washer 120b. Still further operation of the pushing and latching mechanism causes both springs 118a, 118b to compress with consequent increase in spring force applied to the tubing and to the deformable sealing member. The increasing force and pressure on the deformable sealing member 122b causes this component to deform within the column end fitting 104 and around the tubing so as to create a leak-tight pressure seal.
A recess 115 in the end of the proximal body member 114 may be provided so as to provide a gap for accommodation of the deformable sealing member 122b and to guide the relative movement between the coupling apparatus 100 and the column end fitting 104 during the pushing and latching procedure. The pre-compression of the springs prior to actual operation of the apparatus ensures that minimal actual movement of parts is required to achieve the required or appropriate final forces on the tubing and on the deformable sealing member or second ferrule.
In the apparatus 145 shown in
The coupling apparatuses described above each employ two springs which are deployed in a non-overlapping end-to-end spatial relationship as considered along the main axis of the respective apparatus. However, space along the axial dimension may be saved, if desired, by providing a modified coupling apparatus design in which the springs at least partially overlap along the axial dimension as, for example, when one spring resides at least partially within a space enclosed by the other spring. An example of one such coupling apparatus is shown in
Referring in detail now to the coupling apparatus 300,
A bushing or other bearing 311 may be provided within the portion of the bore or cavity 326 that receives the portion of the piston 303 so as to provide a smooth sliding surface for insertion and retraction of the piston. The movement of the piston into or partial retraction of the piston from the housing may be controlled manually by a user by means of a pushing and latching (or locking) mechanism 324. As shown the pushing and latching mechanism may comprise a hand operated lever 321 and a coupling bar 325 such that the coupling bar 325 is mechanically engaged to the lever 321 by means of a first pivot pin 322 about which an end of the coupling bar is free to rotate. A second pivot pin (not shown) similarly provides mechanical engagement between the opposite end of the coupling bar 325 and the piston 303 so that rotational motion of the lever 321 is converted into translational motion of the piston.
The piston 303 has a chamber 327 therein through which a length of tubing 306 passes. The inset drawing 330 of
In the views shown in
As may be observed from
In routine operation of this exemplary apparatus embodiment, the tubing 306 will remain with the apparatus 300 throughout the course of several engagement and disengagement operations of the apparatus wherein such operations are associated with, for example, several removal and replacement operations of one or more chromatograph columns. At the end of the tubing opposite to the cartridge, the tubing 306 may be connected to a length of conventional chromatography tubing (not shown) by means of a conventional tubing connection fitting 304a comprising a coupling nut 301, a tubular coupling body 305 and a ferrule 309. The circumstances under which the conventional tubing (or the tubing 306) must be replaced will ordinarily be less frequent than the situations under which a column is removed, added or replaced. At those times when the conventional tubing or tubing 306 must be replaced, the connection and disconnection of the tubing lengths may be accomplished, in standard fashion, by disconnecting the tubing connection fitting 304a. Under no circumstances, however, is there any requirement to use an installation tool or to apply a twisting motion or a torque to the chromatograph column or its end fitting using the disclosed apparatus.
In operation of the coupling apparatus 300, after the protruding end of the tubing 306 makes contact with the end fitting 304b, further movement of the hand lever 321 in the same direction does not cause further movement of the tubing with respect to the end fitting 304b or the housing because of the positionally fixed nature of the tubing with respect to the housing. Instead, continued movement of the hand lever and piston causes additional compression of the first spring 318a such that spring force from the first spring is applied to the tubing 306 in a direction towards the end fitting. Because of the pre-loaded compression previously applied to the first spring, the pressure between the tubing and the end fitting increases rapidly from zero to some final pressure concurrent with movement of the hand lever 321 into its final latched position. The final pressure between the tubing and the end fitting is such as to exceed the fluid pressure—typically 15000 psi for HPLC systems—achieved in the column under normal operating conditions. At the same time, or possibly commencing slightly after the tubing 306 makes contact with the end fitting 304b, movement of the piston internal wall 329 against the second spring 318b causes increasing spring force to be applied to the sealing member 323 through the push plate 320, so as to deform, under application of force provided by the second spring 318b, so as to form a leak-tight seal between the tubing, end fitting and column. Accordingly, the deformable sealing member 323 is preferably constructed of an elastic polymer material such as polyether ether ketone (PEEK).
Frequently, it is desirable or required to perform coupling operations at both ends of a chromatograph column. For instance, when a column is replaced, couplings at both ends of the replaced column must be disconnected and couplings formed at both ends of the replacement column. Accordingly,
It is straightforward and easy to construct a system that provides the functionality shown in
In the next step, Step 206, the tubing end is inserted into a hollow receptacle of the chromatography column end fitting. Then, in Step 208, the coupling apparatus is moved towards the chromatography column such that the first urges the tubing into the receptacle with a force that creates a pressure of the tubing end against the end fitting that exceeds the fluid pressure that will be created when the column is at its maximum operating pressure. In Step 210, the movement of the quick connect apparatus towards the chromatographic column is continued such that the second spring causes the deformable sealing member to form a fluid seal between the column and the receptacle so as to prevent any leakage at the maximum operating pressure.
After a column has been connected to chromatography tubing as described and utilized in the coupled configuration, the disconnect operation is trivial—the user simply operates the pushing and latching mechanism in the opposite direction from the direction used to connect the column and tubing. The disconnect operation may be as simple as simply pushing a lever in a reverse direction so as to release the applied forces and disengage the apparatus and tubing from the column end fitting. One of ordinary skill in the mechanical arts will readily understand how to provide a pushing and latching mechanism that performs this reverse operation.
Improved apparatus and methods for coupling tubing to a chromatographic column have been disclosed. Using the disclosed apparatus, a user may simply place a column and a portion of tubing including a tubing end into the device and operate a pushing mechanism, such as a lever. As previously described, the positioning of the tube and column end fitting, as well as the application of the appropriate forces is assured by the device. As the holding force on the tube is separate from the sealing force on the sealing member, which may be a ferrule, each force can be set only as necessary, enabling reuse of the tube and ferrule many times more as compared to typical combination of tube and ferrule. The apparatus eliminates the need for twisting motions applied to either the column or tubing, provides highly reproducible connecting and disconnecting operations and provides an appropriate amount of motion and mechanical advantage such that an operator does not require a tool, either for connecting a column to or disconnecting a column from tubing.
The discussion included in this application is intended to serve as a basic description. Although the present invention has been described in accordance with the various embodiments shown and described, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the scope of the claimed invention. Neither the description nor the terminology is intended to limit the scope of the invention. All patent application disclosures, patent application publications or other publications are hereby explicitly incorporated by reference herein as if fully set forth herein.
This application is a Divisional application of co-pending U.S. application Ser. No. 13/882,048, which is the United States National Stage Application, under 35 U.S.C. 371, of International Application PCT/US2011/058226 having an international filing date of Oct. 28, 2011, which claims the benefit of the filing date, under 35 U.S.C. 119(e), of U.S. Provisional Application 61/408,039, filed on Oct. 29, 2010, the disclosures of all the aforementioned applications incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61408039 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13882048 | May 2013 | US |
Child | 15498340 | US |