The present disclosure relates to ice making, and more particularly to an apparatus and method for making clear craft ice. Clear craft ice may have many different uses, such as but not limited to consumption in craft beverages.
The present disclosure also relates to an apparatus and method for producing and dividing a relatively thick ice slab into ice cubes. Known methods for dividing a relatively thick ice slab into ice cubes include using a saw blade (e.g., a blade such as metal having a serrated cutting edge or other tooth form, or other type of abrasive cutting edge, for mechanical material removal) to cut through the thick slab. For producing smaller ice cubes from a smaller slab having a relatively small thickness, the Monogram™ Under-the Counter Icemaker by GE divides a small slab of ice having a thickness of about 0.5 inches into ice cubes using a cutter grid. The Monogram™ Under-the Counter Icemaker Service Guide identifies that a problem is present if the ice slab has a thickness of ¾ inches or larger (p. 38, Table, Col. 1) with probable causes including scale buildup, defective or disconnected hot gas valve, and room temperature over 100 degrees Fahrenheit (id, Col. 2).
Using heat from an electric wire to divide an ice slab causes melting of frozen ice into meltwater. Known usage of electric wires to divide ice is limited to small, shallow ice slabs having a thickness of less than ¾ inches, thereby minimizing meltwater volume. Thicker ice slabs, such as those having a thickness of at least 1 inch, present challenges to the heated cutting method because of increased volume of meltwater as a result of a longer dividing process. Meltwater can refreeze and cause divided ice cubes to clump together.
In one aspect, the disclosure provides a freezing and cutting assembly for producing ice cubes. The freezing and cutting assembly includes a freezing unit configured to freeze a slab of ice. The freezing unit includes a cold plate and a frame removably coupleable to the cold plate. The cutting unit includes at least one heated electrical wire tensioned on a cutting unit frame and configured to divide the slab of ice into ice cubes.
In another aspect, the disclosure provides a freezing and cutting assembly for producing ice cubes. The freezing and cutting assembly includes a freezing unit configured to freeze a slab of ice, and a cutting unit configured to receive the slab of ice from the freezing unit. The cutting unit includes at least one heated electrical wire tensioned on a cutting unit frame and configured to divide the slab of ice into ice cubes. The freezing and cutting assembly also includes a tray configured to receive the ice cubes from the cutting unit. The tray includes dividers configured to separate the ice cubes from each other.
In yet another aspect, the disclosure provides a freezing and cutting assembly for producing ice cubes. The freezing and cutting assembly includes a first freezing unit configured to form primary slabs of ice, a second freezing unit configured to form secondary slabs of ice, and a cutting unit configured to alternatingly receive the primary and secondary slabs of ice from the first and second freezing units. The cutting unit is configured to divide each of the primary and secondary slabs of ice into ice cubes.
In yet another aspect, the disclosure provides a method for producing ice cubes. The method includes coupling a removably coupleable frame to a refrigerated cold plate to define an enclosure for receiving a fluid, freezing the fluid in the enclosure into a slab of ice, transferring the slab of ice to a cutting unit having heated electrical wires, and dividing the slab of ice into ice cubes using the heated electrical wires.
In yet another aspect, the disclosure provides a method for producing craft ice including forming an enclosure around a refrigerated cold plate, filling the enclosure with water, stirring the water while the refrigerated cold plate freezes the water into an ice block, transferring the ice block to a cutting unit, cutting the ice block into ice cubes with heated wires, providing a tray with shallow dividers below the heated wires to receive ice cubes, and refreezing the ice cubes on the tray.
In yet another aspect, the disclosure provides a method for producing craft ice including providing a temperature-controlled enclosure around a freezing unit for producing an ice block and a cutting unit for cutting the ice block into ice cubes, producing the ice block using the freezing unit in the temperature-controlled enclosure, and cutting the ice block using the cutting unit in the temperature-controlled enclosure.
In yet another aspect, the disclosure provides an apparatus for producing craft ice including a production assembly having one or more freezing units and one or more cutting units. The production assembly includes a temperature-controlled enclosure for controlling the ambient environment around the one or more freezing units and the one or more cutting units.
In some implementations, the production assembly includes a refrigerated storage space for storing ice cubes.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Before any implementations of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other implementations and of being practiced or of being carried out in various ways. The terms “substantially”, “generally”, and “about” may be used herein to encompass both “exactly” and “approximately.”
A fluid source 24, such as water or another fluid from a utility, a well, a holding tank, etc., is in fluid communication with the enclosure 20 by way of an inlet port 26. For example, in the illustrated implementation, pressurized utility or well water passes through a filter 28, such as a reverse osmosis filter, and is subsequently held in a storage tank 30. The storage tank 30 provides filtered water to the enclosure 20. The storage tank 30 may include a pressurized air bladder (not shown) for creating and/or maintaining a water supply pressure. The storage tank 30 may be disposed in a refrigerated space 32, which may be incorporated into temperature-controlled enclosure 114 (as illustrated in
The frame 16 includes a top 34 and a plurality of sidewalls 36 and is insulated to increase efficiency of freezing and inhibit cracking of ice. In the illustrated implementation, the top 34 and sidewalls 36 are generally orthogonal to each other. For example, in the illustrated implementation, the frame 16 includes four sidewalls 36 forming a generally rectangular shape that define sides of the slab of ice 12 formed on the cold plate 14. However, in other implementations, the frame 16 may have other shapes and/or a different number of sidewalls 36. The top 34 of the frame 16 may be formed as one piece with the sidewalls 36 or may be a separate piece, removably attachable to the sidewalls 36. In some implementations, the top 34 may rest on top of the sidewalls 36 during operation. Each of the sidewalls 36 and the top 34 may include insulation, such as polystyrene foam, or another suitable insulating material. In some implementations, some of the sidewalls 36 and/or the top 34 may be uninsulated, in any combination.
An ice thickness sensor 38, such as a linear actuator with a limit switch, may be coupled to the frame 16, e.g., to the top 34 of the frame 16. In the implementation in which the ice thickness sensor 38 includes a linear actuator, the linear actuator may be configured to extend downwards towards the cold plate 14 to measure a height (which may also be referred to herein as a thickness or an ice thickness) of the forming ice, as will be described in greater detail below. In other implementations, other types of ice thickness sensors may be employed. A temperature sensor 40 may be coupled to the frame 16 to measure a temperature of the water in the enclosure 20, and a cold plate temperature sensor 164 may measure a temperature of the cold plate 14.
A plurality of motors 42 are mounted to the top 34 of the frame 16, each having a motor shaft 44, each passing through the top 34 and into the enclosure 20, and an impeller 46 mounted on each motor shaft 44. Each impeller 46 is disposed within the enclosure 20 for stirring the fluid in the enclosure 20, as will be described in greater detail below. As illustrated in
The overall dimensions of the enclosure 20 are about 24 inches in length L, about 16 inches in width W, and about 8 inches in height H (+/−1 inch). The enclosure 20 dimensions are described herein as an inner dimension between inner surfaces of the freezing unit top 34, sidewalls 36, and cold plate 14 that define the enclosure 20. In other implementations, any desired dimensions may be employed in order to produce ice of any desired size. For example, the dimensions of the enclosure 20 in other implementations may generally be about 8 to about 72 inches in length L, about 8 to about 60 inches in width W, and about 3 to about 12 inches in height H (+/−1 inch). In yet other implementations, the dimensions of the enclosure 20 may be about 12 to about 48 inches in length L, about 8 to about 32 inches in width W, and about 4 to about 8 inches in height H (+/−1 inch). More specifically, the dimensions of the enclosure 20 in other implementations may be about 26 inches in length L, about 18 inches in width W, and about 6 inches in height H (+/−1 inch). In other implementations, the dimensions of the enclosure 20 may be about 32 inches in length L, about 24 inches in width W, and about 6 inches in height H (+/−1 inch). In other implementations, the dimensions of the enclosure 20 may be about 48 inches in length L, about 32 inches in width W, and about 6 inches in height H (+/−1 inch). Generally, the enclosure 20 dimensions may be increased slightly above the desired dimensions of the cut ice cubes 84 to compensate for dimensional losses due to melting, e.g., during the cutting process. The number of motors 42 and/or size of the impellers 46 may be scaled up or down depending on the size of the enclosure 20.
Each of the plurality of sidewalls 36 includes a heater 48, such as a heated electrical wire, preferably disposed against the outer surface of the sidewalls 36 in direct communication with the enclosure 20. The heater 48 is disposed at a bottom of the sidewalls 36, directly adjacent the cold plate 14, and is coiled in a serpentine fashion to a height of about 2 inches (+/−0.5 inches) in the illustrated implementation. In other implementations, the heater 48 may be disposed to any desired height. Generally, the heater 48 is configured to heat at least about one fourth of the height of the enclosure 20, directly adjacent the cold plate 14.
A pump 50 for pumping fluid out of the enclosure 20 is disposed in fluid communication with the enclosure 20 by way of an outlet port 52. The outlet port 52 is in fluid communication with the fluid that remains above any ice formed in enclosure 20. The pump 50 may be configured to direct the pumped fluid to a drain, a reservoir, or the like, and in other implementations the pump 50 may be configured to recycle the pumped fluid back to storage tank 30 or inlet port 26. The operation of pump 50 and outlet port 52 may be combined with fill valve 31 and inlet port 26 such that filling and draining of enclosure 20 is performed with one port.
The cold plate 14 includes a generally planar heat exchange surface 54 disposed at a top of the cold plate 14 in direct communication with the enclosure 20. The cold plate 14 may also include a generally planar bottom surface 56 generally parallel to the heat exchange surface 54. One or both of the heat exchange surface 54 and the bottom surface 56 may be formed from a heat conductive material, such as metal—for example, aluminum, or any other suitable material. The aluminum may be anodized to inhibit formation of aluminum oxide. The cold plate 14 may also include a polycarbonate layer (not shown) disposed on the heat exchange surface 54 in direct communication with the enclosure 20 to better match an ice expansion coefficient and reduce ice adhesion to the heat exchange surface 54. First and second heat exchanger coils 58, 60 carrying a refrigerant run through the cold plate 14 in a serpentine fashion. The first and second heat exchanger coils 58, 60 are interleaved and are disposed between the heat exchange surface 54 and the bottom surface 56, e.g., sandwiched therebetween. The cold plate 14 may be insulated (e.g., below the bottom surface 56 of the cold plate 14) with any suitable insulating material, such as polystyrene foam.
In the illustrated implementation, first and second heat exchanger coils 58, 60 are disposed in the cold plate 14. The cold plate 14 includes first and second inlets 62, 64 in a first end 70 of the cold plate 14 and first and second outlets 66, 68 in a second end 72 generally opposite the first end 70. The first and second heat exchanger coils 58, 60 are formed from tubes, such as copper tubes, and are configured in parallel to receive a flow of refrigerant flowing in the same direction. However, in other implementations, the first and second heat exchanger coils 58, 60 may be configured to receive the flow of refrigerant in opposite directions such that the first inlet 62 and the second outlet 68 are disposed at the first end 70, and the first outlet 66 and the second inlet 64 are disposed at the second end 72. In other implementations, three, four, or more heat exchanger coils may be employed and may be arranged in any suitable configuration, e.g., for smaller spacing between coil runs and increased capacity. In yet other implementations, only a single heat exchanger coil need be employed.
The first and second heat exchanger coils 58, 60 form part of a refrigeration system 74, illustrated in
The cutting unit 82, and more specifically the inner dimensions of the cutting unit frame 90, generally has the same length L and width W as the enclosure 20 (+/−1 inch), or may be larger in one or both dimensions in other implementations. This allows the ice block 12 to fit in the cutting unit 82, within the cutting unit frame 90, and may provide some extra space to account for the ice block 12 melting during the cutting process, which will be described in greater detail below. The freezing unit 10 may also include an ice block ram 100 (illustrated schematically in
The plurality of heated wires 88 may be arranged in parallel in the lengthwise and widthwise dimensions L, W to form a grid, each of the heated wires 88 spaced from a directly adjacent one of the heated wires 88 by wire spacings D1 and D2 in each dimension, respectively, according to any desired size of ice cubes 84, as illustrated. The heated wires 88 may also be spaced from each other in the height direction by a small gap, enough so that overlapping heated wires 88 in the grid do not touch each other. Furthermore, the cutting unit frame 90 may be formed from two separate pieces (not shown)—e.g., a first frame part for tensioning the lengthwise heated wires 88 and a second frame part for tensioning the widthwise heated wires 88, with the first and second frame parts being stacked one on top of the other for operation, which also provides the small gap between the heated wires 88 in the height direction.
The cutting unit 82 may include a plurality of cutting unit frames 90. The cutting unit frame 90 may be interchangeable with other of the plurality of cutting unit frames 90 which may have different wire spacings D1, D2 to form different shapes and/or sizes of ice cubes 84, and the heated wires 88 need not be parallel. In some implementations, the heated wires 88 may be formed rigidly into any shape, including straight and/or curved shapes. For example, the heated wires 88 may be arranged in a grid of about 2 inches (D1) by about 2 inches (D2) (+/−⅛ inch), as illustrated in
The tray 86 has overall dimensions W1, L1 that are at least equal to the length L and width W of the enclosure 20, and are slightly larger than the length L and the width W of the enclosure 20 in the illustrated implementation. The tray 86 includes a generally planar base surface 102 and a plurality of dividers 104 protruding from the base surface 102. Walls 105a of the plurality of dividers 104 extending in the direction of width W have a width X1 (see enlarged view of
The plurality of dividers 104 define a plurality of shallow receptacles 106, one receptacle 106 for each ice cube 84 cut by the cutting unit 82. The plurality of dividers 104 are positioned to separate each ice cube 84 from each of the adjacent ice cubes. A divider height H1 is sufficient to keep the ice cubes 84 in their corresponding receptacles 106 during the transportation of tray 86 to frozen storage (e.g., 0.0625 inches to 0.5 inches). This low profile of the dividers 104 inhibits the ice cubes 84 from sticking to the dividers 104 in frozen storage, as will be described in greater detail below. The tray 86 includes a plurality of apertures 108 (see enlarged view of
The cutting unit 82′ is disposed centrally between the first and second freezing units 10′, 10″ such that the cutting unit 82′ is configured to receive an ice block 12 alternatingly from each freezing unit 10′, 10″. The cutting unit 82′ and the freezing units 10′, 10″ are supported on a generally planar support surface 112. The cutting unit 82′ may be configured as interchangeable modules with varying cutting dimensions such that the dimensions of ice cubes 84 are easily altered in the production assembly 110. The cutting unit 82′ and the freezing units 10′, 10″ may be enclosed by a temperature-controlled enclosure 114. The temperature-controlled enclosure 114 provides a more consistent environment for the freezing units 10′, 10″ and the cutting unit 82′ to produce and cut ice, shielded from fluctuations of the broader environment, thereby improving ice production consistency and reliability. In other implementations, the production assembly 110 may include any number of freezing units 10 and cutting units 82, such as three freezing units and one cutting unit, four freezing units and two cutting units, etc., in any number and combination. Further examples will be described in greater detail below.
The first and second freezing units 10′, 10″ are cooled by a single compressor 76, such as the compressor 76 shown in
The production assembly 110 also includes a storage compartment 122 for storing the trays 86 of ice cubes 84 in a stacked fashion. The storage compartment 122 is configured to receive first and second stacks 124, 126 of trays 86 in the illustrated implementation—for example, one stack for each freezing unit 10, though any number of stacks may be employed in other implementations. The storage compartment 122 is disposed generally below the support surface 112. The support surface 112 includes an opening 128 from the temperature-controlled enclosure 114 to the storage compartment 122, and the cutting unit 82′ is disposed generally in, on, or near the opening 128 such that the ice that is cut by the cutting unit 82′ drops through the opening 128 into one of the trays 86 disposed in a receiving location 130 in the storage compartment 122 below. In other implementations, the tray 86 may be above the opening 128 and the tray 86 may be lowered into the storage compartment 122.
The temperature-controlled enclosure 114 and the storage compartment 122 may be cooled by a second refrigeration system having the components shown in
A conveyor system 132 may be disposed in the storage compartment 122, as illustrated schematically in
As illustrated in
In other implementations, the production assembly 110 may employ other arrangements of freezing units 10 and cutting units 82. For example, a single cutting unit 82 may be dedicated for every freezing unit 10 (which may be referred to herein as a “dedicated freezing/cutting assembly”). As another example, multiple freezing units 10 may supply ice blocks 12 to a single cutting unit 82 (which may be referred to herein generally as a “shared freezing/cutting assembly” or an “assembly line”). The multiple freezing units 10 may be synchronized such that the timing of each ice block release is spaced and driven by the cutting unit 82 capacity. Any of these arrangements may be employed individually and in other implementations may be duplicated within the production assembly 110, e.g., more than one dedicated freezing/cutting assemblies may be disposed in the temperature-controlled enclosure 114, more than one of the dual freezing/cutting assemblies may be disposed in the temperature-controlled enclosure 114, more than one of the shared freezing/cutting assemblies may be disposed in the temperature-controlled enclosure 114, or any other combination of said freezing/cutting assemblies, etc. Also, in other implementations, any combination of one or more freezing units 10 and one or more cutting units 82 may be operated individually and manually, or in any combination of manually and automatically, with or without being configured into the production assembly 110.
As illustrated in
The human-machine interface 146 includes a display panel 152 and a control panel 154. The display panel 152 may display information regarding temperature and setpoint of the temperature-controlled enclosure 114, temperature and setpoint of the first and second cold plates 14′, 14″, an operation state (e.g., the mode) of the refrigeration system 74 and/or the capacity allocation to the first and second cold plates 14′, 14″, an operation state of the motors 42, an operation state of the heaters 48, water temperature, cold plate temperature, an operation state of the cutting unit 82, 82′, the timer, an indicator representative of the number of loaded trays 86 or the amount of ice in the storage compartment 122, etc.
The controller 140 includes a plurality of inputs 156 and outputs 158 to and from various components, as illustrated in
The control panel 154 may include a plurality of control actuators 160 (see
The inputs 156 and outputs 158 are in communication with the controller 140, e.g., by way of hard-wired or wireless communications such as by satellite, internet, mobile telecommunications technology, a frequency, a wavelength, Bluetooth®, or the like.
In operation, the controller 140 may be configured to automatically fill the enclosure 20 (in a fill mode) to a desired height for the desired size of ice cube, e.g., by way of the fluid level sensor 162 in communication with the controller 140 and a feedback control loop with the fill valve 31. The desired height is preferably higher than the desired ice cube height in order to allow continued stirring of the fluid during the freezing process as the fluid freezes. For example, the desired ice cube height is at least 1 inch and the desired height is at least 2 inches to allow continued stirring as the ice slab forms to the height of 1 inch. In other examples, the desired ice cube height is at least 1.5 inches and the desired height is at least 2.5 inches. In yet other examples, the desired ice cube height is at least 2 inches and the desired height is at least 3 inches. In yet other examples, the desired ice cube height is more than 2 inches (such as at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, etc.). The fluid freezes starting at the cold plate 14 in thin layers extending away from the cold plate 14 as the water is stirred by the impellers 46. In other implementations, the enclosure 20 may be manually filled by an operator to the desired height.
The controller 140 may be configured to control the refrigeration system 74 to cool the cold plate 14, 14′, 14″ to produce ice. In other implementations, the refrigeration system 74 may be manually operated. For example, the cold plate 14 may be set to an initial setpoint for cooling and freezing water in the enclosure 20, and then the setpoint may be lowered as ice thickness increases to a desired height. The thicker the ice, the larger the temperature difference may be between the 32-degree water above the ice and the cold plate 14 below. As such, lowering of the setpoint as the ice thickens may facilitate further freezing. Then, the setpoint may be increased slowly with either the compressor 76 being off or running only occasionally to slow the rate of temperature increase to inhibit cracking of the ice. The temperature of the cold plate may be raised further by reversing the refrigeration system 74 to use the compressor's hot gas. The setpoint may be adjusted (e.g., as described above) either manually or automatically based on water temperature measured by the temperature sensor 40, based on ice thickness measured by the thickness sensor 38, and/or based on time.
For the dual first and second cold plates 14′, 14″, the controller 140 may be configured to control the refrigeration system 74 as described above with respect to
The controller 140 may be configured to activate the impellers 46 during ice formation to continuously stir the water above the ice. Constant water movement over the forming ice facilitates the production of clear ice. The linear arrangement of impellers 46 inhibits turbulence at the top surface of the forming ice to facilitate a smoother and more planar top surface of the ice.
The controller 140 may be configured to periodically or continuously monitor ice thickness, e.g., by way of the thickness sensor 38, and adjust control of the refrigeration system 74 (e.g., to increase or decrease the setpoint temperature, the capacity allocation, to reverse the cold plate 14 to heating mode, etc.) based on the sensed ice thickness (e.g., based on the actual measured thickness or on the measured thickness as a percentage of the desired ice thickness, for example). For example, see
The controller 140 may be configured to activate the pump 50 to remove excess water from the enclosure 20 when the desired ice thickness is reached, as sensed by the thickness sensor 38. In other implementations, the pump 50 may be activated manually, e.g., by way of the control panel 154.
The controller 140 may also be configured to activate the heater 48 to facilitate removal of the ice block 12 from the enclosure 20 in conjunction with the cold plate 14 being in the heating mode using compressor hot gas. The heating mode may be timed to inhibit cracking of the ice. The insulation in the frame 16 may also inhibit cracking of the ice by slowing the rate of temperature change in the ice. In some implementations, the heater 48 may be activated manually by the operator, e.g., by way of the control panel 154. When the ice block 12 is not frozen to the frame 16 or the cold plate 14, the controller 140 may be configured to automatically unlatch the frame 16, to activate the frame lift 22 to move the frame 16 to the uncoupled state, and to move the ice block 12 to the cutting unit 82 by activating the ice block ram 100. In some implementations, the frame lift 22 and the ice block ram 100 may be integrated into a single lift/ram device. In some implementations, the frame 16 and ice block 12 may be unlatched and lifted to the uncoupled state and moved manually by the operator.
Prior to the ice block 12 being cut by the cutting unit 82, the engraving tool 170 (shown schematically in
The engraving may include indicia (e.g., graphics, logos, and/or text) repeated across the top surface of the ice block 12 and positioned such that one or more of the ice cubes 84 contain such indicia after the ice block 12 is cut. For example, the indicia may be placed approximately centrally in a location on the top surface of the ice block 12 corresponding to an ice cube 84 and repeated for every location on the top surface of the ice block 12 corresponding to an ice cube 84. The indicia need not be engraved for every ice cube 84, i.e, the indicia may be engraved on a portion of the ice block 12. The indicia may be the same or different in each location on the top surface of the ice block 12, and may be grouped into any number of different groups of repeating indicia.
The digital data storage device 168 (e.g., a computer, a personal computer, a laptop, a hard drive disk, a disc such as a compact disc (CD), a digital versatile disc (DVD), Blu-ray disc, or the like, a USB flash drive, a secure digital card (SD card), a solid state drive (SSD), cloud storage, etc.), shown schematically in
The controller 140 may be configured to activate the heated wires 88 in the cutting unit 82 to cut the ice block 12 into ice cubes 84. In some implementations, the heated wires 88 may be activated manually, e.g., by way of the control panel 154. The ice block 12 slowly melts through the heated wires 88 under the effect of gravity to form ice cubes 84 which drop through the cutting unit 82′ into the tray 86 below. The dividers 104 facilitate separation of the ice cubes 84, while the apertures 108 in the tray 86 allow melted fluid to drop away from the ice cubes 84, thereby inhibiting sticking and clumping of ice cubes 84 to each other when the tray 86 of ice cubes 84 is refrozen, e.g., in the storage compartment 122.
The controller 140 may be configured to activate the conveyor system 132 to move the tray 86 loaded with ice cubes 84 to a storage position (
In some implementations, the controller 140 may monitor ice production for auditing purposes. For example, data from the production assembly 110 regarding the number of freeze cycles of each cold plate 14, cutting cycles of the cutting unit 82, calculated quantity of ice produced, quantity of ice stored, quantity of ice removed from the storage compartment 122, etc., may be stored in the memory 144 and capable of transfer or upload by wired or wireless connection, e.g., to the digital data storage device 168 or another similar device. (Thus, the digital data storage device 168 may also be an output 158.) The data may be useful for monitoring production, auditing, process improvement, etc.
Thus, the disclosure provides, among other things, a method and apparatus for producing clear ice cubes. Although the disclosure has been described in detail with reference to certain preferred implementations, variations and modifications exist within the scope and spirit of one or more independent aspects of the disclosure as described.
Various features and advantages of the disclosure are set forth in the following claims.
This application claims priority to U.S. Provisional Patent Application No. 63/072,612, filed on Aug. 31, 2020, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63072612 | Aug 2020 | US |