Apparatus and method for creating a seal on an inner wall of a tube for hydroforming

Information

  • Patent Grant
  • 6502822
  • Patent Number
    6,502,822
  • Date Filed
    Thursday, May 15, 1997
    27 years ago
  • Date Issued
    Tuesday, January 7, 2003
    22 years ago
Abstract
A sealing unit capable of sealing engagement with an end of a tube. The tube has an outer wall and a bore surrounded by an inner wall. The seal unit comprises a tapered element having a longitudinal axis. The tapered element is adapted for insertion into the bore in the end of the tube. A sealing ring co-axial with said longitudinal axis of the tapered element to provide an annular channel between the tapered element and the sealing ring. The annular channel has an open end and a closed end. The annular channel is capable of receiving the end of the tube through the open end of the annular channel. A base, co-axial with the longitudinal axis of said tapered element, contacts the sealing ring to hold the sealing ring in place and contacts the tapered element to terminate the annular channel at the closed end. When the sealing unit is in sealing engagement with the end of the tube, the tapered element sealably engages the inner wall of the tube and the sealing ring sealably engages the outer wall of the tube.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to a sealing unit for sealing the end of a blank tube and, more particularly, to a sealing unit for sealing the end of a tube in a hydroforming station.




2. Description of the Related Art




Industry requires standard tubular blanks to be formed into one-piece, complex tubular shapes. In the automobile industry, automobile frames are typically of the “box” type construction for strength and load bearing purposes. These frame members often have a great variation in both the horizontal and vertical profile. The cross-section of such members often varies rather extremely from approximately a square cross-section, to a rectangular cross-section to a round cross-section to a severely flattened cross-section, and to any irregularly shaped combination of the above. The same is true for the antenna industry, which requires a wide variety of cross-section shapes for waveguides.




An apparatus that forms the desired one-piece, complex tubular shapes from tubular blanks is a hydroforming station or hydroforming press. The hydroforming station follows a series of steps to form the desired tubular shape. First, a blank tube or workpiece is placed between a pair of dies having cavities defining the desired resultant shape of the formed tube. The ends of the workpiece are tightly sealed with a pair of sealing units. The workpiece is filled with fluid which is then pressurized. Pressurizing the fluid within the workpiece results in forming and expanding the tube to conform to the cavity shape. The fluid is drained from the tube and the sealing units are removed to release the formed frame.




Conventional sealing units implement a flexible gasket, resilient elastomeric annular seal or O-ring. Typically, the O-ring relies on contact with the external surface of the tube to maintain a fluid seal. In some applications, especially low pressure hydroforming below 5000 pounds per square inch, the conventional O-ring sealing unit may perform adequately. However, at higher hydroformning pressures above 5000 pounds per square inch, the conventional O-ring sealing units do not perform adequately. Even at the low pressure hydroforming, the O-ring sealing unit has some shortcomings. The main shortcoming of the conventional sealing unit is that it tends to be the first part of the hydroforming press to fail. Because workpieces are unfinished, they often have burrs on the edges of their openings. The repetitive motion of the O-ring over these burrs on multiple workpieces damage the O-rings. Additionally, constant friction between the O-ring and workpieces wear down the gasket material. Repeated use of the sealing units results in the necessity of frequent replacement of the O-rings. Constant replacement of the O-rings results in large maintenance costs and large inefficient down times.




For the hydroforming station to properly function, the sealing units must maintain a tight fluid seal. For high pressure hydroforming, the O-ring sealing units, especially worn O-rings, may fail to maintain a tight fluid seal. Failure of the O-ring in conventional sealing units results in leaking and non-functioning hydroforming press. Even worse, an O-ring failure could result in great harm to machine operators or adjacent machinery. The release of the highly pressurized fluid could result in death and destruction. Conventional hydroforming presses with their O-ring implementing sealing units require some form of machine guard or personal protection. These additional safety precautions resulting in added costs and obstructed views.




The present invention is directed to overcoming or at least reducing the effects of, one or more of the problems set forth above.




SUMMARY OF THE INVENTION




In accordance with one aspect of the present invention, there is provided a sealing unit capable of sealing engagement with an end of a tube. The seal unit comprises a tapered element, a sealing ring and a base. The tapered element having a longitudinal axis is adapted for insertion into a bore in the end of the tube. The sealing ring is co-axial with the longitudinal axis of the tapered element providing an annular channel between the tapered element and the sealing ring. The annular channel is capable of receiving the end of the tube. The base, being co-axial with the longitudinal axis of the tapered element, contacts the sealing ring holding it in place. The base also contacts the tapered element terminating the annular channel. When the sealing unit sealably engages the end of the tube, the tapered element sealably engages the inner wall of the tube, and the sealing ring sealably engages the outer wall of the tube.




In accordance with another aspect of the present invention, there is provided a sealing unit capable of sealing engagement with an end of a tube. The sealing unit further comprises a housing and at least one stop element. The base has a front end and a back end. Proximate to the back end of the base is the housing, and the housing is connected to the tapered element. The stop element is positioned between the housing and the sealing base. When the end of the tube is positioned within the annular channel, and the base is stationary relative to the tube, the housing is capable of sliding toward said back end of said stationary base compressing the stop element. The tapered element, being connected to the housing, is capable of sliding further into the bore until the tapered element sealably engages the inner wall of the tube. When the tapered element is in sealable engagement with the inner wall of the tube, the tapered element forces the inner wall of the tube outward providing sealable engagement between the outer wall of the tube and the sealing ring.




In accordance with a further aspect of the present invention, there is provided a sealing unit capable movement between a sealed position and a retracted position. The sealing unit comprises a sealing unit moving means capable of moving the sealing unit between the retracted position and the sealed position. The sealing unit moving means is connected to the housing. In the retracted position, the sealing unit is positioned away from the end of the tube. In the sealed position, the sealing unit sealably engages the end of the tube.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings which:





FIG. 1

is a side elevation view of a hydroforming station;





FIG. 2



a


is a side elevation view of the preferred embodiment of a sealing unit in a retracted position;





FIG. 2



b


is a end view of the embodiment of the sealing unit in

FIG. 2



a


along line


1




a





1




a


;





FIG. 2



c


is a side elevation view of the sealing unit in

FIG. 2



a


in transition to a sealed position;





FIG. 2



d


is a side elevation view of the sealing unit in

FIG. 2



a


in the sealed position;





FIG. 3



a


is a side elevation view of another embodiment of the sealing unit with a tapered sealing ring;





FIG. 3



b


is a side elevation view of the tapered sealing ring of

FIG. 3



a


;





FIG. 4



a


is a side elevation view of an embodiment of the sealing unit with air piston;





FIG. 4



b


is a end view of the sealing unit in

FIG. 4



a


along line


4




b





4




b


;





FIG. 4



c


is a side elevation view of the air piston in

FIG. 4



a


in the sealed position.




While the invention is susceptive to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.











DETAILED DESCRIPTION OF THE INVENTION




Surprisingly, it has been discovered that an end of a tube can be efficiently sealed with a sealing unit in accordance with the present invention. The sealing unit of the present invention has been found to tightly fluid seal the end of a tube in a hydroforming station. The sealing unit of the present invention does not employ O-rings, and the sealing unit can maintain a tight fluid seal at operating pressures in the range of 5000 to 30000 pounds per square inch at which O-rings fail to perform adequately. Because the elements of the sealing unit are preferably a hardened metal, the sealing unit of the present invention can endure repeated frictional contact with ends of tubes with minimum wear. Moreover, the sealing unit can be efficiently and inexpensively operated and maintained on a hydroforming station.




The present invention works with a hydroforming station. The hydroforming station is an apparatus that forms complex tubular shapes from a blank tube. Generally, a hydroforming station includes a lower die, an upper die mounted on a ram press, and a pair of sealing units. To form the complex shaped tube, an operator places a blank tube onto a lower die cavity in the lower die of the hydroforming station. The upper die is lowered to a set point above the lower die. The upper die has an upper die cavity aligned with the lower die cavity. At the set point, the upper die cavity does not contact the blank tube. With the upper die at the set point, the sealing units of the present invention move from a retracted position to a sealed position. In the retracted position, the sealing units are positioned away from the ends of the tube. In the sealed position, the sealing units sealably engage the ends of the tube providing a tight fluid seal.




Once the sealing units of the present invention are in the sealed position, a forming fluid fills the tube. To prevent the tube from collapsing when the upper die and lower die mate, the pressure of the forming fluid in the tube is increased to a low pressure range. Increasing the pressure of the forming fluid to the low pressure range provides a liquid mandrel to prevent the tube from collapsing. The low pressure range is dependent upon the material of the blank tube. The low pressure range is a range of pressure greater than the pressure which would prevent the tube from collapsing upon itself when the dies mate and less than the yield point pressure which would expand the tube. In normal operation, the low pressure range is between 500 to 1200 pounds per square inch. The sealing units of the present invention maintain a tight fluid seals on the ends of the tube when the pressure in the tube is in the low pressure range.




Once the fluid pressure within the tube is at the low pressure range, the upper die lowers to mate with the lower die. When the upper and lower dies mate, the upper and lower die cavities join to form the forming cavity. The forming cavity represents the desired cross-sectional shape of the formed tube. After the lower and upper dies mate, the pressure in the tube increases to a high pressure range. The high pressure range is a pressure sufficiently high to expand the tube to fill the recesses of the forming cavity which is dependent on the material of the blank tube. The high pressure range is a range of pressure greater than the yield point pressure which would expand the tube into the recesses of the forming cavity and less than the yield point pressure of the dies and sealing units. In normal operation, the high pressure range is between 3000 to 10000 pounds per square inch. The sealing units of the present invention maintain tight fluid seals on the ends of the tube for high pressure in the range between 3000 to 30000 pounds per square inch.




By increasing the pressure of the forming fluid to the high pressure range, the tube expands into the recesses of the forming cavity. After the tube has been expanded, the pressure on the forming fluid is removed, and the forming fluid is drained from the formed tube. The sealing units of the present invention retract to the retracted position, and the upper die is raised to allow the formed tube to be removed from the hydroforming press.




The above described steps for hydroforming may be modified. The sealing unit of the present invention also works on any hydroforming station following any modification in the hydroforming method. An alternative method contemplated would be to immediately lower the upper die to mate with the lower die. In this method, the tube would collapse between the upper and lower die cavities. The sealing units of the present invention would then seal the ends of the tube, and forming fluid would be delivered to the tube. To expand the tube to the recesses of the forming cavity and to remove the wrinkles from the collapsed tube, the forming fluid pressure would have to be increased to a pressure greater than the pressure required to form the tube without the collapse.




The present invention is directed to the sealing units for any hydroforming station which requires sealing the ends of a tube. The sealing units move between the retracted position and the sealed position. A sealing unit moving means provides the needed translation between the retracted position and the sealed position. The sealing unit moving means may be a hydraulic cylinder assembly with a piston arm connected to the sealing unit. Other moving means includes a screw and motor combination or other equivalents.




The sealing unit of the present invention comprises a tapered element, a sealing ring and a base. The tapered element has a longitudinal axis aligned with the longitudinal axis of the tube positioned in the lower die cavity. The tapered element is adapted for insertion into the bore of the tube. The tapered element has a insertion end with an insertion diameter and a housing end with a sealing diameter. The insertion diameter is smaller than the inner diameter of the tube to facilitate easy insertion of the tapered element into the bore of the tube. The sealing diameter of the tapered element is larger than the inner diameter of the tube to provide tight seal between the tapered element and the inner wall of the tube. and to force the wall of the tube outward. The tapered element may have any shape which provides a taper from the insertion diameter to the sealing diameter. Examples of suitable shapes include a paraboloid, a frustum of a paraboloid, a right circular cone, and a frustum of a right circular cone.




The sealing unit of the present invention further includes the sealing ring. The sealing ring is co-axial with the longitudinal axis of the tapered element to provide an annular channel between the tapered element and the sealing ring. The annular channel has an open end and a closed end. The open end of the annular channel is adapted to receive the end of the tube.




The sealing ring may have a uniform inner diameter equal to or slightly larger than the outer diameter of the tube. Providing the sealing ring with an inner diameter at the open end of the annular channel slightly larger than the outer diameter of the tube allows the end of the tube to easily slide into the open end of the annular channel. The inner diameter of the sealing ring may be approximately five thousandths of an inch larger than the outer diameter of the tube. The inner diameter of the sealing ring may taper to match the taper of the tapered element to maintain a uniform annular channel, or the inner diameter of the sealing ring could taper in a direction opposite to the taper of the tapered element to provide an annular channel with a decreasing width from the open end to the closed end.




The base of the sealing unit contacts the sealing ring and the tapered element to hold the sealing ring in place and to terminate the annular channel at its closed end. The base is co-axial with the longitudinal axis of the tapered element. The base may be composed of one unitary part or several parts. Additionally, the base and the sealing ring could be joined to be a single component; however, having a separate base and sealing ring allows a worn sealing ring to be replaced or interchanged while continuing to use the base elements.




When the sealing unit is moved from the retracted position to the sealed position, the tapered element enters the bore of the tube, and the end of the tube enters the open end of the annular channel. The sealing unit moves toward the end walls of the upper and lower die until the base abuts those walls. When the base abuts the end walls of the lower and upper die, the base and sealing ring can move no further; however, the tapered element is capable of sliding further into the bore of the tube relative the sealing ring and base. The tapered element slides further into the bore of the tube until the tapered element sealably engages the inner wall of the tube. The present invention provides for the tapered element sliding future into the tube with the sealing ring stationary. The sealing ring could be held stationary by another manner than the base abutting the end walls of the lower and upper dies. Additionally, the tapered element and sealing ring could provide the their tight fluid seals without requiring the tapered element to slide further into the tube with the sealing ring remaining stationary.




When the tapered element sealably engages the inner wall of the tube, the tapered element forces the wall of the tube outward against the sealing ring. Because sealing diameter of the tapered element is larger than the inner diameter of the tube, not only does the tapered element provide for a tight seal between the tapered element and the inner wall of the tube, but the tapered element also forces the wall of the tube outward closing any gap between the sealing ring and the outer wall of the tube providing a tight seal between the sealing ring and the outer wall of the tube.




The tapered element and sealing ring are preferably composed of a hardened steel such as D2 steel which is a hardened tool steel. Because the sealing ring and tapered element repeatedly endure frictional contact with blank tubes, the tapered element and sealing ring are preferably composed of material harder than the material of the tubes to reduce wear on the tapered element and sealing ring. Any material stronger than the material of the blank tubes would reduce the wearing effects of repeated sealing by the sealing units. The base is preferably composed of a cheaper, boilerplate steel because of its limited frictional contact with the blank tubes. Portions of the base that repeatedly contact the end walls of the upper and lower dies are preferably made of a hardened steel such as D2 steel.




Because the sealing units are part of a hydroforming station, the sealing units must not only tightly seal the ends of the tube, but also must provide a means of introducing forming fluid into the tube. The tapered element has a central fluid passage along its longitudinal axis to provide a passage for forming fluid into the tube. The central fluid passage is connected to a fluid supply chamber which controls the passing and pressurizing of the forming fluid into the tube.




The sealing unit of the present invention may further comprise a housing and at least one stop element. The housing provides a foundation for the sealing unit. The sealing unit moving means connects to the housing to move the housing and the other elements of the sealing unit. The housing may be a cube, cylinder or any shape. The housing end of the tapered element is connected to the housing. The base of the sealing unit has a front end and a back end. The housing is separated from the back end of the base by the stop elements which biases the base away from the housing. The stop elements may be any compressible material such as a rubber spring manufactured by the Lamina Company or an air piston such as a nitrogen piston. The stop elements may be any shape such as disks or cubes and may be arranged in any manner between the housing and the back of the base such that they bias the base away from the housing.




When the end of the tube is positioned within the annular channel and the base and sealing ring are stationary, the housing is capable of sliding toward the base compressing the stop elements, at the same time the tapered element further enters the bore of the tube until sealably engages the inner wall of the tube.




When the sealing unit is in the sealed position, the tube may be filled with the highly pressurized forming fluid. The sealing unit moving means holds the sealing unit in place against the force of the pressure, so the tapered element may not retreat from its sealed engagement with the inner wall of the tube.




Once the tube has been formed, the forming fluid is drained from the tube and the sealing units may be moved to the retracted position. The sealing unit moving means pulls the tapered element from its sealable engagement with the inner wall of the tube. To aid in removing the sealing unit, the base is connected to the housing by a spool retainer. The spool retainer has a housing end and a base end. The housing end of the spool retainer is connected to the housing, and the base end of the spool retainer is moveable within a spool retainer chamber in the base. The spool retainer limits the amount the tapered element may move relative to the base and the sealing ring. When the sealing unit moving means retracts the housing, the spool retainer moves within the spool retainer chamber until its base end abuts the wall of the chamber. When the spool retainer abuts the wall of the spool retainer chamber, the sealing unit moving means pulls the sealing ring from its sealable engagement with the outer wall of the tube. The base may be connected to the housing and in turn to the sealing unit moving means in any fashion to allow the sealing ring to be removed from engagement with the outer wall of the tube.




DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS




Turning now to the drawings,

FIG. 1

illustrates an apparatus


10


for forming complex shaped frame members known as a hydroforming station or hydroforming press. The station


10


has a pair of sealing units


22


, a lower die


12


mounted on a lower die bed


16


, and an upper die


14


mounted to a ram press


18


. The hydroforming station


10


has an open position and a forming position. In the open position, the sealing units


22


are in a retracted position away from the ends of the blank tube


20


. In the open position, an open space separates the upper die


14


from the lower die


12


allowing a blank tube


20


to be placed into a cavity in the lower die


12


. To move to the forming position illustrated in

FIG. 1

, the ram press


18


lowers the upper die


14


lower to a set point above the lower die


12


. At this point, the blank tube


20


is secured between the cavity of the lower die


12


and a cavity of the upper die


14


. The pair of sealing units


22


engage the ends of the tube


20


providing a tight fluid seal at the ends of the tube


20


. To prevent the tube


20


from collapsing between the upper and lower dies


14


and


12


, a forming fluid is delivered into the tube


20


through the sealing units


22


. After the forming fluid has filled the tube


20


and the fluid pressure has been increased to a level to prevent collapse of the tube


20


, the ram press


18


further lowers the upper die


14


to mate with the lower die


12


placing the hydroforming station in the forming position.




The joined cavity of the lower and upper die


12


and


14


represents the desired shape of the formed tube. To form the blank tube


20


into the formed tube, the forming fluid in the tube


20


is highly pressurized to a pressure above the yield point of the tube to expand the blank tube


20


into the regions of the die cavity. After the formed tube has been created, the sealing units


22


drain the forming fluid from the formed tube and retract to release the formed tube. The ram press


18


moves away from the lower die


12


allowing the formed tube to be removed from the hydroforming station


10


and for the process to be repeated. The ends of the formed tube are cropped to form the finished frame.





FIG. 2



a


through


2




d


illustrate the currently preferred embodiment for the sealing unit


22


of the hydroforming station


10


.

FIG. 2



a


illustrates the sealing unit


22


in the retracted position;

FIG. 2



c


illustrates the sealing unit


22


in transition to a sealed position; and

FIG. 2



d


illustrates the sealing unit in the sealed position. A hydraulic cylinder assembly


24


with its outwardly extending piston rod


26


moves the sealing unit


22


between the retracted position and the sealed position. For the hydraulic cylinder assembly


24


to control the position of the sealing unit


22


, a connecting plate


28


connects the piston rod


26


to the sealing unit


22


. An appropriate hydraulic pressure source (not shown) drives the hydraulic cylinder assembly


24


to control the motion of the piston rod


26


.





FIG. 2



a


illustrates the sealing unit


22


in the retracted position. The housing


30


is the foundation for the sealing unit


22


. Connected to the housing


30


is a tapered element


32


. The tapered element


32


of

FIG. 2



a


is a paraboloid with its top removed. The tapered element


32


has an insertion end


34


and a housing end


36


. In the preferred embodiment, the housing end


36


of the tapered element


32


screws into the housing


30


. Any removable connecting means known in the art could be used to connect the tapered element


32


to the housing


30


. The tapered element


32


tapers from a insertion diameter at the insertion end


34


to a sealing diameter at the housing end


36


. The sealing diameter may be any diameter larger than the inner diameter of the tube


20


in order to provide a sealing engagement with the inner wall of the tube


20


. To guide end of the tube


20


over the tapered element


32


, the insertion diameter has a smaller diameter than the inner diameter of the tube


20


.




Co-axial to the longitudinal axis of the tapered element


32


is a sealing ring


38


. (The longitudinal axis is in the direction represented by the arrows in

FIG. 2



a


). In the preferred embodiment, the sealing ring


38


has an uniform inner diameter equal to or slightly larger than the outer diameter of the tube


20


. The tolerance of the inner diameter of the sealing ring


38


can be approximately five thousandths of an inch larger than the outer diameter of the tube


20


. The sealing ring


38


defines an annular channel


40


with an open end and a closed end.




The sealing unit


22


in

FIG. 2



a


further includes a base. The base is co-axial to the longitudinal axis of the tapered element


32


and holds the sealing ring


38


in place. As illustrated in

FIG. 2



a


, the sealing base comprises three elements: a pad element


42


, a locating element


44


and a backing plate


46


. In the preferred embodiment, the sealing base elements abutted together without being fixed to each other. The pad element


42


encircles the sealing ring


38


and has a flange


43


to hold the sealing ring


38


in place. The locating element


44


abuts the sealing ring


38


further holding the sealing ring


38


in place. The back plate


46


abuts the pad element


42


and locating element


44


holding them in place. A spool retainer


52


connects the base to the housing


30


. The spool retainer


52


has a pad end


54


and a housing end


56


. In the preferred embodiment, the housing end


56


of the spool retainer


52


screws into the housing


30


. For the preferred embodiment, any removable connecting means known in the art could be used to connect the spool retainer


52


to the housing


30


. The pad end


54


of the spool retainer


52


is moveable within a spool retainer chamber


58


within the pad element


42


.




Separating the backing plate


46


from the housing


30


is a stop element


48


. In the preferred embodiment, the stop element is a rubber spring


48


sold by the Lamina Company.

FIG. 2



b


illustrates the arrangement for the rubber springs


48


. In the preferred embodiment, four disk shaped rubber springs


48


are equally spaced along the housing


30


. The rubber springs


48


bias the backing plate


46


, pad element


42


, locking element


44


, and sealing ring


38


away from the housing


30


creating a compression gap


50


between the housing


30


and the backing plate


46


.

FIG. 2



b


also illustrates the arrangement of four spool retainers


52


.





FIG. 2



c


illustrates the sealing unit


22


in transition from the retracted position to the sealed position. To move the sealing unit


22


from the retracted position to the sealed position, the hydraulic cylinder assembly


24


extends the piston arm


26


moving the sealing unit


22


toward the end of the tube


20


contained between the lower and upper dies


12


and


14


. The hydraulic cylinder assembly


24


pushes the insertion end


34


of the tapered element


32


into the bore


60


. The small insertion diameter of the insertion end


34


guides the tube


20


over the tapered element


32


. With the diameter of the tapered element


32


increasing from the insertion diameter to the sealing diameter, the tapered element


32


guides the end of the tube


20


into the open end of the annular channel


40


.




As illustrated in

FIG. 2



c


, the end of the tube


20


moves further into the annular channel


40


until end of the tube reaches the closed end of the annular channel


40


. When the end of the tube


20


reaches the closed end of the annular channel


40


, the pad element


42


abuts the ends of the lower and upper dies


12


and


14


and the end of the tube


20


abuts the locating element


44


. Because the pad element


42


abuts the ends of the upper and lower dies


14


and


12


, the pad element


42


, the locating element


44


, sealing ring


38


and backing plate


46


can not advance any further relative to the end of the tube


20


.





FIG. 2



c


illustrates the locating element


44


abutting the end of the tube


20


at the same time the pad element


42


abuts the ends of the lower and upper dies


12


and


14


. If the pad element


42


abuts the ends of the lower and upper dies


12


and


14


prior to the end of the tube


20


abutting the locating element


44


, the pad element


42


, the locating element


44


sealing ring


38


and backing plate


46


can not advance any further relative to the end of the tube


20


. If the locating element


44


abuts the end of the tube


20


prior to the pad element


42


abutting the ends of the lower and upper dies


12


and


14


, the locating element


44


will push on the end of the tube


20


to centrally locate the tube within the die cavity until the pad element


42


contacts the ends of the lower and upper dies


12


and


14


.




With the sealing ring


38


and sealing base elements


42


,


44


and


46


stationary, the cylinder assembly


24


continues moving the housing


30


toward the end of the tube


20


. Because the tapered element


32


is connected to the housing


30


, the tapered element


32


moves further into the bore


60


, and the tapered element


32


moves relative to the stationary sealing ring


38


and sealing base elements


42


,


44


and


46


. Additionally, the pad end


54


of spool retainer


52


moves toward the dies


12


and


14


within the spool retainer chamber


58


. Because the housing


30


continues to move relative to the sealing ring


38


and sealing base elements


42


,


44


and


46


, the rubber spring


48


compresses and the compression gap


50


closes as illustrated in

FIG. 2



d.






As depicted in

FIG. 2



d


, the cylinder assembly


24


pushes the tapered element


32


into the bore


60


until it reaches the sealing diameter


39


. At the sealing diameter


39


, the diameter of the tapered element


32


is slightly larger than inner diameter of the tube


20


causing the tapered element


32


to push against the wall of the tube


20


creating a tight seal between the tapered element


32


and the inner wall of the tube


20


. Because the tapered element


32


pushes against the wall of the tube


20


, the wall of the tube


20


in turn pushes against the sealing ring


38


creating another tight seal between the sealing ring


38


and the outer wall of the tube


20


. Once the tight seals are formed, the cylinder assembly


24


holds the sealing unit


22


in the sealed position.




When sealing unit


22


is in the sealed position, the sealing unit


22


provides several sealing surfaces. The main sealing surface


41


is between the tapered element


32


and the inner wall of the tube


20


. Because the tapered element


32


is inserted into the bore


60


up to its sealing diameter, the tapered element


32


pushes against the inner wall of the tube


20


sealably engaging the inner wall of the tube


20


. The cylinder assembly


24


provides a force to maintain the tapered element in the sealed position within the bore


60


of the tube


20


.




Another sealing surface exists between the sealing ring


38


and the outer wall of the tube


20


. Because the inner diameter of the sealing ring


38


is equal or less than five thousandths of an inch larger than the outer diameter of the tube


20


, a seal readily forms between these elements


20


and


38


. When the tapered element


32


is inserted up to its sealing diameter, the tapered element


32


pushes the wall of the tube


20


against the sealing ring


38


resulting in slight flaring at the end of the tube


20


. The tube


20


flaring outward against the sealing ring


38


closes any gap between the outer wall of the tube


20


and the sealing ring


38


providing a tight fluid seal.




With the sealing units


22


in the sealed position, the tube


20


may be filled with the forming fluid. In the preferred embodiment, the forming fluid is 95% water and 5% water additives including a cleaning agent, a lubricant and a rust inhibitor. The housing


30


and tapered element


32


have a central fluid passage


62


extending therethrough to a fluid inlet


64


. A fluid control means (not shown) controls the flow of the forming fluid from a fluid supply chamber (not shown) through the central fluid passage


62


, out the fluid inlet


64


and into the tube


20


. The tight seal provided by the pair of sealing units


22


prevents the forming fluid from escaping the tube


20


. Pressurizing the forming fluid exerts an internal pressure on the tube


20


causing the tube wall to expand and to fill the recesses of the cavity between the lower and upper dies


12


and


14


. Because the cylinder assembly


24


maintains the position of the housing


30


and tapered element


32


with a force greater than that of the internal pressure in the tube


20


, the sealing units


22


maintain the tight fluid seal.




Once the formed tube is created, the fluid control means depressurizes the forming fluid and returns the forming fluid to the fluid supply chamber. The fluid inlet


64


may be provided with a filter (not shown) to prevent any foreign material from corrupting the forming fluid supply. After the formed tube has been drained, the sealing units


22


release their sealing engagement, and the hydraulic cylinder assemblies


24


retract the sealing units away from the ends of the tube


20


. The lower and upper dies


12


and


14


then separate to release the formed tube.




When the sealing unit


22


retracts from the sealed position, the cylinder assembly


24


pulls the housing


30


away from the end of the tube


20


. Because the tapered element


32


is connected to the housing


30


, the cylinder assembly


24


pulls the tapered element


32


from the bore


60


releasing the sealing engagement between the tapered element


32


and inner wall of the tube


20


. Because housing


30


and tapered element


32


are capable of movement relative to the sealing ring


38


and base elements


42


,


44


and


46


, the sealing ring


38


and base elements


42


,


44


and


46


remain stationary until the housing


30


retracts the spool retainer


52


into abutment with the pad element


42


. When the flange on the pad end


54


of the spool retainer


52


abuts the pad element


42


, the sealing ring


38


and sealing elements


42


,


44


and


46


are pulled away from the end of the tube


20


releasing the sealing engagement between the sealing ring


38


and outer wall of the tube


20


. The cylinder assembly


24


further retracts the piston rod


26


placing the sealing unit


22


in the retracted position.




In the preferred embodiment, the tapered element


32


, sealing ring


38


and pad element


42


are composed of a hardened steel such as D2 steel which maintains its shape with minimal wear over repeated use. Repeated use of the sealing unit


22


subjects the tapered element


32


, sealing ring


38


and pad element


42


to wear because of their frictional contact with tubes


20


. Because the tapered element


32


, sealing ring


38


and pad element


42


are composed of a metal stronger than the metal composing the tube


20


, these elements


32


,


38


and


42


have a long life before requiring replacement. Additionally, burrs on unfinished tubes will not damage the strong metal of the tapered element


32


, sealing


38


and pad element


42


in contrast to the damage burrs cause to conventional O-rings.




In the preferred embodiment, the remaining elements of the sealing unit


22


which are not subject to frictional contact with the tube


20


are composed of standard, cheaper boiler plate steel. The preferred embodiment as illustrated in

FIG. 2



a


also includes wear strips


66


between the housing


30


and the pad element


42


which move over each other. the wear strip


66


enables the housing


30


to easily slide on the pad element


42


. In the preferred embodiment, the wear strip


66


is composed of an aluminum bronze with graphite plugs to reduce the friction between the housing


30


and pad element


42


. A wear strip


66


is also positioned between the housing


30


and the sealing unit platform


68


to allow easily sealing unit


22


motion over the platform


68


reducing wear on the housing


30


.




The preferred embodiment of

FIGS. 2



a


through


2




d


provides for easy replacement of worn elements of the sealing unit


22


. Because the housing


30


is attached to the tapered element


32


and spool retainer


52


by releasably threaded connections, the housing


30


may be disconnected and removed from the tapered element


32


and spool retainer


52


. By removing the housing


30


, the remaining elements of the sealing unit


22


may be removed and replaced. Any of the elements of the sealing unit


22


could be permanently connected to each other, but permanent connections between the elements of the sealing unit


22


inhibit repair and replacement of worn elements.





FIG. 3



a


illustrates another embodiment of the sealing unit


22


. This embodiment is similar to the above disclosed embodiment of

FIG. 2



a


through


2




d


. The embodiment illustrated in

FIG. 3



a


incorporates a tapered sealing ring


70


replacing the sealing ring


38


with the uniform diameter. In the embodiment of

FIG. 3



a


, the housing


30


, tapered element


32


, sealing base elements


42


,


44


,


46


, rubber springs


48


and spool retainers


52


all perform as described above. When moving the sealing unit


22


to the sealed position, the cylinder assembly


24


pushes the tapered element


32


into the bore


60


until it reaches the sealing diameter. At the sealing diameter, the diameter of the tapered element


32


is slightly larger than inner diameter of the tube


20


causing the tapered element


32


to push against the wall of the tube


20


creating a tight seal between the tapered element


32


and the inner wall of the tube


20


. Because the tapered element


32


pushes against the wall of the tube


20


, the wall of the tube


20


in turn pushes against the sealing ring


70


creating another tight seal between the sealing ring


70


and the outer wall of the tube


20


.




Because the sealing ring


70


is tapered, the tapered element


32


may be further inserted into the bore


60


allowing the tapered element


32


to further push the walls of the tube


20


against the sealing ring


70


creating a significant flare at the end of the tube


20


. The flared end of the tube


20


creates a tight seal between the tapered element


32


and inner wall of the tube


20


and between the sealing ring


70


and the outer wall of the tube


20


. Because the tapered sealing ring


70


creates a flared tube, the tapered sealing ring


38


provides a stronger seal than the sealing ring with a uniform diameter of

FIG. 2



a


through

FIG. 2



d


. The taper of the sealing ring


70


ideally matches the taper of the tapered element


32


to create a tight seal along the entire sealing ring


70


as shown in

FIG. 3



b


. The taper of the sealing ring


70


may be linear or arced. One example of the tapered sealing ring


70


provides for hydroforming a 2.5 inch diameter blank tube with a 2 mil thickness. The sealing ring


70


would taper linearly at approximately a fifteen degree angle to provide a one inch flare at the end of the tube


20


. The tapered sealing ring


70


would be used instead of the uniform sealing ring


38


in hydroforming applications that do not require axial feeding of additional material into the dies for large expansions of the tube


20


.





FIG. 4



a


illustrates another embodiment for the sealing unit


22


. In this embodiment the stop element is an air cylinder


72


instead of the rubber stops


48


of

FIGS. 2



a


through


2




d


.

FIG. 4



a


illustrates the sealing unit


22


in the retracted position. Separating the backing plate


46


from the housing


30


is an air cylinder


72


. The air cylinder


72


may be a nitrogen cylinder or any other known in the art.

FIG. 4



b


illustrates the arrangement for the nitrogen cylinders


72


. In this embodiment, four nitrogen cylinders


72


are equally spaced along the housing


30


. The nitrogen cylinders


72


bias the backing plate


46


, pad element


42


, locking element


44


, and sealing ring


38


away from the housing


30


creating a compression gap


50


between the housing


30


and the backing plate


46


.





FIG. 4



c


illustrates the sealing unit


22


with nitrogen cylinders


72


in the sealed position. The sealing unit


22


with nitrogen cylinders


72


replacing the rubber springs


48


performs similarly as the embodiment disclosed above in conjunction with

FIGS. 2



c


and


2




d


. In the embodiment implementing nitrogen cylinders


72


, when the sealing ring


38


, pad element


42


, locating element


44


and backing plate


46


are stationary and the housing


30


continues to move relative to the sealing ring


38


and sealing base elements


42


,


44


and


46


, the nitrogen cylinders


72


compress and the compression gap


50


closes. In comparison to the rubber spring


48


, the nitrogen cylinder


72


compresses less readily. The nitrogen cylinders


72


would be implemented when a greater force is needed to seal the tube with the sealing unit such as for blank tubes


20


with larger wall thickness. Additionally, the nitrogen cylinders


72


do not wear as quickly as rubber springs


48


, so nitrogen cylinders are suitable for higher production volume hydroforming.




While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations will be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.



Claims
  • 1. A sealing unit for sealing an end of a tube, said tube having an outer wall and a bore defined by an inner wall, said sealing unit comprising:a tapered element adapted for insertion into said bore, said tapered element having a longitudinal axis; a metallic sealing ring having a cylindrical inside wall configured to fit closely around the outer wall of the end of said tube, said inside wall being co-axial with said longitudinal axis of said tapered element to provide an annular channel between said tapered element and said inside wall of said sealing ring, said annular channel having an open end and a closed end, said annular channel capable of receiving said end of said tube through said open end of said annular channel; and a base for holding said sealing ring in place, said base defining said closed end of said annular channel, said tapered element for wedging against said inner wall of said tube to provide a seal between said tapered element and said tube, said inside wall of said sealing ring having a uniform inner radius so as to prevent outward distortion of the outer wall of the end of said tube.
  • 2. The sealing unit of claim 1 wherein when said end of said tube being positioned within said annular channel and said base stationary relative said tube, said tapered element being capable of sliding further into said bore until said tapered element sealably engages said inner wall of said tube.
  • 3. The sealing unit of claim 2 wherein when said tapered element being in sealable engagement with said inner wall of said tube, said tapered element forces said inner wall of said tube outward to also provide a sealable engagement between said sealing ring and said outer wall of said tube.
  • 4. The sealing unit of claim 1 wherein said tapered element has an insertion end having an insertion diameter and a housing end having a sealing diameter, said insertion diameter being smaller than an inner diameter of said tube and said sealing diameter being larger than said inner diameter of said tube, the diameter of said tapered element gradually increasing from said insertion and to said housing end.
  • 5. The sealing unit of claim 1 wherein said tapered element is a paraboloid.
  • 6. The sealing unit of claim 1 wherein said tapered element is a frustum of a right circular cone.
  • 7. The sealing unit of claim 1 wherein said tapered element has a passage therethrough extending in said insertion end for supplying hydroforming liquid into said tube.
  • 8. The sealing unit of claim 1 wherein said sealing ring is held in place by said base.
  • 9. The sealing unit of claim 1 wherein said tapered element is composed of a hardened steel.
  • 10. The sealing unit of claim 1 wherein said tapered element is composed of D2 steel.
  • 11. The sealing unit of claim 1 wherein said sealing ring is composed of a hardened steel.
  • 12. The sealing unit of claim 1 wherein said sealing ring is composed of D2 steel.
  • 13. The sealing unit of claim 1 wherin when said sealing engagement with said end of tube, said sealing unit withstands a range of tube pressures, in the range from 500 to 10,000 pounds per square inch.
  • 14. The sealing unit of claim 1, further comprising:a housing, said tapered element having an insertion end and a housing end, said housing end of said tapered element connected to said housing, said base having a front end and a back end; and at least one stop element abutting said back end of said base and abutting said housing to separate said housing from said back end of said base, when said end of said tube being positioned within said annular channel and said base stationary relative said tube, said housing being capable of sliding toward said stationary base compressing said stop element and said tapered element being capable of sliding further into said bore until said tapered element sealably engaging said inner wall of said tube.
  • 15. The sealing unit of claim 14 wherein when said tapered element being in sealable engagement with said inner wall of said tube, said tapered element forces said inner wall of said tube outward providing sealable engagement between said sealing ring and said outer wall of said tube.
  • 16. The sealing unit of claim 14 wherein said stop element is a rubber spring.
  • 17. The sealing unit of claim 14 wherein said stop element is an air piston.
  • 18. The sealing unit of claim 14 further including a spool retainer, said spool retainer having a base end moveable within a spool retainer chamber in said base, said spool retainer having a housing end connected to said housing, said base end of said spool retainer moving within said spool retainer chamber when said housing sliding relative to said base, said base end having a stop flange, said stop flange abutting base to limit the sliding of said housing relative to said base.
  • 19. The sealing unit of claim 14 further comprising a moving means connected to said housing, said sealing unit moving means capable of moving said sealing unit between a retracted position and a sealed position, in said retracted position said sealing unit positioned away from said end of said tube, in said sealed position said sealing unit sealably engaging said end of said tube.
  • 20. The sealing unit of claim 19 wherein said moving means comprises a hydraulic cylinder assembly having a piston rod connected to said housing.
  • 21. In an apparatus for forming a complex-shaped frame member from a blank tube positioned in a cavity between a pair of dies, said tube having an outer wall and having a bore therethrough defined by an inner wall and having a first end and a second end, a pair of sealing units for sealing engagement with said opposed ends of said tube and for communicating fluid into said tube, comprising:a tapered element adapted for insertion into said bore and having a longitudinal axis; a metallic sealing co-axial with said longitudinal axis of said tapered element to provide an annular channel between said tapered element and said sealing ring, said annular channel having an open end and a closed end, said annular channel capable of receiving said first end of said tube through said open end of said annular channel; and a base co-axial with said longitudinal axis of said tapered element, said base contacting said sealing ring to hold said sealing ring in place, said base contacting said tapered element to terminate said annular channel at said closed end, when said sealing unit is in sealing engagement with said end of said tube, said tapered element sealably wedged against said inner wall of said tube and said sealing ring sealably engaging said outer wall of said tube and preventing the end of said tube from being distorted out.
  • 22. The apparatus of claim 21 wherein when said first end of said tube being positioned within said annular channel and said base stationary relative said tube, said tapered element being capable of sliding further into said bore until said tapered element sealably engaging said inner wall of said tube.
  • 23. The apparatus of claim 22 wherein when said tapered element being in sealing engagement with said inner wall of said tube, said tapered element forces said inner wall of said tube outward providing a further sealing engagement between said sealing ring and said outer wall of said tube.
  • 24. The apparatus of claim 21 wherein said tapered element has an insertion end having an insertion diameter and a housing end having a sealing diameter, said insertion diameter being smaller than an inner diameter of said tube and said sealing diameter being larger than said inner diameter of said tube.
  • 25. The apparatus of claim 21 wherein said tapered element is a paraboloid.
  • 26. The apparatus of claim 21 wherein said tapered element is a frustum of a right circular cone.
  • 27. The apparatus of claim 21 wherein said sealing ring is a cylindrical ring having a uniform inner radius.
  • 28. The apparatus of claim 21 wherein said sealing ring is a cylindrical ring with a tapered inner radius.
  • 29. The apparatus of claim 21 wherein said tapered element is composed of a hardened steel.
  • 30. The apparatus of claim 21 wherein said tapered element is composed of D2 steel.
  • 31. The apparatus of claim 21 wherein said sealing ring is composed of a hardened steel.
  • 32. The apparatus of claim 21 wherein said sealing ring is composed of D2 steel.
  • 33. The sealing unit of claim 21 wherein when said sealing unit is in sealing engagement with said first end of said tube, said sealing unit withstands a range of tube pressures, said range of tube pressures is 500 to 10,000 pounds per square inch.
  • 34. The apparatus of claim 21, further comprising:a housing, said tapered element having an insertion end and a housing end, said housing end of said tapered element connected to said housing, said base having a front end and a back end; and at least one stop element abutting said back end of said base and abutting said housing to separate said housing from said back end of said base, when said first end of said tube being positioned within said annular channel and said base stationary relative said tube, said housing being capable of sliding toward said stationary base compressing said stop element and said tapered element being capable of sliding further into said bore until said tapered element sealably engaging said inner wall of said tube.
  • 35. The apparatus of claim 34 wherein when said tapered element being in sealable engagement with said inner wall of said tube, said tapered element forces said inner wall of said tube outward providing sealable engagement between said sealing ring and said outer wall of said tube.
  • 36. The apparatus of claim 34 wherein said stop element is a rubber spring.
  • 37. The apparatus of claim 34 wherein said stop element is an air piston.
  • 38. The apparatus of claim 34 further including a spool retainer, said spool retainer having a base end moveable within a spool retainer chamber in said base, said spool retainer having a housing end connected to said housing, said base end of said spool retainer moving within said spool retainer chamber when said housing sliding relative to said base, said base end having a stop flange, said stop flange abutting base to limit the sliding of said housing relative to said base.
  • 39. The apparatus of claim 34 further comprising moving means connected to said housing, said moving means capable of moving said sealing unit between a retracted position and a sealed position, in said retracted position said sealing unit positioned away from said first end of said tube, in said sealed position said sealing unit sealably engaging said first end of said tube.
  • 40. The apparatus of claim 39 wherein said moving means is a hydraulic cylinder assembly having a piston rod connected to said housing.
  • 41. The apparatus of claim 21 wherein said sealing unit further including a fluid communication means for introducing a forming fluid through said sealing unit into said tube.
  • 42. The apparatus of claim 41 wherein said fluid communication means includes a fluid passage extending through said tapered element.
  • 43. A method for sealing the end of a tube having an outer wall and a bore therethrouph defined by an inner wall and held between dies of a hydroforming press said method comprising the steps of:(a) moving a housing containing an annular element and a tapered element having an insertion end and a housing end, said housing end attached to said housings, said tapered element extending into said annular element and toward said dies to force the insertion end of said tapered element into said bore of said tube; (b) stopping the movement of the annular element while the housing continues to move the tapered element further into the bore to create a seal between said tapered element and the inner wall of said tube; (c) stopping the movement of the movement of the housing.
  • 44. The method of claim 43 further comprising a step of cushioning the movement of said tapered element after the movement of the annular element is stopped.
  • 45. The method of claim 44 further comprising a step of moving said housing away from said dies.
  • 46. Apparatus for sealing an end of a tube having a bore therethrough defined by an inner wall and having an outer wall, said tube being held between two dies, said apparatus comprising:a housing having a front side and a back side and a recess in said front side; an annular element fitting within said recess; a metallic sealing ring coaxial with said annular element, said sealing ring fitting inside of said annular element; a tapered element coaxial with said sealing ring, said tapered element having an insertion end and a housing end, the housing end being attached to said housing, the insertion end fitting inside said annular element and extending past the sealing element so as to define with the sealing ring an annular channel for receiving the tube; means for moving said housing toward the dies to place said annular element in contact with said dies and to move said tapered element with respect to the annular element to establish a seal between the inner wall of said tube and said tapered element; and, at least one stop element interposed between said housing and the annular element to cushion movement of said tapered element after the annular element reaches said dies.
  • 47. The apparatus of claim 46 further comprising a spool retainer attached to said housing and extending into said annular element for pulling said annular element away from said dies.
  • 48. The apparatus of claim 46 wherein the stop element is a rubber.
  • 49. The apparatus of claim 46 wherein the stop element is an air piston.
  • 50. The apparatus of claim 46 wherein the seal withstands tube pressures in the range from 500 to 10,000 pounds per square inch.
  • 51. The apparatus of claim 46 wherein the sealing ring is made of tempered steel.
  • 52. The apparatus of claim 46 wherein the sealing ring is made of D2 steel.
US Referenced Citations (90)
Number Name Date Kind
169392 Wicks Nov 1875 A
453410 Langerfeld Jun 1891 A
567518 Simmons Sep 1896 A
588804 Parish Aug 1897 A
618353 Huber Jan 1899 A
693172 Sneddon Feb 1902 A
731124 Park Jun 1903 A
1210629 Foster Jan 1917 A
1389348 Gulick Aug 1921 A
1448457 Liddell Mar 1923 A
1542983 Bergmann, Jr. Jun 1925 A
1683123 Bergmann, Jr. Sep 1928 A
1879009 Anthony Sep 1932 A
1884589 Davies Oct 1932 A
1924234 Faudi Aug 1933 A
2203868 Gray et al. Jun 1940 A
2342858 Hansen Feb 1944 A
2652121 Kearns, Jr. et al. Sep 1953 A
2707820 Reynolds May 1955 A
2713314 Leuthesser, Jr. et al. Jul 1955 A
2734473 Reynolds Feb 1956 A
2748455 Draper et al. Jun 1956 A
2777500 Ekholm et al. Jan 1957 A
2841865 Jackson Jul 1958 A
2892254 Garvin Jun 1959 A
2902962 Garvin Sep 1959 A
3072085 Landis Jan 1963 A
3077170 Parlasca Feb 1963 A
3105537 Foster Oct 1963 A
3136053 Powell Jun 1964 A
3151590 Garvin Oct 1964 A
3160130 Pesak Dec 1964 A
3220098 Arbogast Nov 1965 A
3247581 Pellizzari Apr 1966 A
3303680 Thielsch Feb 1967 A
3328996 Pin et al. Jul 1967 A
3487668 Fuchs, Jr. Jan 1970 A
3505846 Smida Apr 1970 A
3535901 Tominaga Oct 1970 A
3550491 Wingard Dec 1970 A
3613423 Nakamura Oct 1971 A
3654785 Ueda et al. Apr 1972 A
3701270 Matthews Oct 1972 A
3739615 Tressel Jun 1973 A
3763681 Flintoft Oct 1973 A
3768288 Jury Oct 1973 A
3808860 Yamaguchi et al. May 1974 A
3813751 Smida Jun 1974 A
3946584 Yamasaki Mar 1976 A
3974675 Tominaga Aug 1976 A
4125937 Brown et al. Nov 1978 A
4189162 Rasmussen et al. Feb 1980 A
4238878 Stamm et al. Dec 1980 A
4319471 Benteler et al. Mar 1982 A
4457498 Pauliukonis Jul 1984 A
4484756 Takamiya et al. Nov 1984 A
4485653 Rasmussen Dec 1984 A
4485654 Rasmussen Dec 1984 A
4567743 Cudini Feb 1986 A
4704886 Evert et al. Nov 1987 A
4706365 Hooton Nov 1987 A
4730474 Iwakura et al. Mar 1988 A
4744237 Cudini May 1988 A
4759111 Cudini Jul 1988 A
4761982 Snyder Aug 1988 A
4788843 Seamann et al. Dec 1988 A
4803878 Moroney Feb 1989 A
4815308 Moroney Mar 1989 A
4827747 Okada et al. May 1989 A
4829803 Cudini May 1989 A
4840053 Nakamura Jun 1989 A
5070717 Boyd et al. Dec 1991 A
5107693 Olszewski et al. Apr 1992 A
RE33990 Cudini Jul 1992 E
5170557 Rigsby Dec 1992 A
5203190 Kramer et al. Apr 1993 A
5233854 Bowman et al. Aug 1993 A
5233856 Shimanovski et al. Aug 1993 A
5235836 Klages et al. Aug 1993 A
5239852 Roper Aug 1993 A
5279142 Kaiser Jan 1994 A
5321964 Shimanovski et al. Jun 1994 A
5333775 Bruggemann et al. Aug 1994 A
5339667 Shah et al. Aug 1994 A
5353618 Roper et al. Oct 1994 A
5363544 Wells et al. Nov 1994 A
5481892 Roper et al. Jan 1996 A
5499520 Roper Mar 1996 A
5715718 Rigsby et al. Feb 1998 A
6006567 Brown et al. Dec 1999 A
Foreign Referenced Citations (11)
Number Date Country
1309239 Oct 1992 CA
0414545 Feb 1991 EP
519593 Apr 1940 GB
2162446 Feb 1986 GB
523948 Jul 1990 GB
56-154228 Nov 1981 JP
58-003738 Jan 1983 JP
59-130633 Jul 1984 JP
60015027 Jan 1985 JP
60-082229 May 1985 JP
549199 Jul 1977 SU
Non-Patent Literature Citations (2)
Entry
Payson, Peter. The Metallaurgy of Tool Steels. John Wiley & Sons, New York. p. 264, 1962.*
Declaration of Kevin Webb.