The invention relates generally to the field of dark reference pixels for image sensors assemblies and, more particularly, to such assemblies in which each of the dark reference pixels passes its signal to an operational amplifier on one clock cycle for producing an average dark reference signal, which consequently permits calibration of the image sensor.
Currently, image sensors include a plurality of dark reference pixels adjacent a plurality of active image pixels for providing a reference signal for each column of pixels of the active image pixels. This reference signal is used for calibrating the signals from the active image pixels as is well known in the art.
The circuitry for processing the dark reference signals typically includes sequentially clocking each signal from the dark reference pixels to an integration circuitry. This causes a clock cycle to be needed for each dark reference pixel, which produces lengthy processing time.
Although the currently known and utilized method and apparatus for processing dark reference signals are satisfactory, they include drawbacks. One such drawback is that sequential processing of the signals is time consuming and somewhat inefficient. Another drawback is that integration circuitry is needed which enhances cost and the like.
Therefore, a need exists for a method and apparatus for efficiently processing dark reference signals in a cost effective manner.
The present invention is directed to overcoming one or more of the problems set forth above. Briefly summarized, according to one aspect of the present invention, the invention resides in an image sensor assembly comprising (a) a plurality of active pixels that receives incident light that is converted into a charge; (b) a plurality of sample and hold circuits; (c) a plurality of dark reference pixels each of which is responsive to light and each of which is shielded from light, wherein signals from each of the dark reference pixels is transferred to one of the sample and hold circuits; and (d) an operational amplifier that receives a signal from each of the sample and hold circuits on one clock cycle, wherein the operational amplifier averages the signals from the sample and hold circuits for providing an approximate average dark reference pixel signal.
These and other aspects, objects, features and advantages of the present invention will be more clearly understood and appreciated from a review of the following detailed description of the preferred embodiments and appended claims, and by reference to the accompanying drawings.
Advantageous Effect of the Invention
The present invention has the advantage of processing all of the dark reference signals on one clock cycle and elimination of integration circuitry.
Referring to
In reading out the dark reference pixels 20, a switch 40, which is attached to each sample and hold circuit 30, is closed for permitting the signal currently in the sample and hold circuit 30 to be passed to the buses 50. After the switches 40 are closed, the sample and hold circuits 30 are clocked at substantially the same time or, in other words in one clock cycle, so that the signals are passed to the buses 50 substantially simultaneously. As will be described later in detail, the sample and hold circuits 30 produce four outputs for the one input signal. The voltages on each bus 50 are then passed to a differential operational amplifier 60. The differential operational amplifier 60 then produces the average voltage (or substantially the average voltage) of the signals transmitted from the sample and hold circuits 30. This calculated average is used as the average for this row of dark reference pixels 20. This process is repeated for passing each row of dark reference pixels 20 to the differential operational amplifier 60 for creating its average for that respective row. It is instructive to note that, although sample and hold circuits and operational amplifiers are shown, any equivalent circuitry may be used for producing the same result, as those skilled in the art will readily recognize.
In reading out the pixels used for capturing the image, the pixels pass their signal to the sample and hold circuit 30 sequentially so that their actual values are passed to the operational amplifier 60, as is well known in the art.
Referring to
Referring to
Referring to
The invention has been described with reference to a preferred embodiment. However, it will be appreciated that a person of ordinary skill in the art can effect variations and modifications without departing from the scope of the invention.