1. The Field of the Invention
The present invention relates generally to an apparatus and method for closing and/or sealing openings in a body lumen and/or tissue. More particularly, the present invention relates to an apparatus and method for delivering a closure element for closing a puncture in a blood vessel or other body lumen formed during a diagnostic or therapeutic procedure.
2. The Relevant Technology
Catheterization and interventional procedures, such as angioplasty or stenting, are generally performed by inserting a hollow needle through a skin and tissue and into a vascular system. A guide wire may be advanced through the needle and into the blood vessel accessed by the needle. The needle then is removed, enabling an introducer sheath to be advanced over the guide wire into the vessel, e.g., in conjunction with or subsequent to a dilator. A catheter or other device may then be advanced through a lumen of the introducer sheath and over the guide wire into a position for performing a medical procedure. Thus, the introducer sheath may facilitate introducing various devices into the vessel, while minimizing trauma to the vessel wall and/or minimizing blood loss during a procedure.
Upon completing the procedure, the devices and introducer sheath may be removed, leaving a puncture site in the vessel wall. External pressure may be applied to the puncture site until clotting and wound sealing occur. This procedure, however, may be time consuming and expensive, requiring as much as an hour of applied pressure. It is also uncomfortable for the patient, and requires that the patient remain immobilized in the operating room, catheter lab, or holding area. In addition, a risk of hematoma exists from bleeding before hemostasis occurs.
Various devices have been suggested for percutaneously sealing a vascular puncture by occluding the puncture site. For example, U.S. Pat. Nos. 5,192,302 and 5,222,974, issued to Kensey et al., describe the use of a biodegradable plug that may be delivered through an introducer sheath into a puncture site. Another technique has been suggested that involves percutaneously suturing the puncture site, such as that disclosed in U.S. Pat. No. 5,304,184, issued to Hathaway et al.
To facilitate positioning devices that are percutaneously inserted into a blood vessel, “bleed back” indicators have been suggested. For example, U.S. Pat. No. 5,676,974, issued to Kensey et al., discloses a bleed back lumen intended to facilitate positioning of a biodegradable plug within a puncture site. This device, however, requires that an anchor of the plug-be positioned within the vessel, and therefore, may increase the risk of over-advancement of the plug itself into the vessel.
Alternatively, U.S. Pat. No. 5,674,231 issued to Green et al., discloses a deployable loop that may be advanced through a sheath into a vessel. The loop is intended to resiliently expand to engage the inner wall of the vessel, thereby facilitating holding the sheath in a desired location with respect to the vessel.
Accordingly, while these closure devices and procedures are met with varying degrees of success, there is always a need for a new and improved apparatus and technique for delivering a closure element to a vascular puncture site or other opening through tissue.
The present invention is directed toward an apparatus and method for delivering a closure element through tissue and into an opening formed in, or adjacent to, a wall of a blood vessel or other body lumen of any size.
In one embodiment, the present invention includes an apparatus for positioning a closure element to close an opening in a body lumen. Such an apparatus includes a carrier assembly and a distal tissue engaging device. The carrier assembly is configured to support a closure element in a substantially tubular configuration in a first diameter. The closure element is configured to substantially uniformly deform from a substantially tubular configuration to a natural, substantially planar configuration. The distal tissue engaging device is selectably axially displaceable relative to at least a portion of the carrier assembly. As such, the distal tissue engaging device moves between a tissue engaging condition and a tissue closing condition. The tissue engaging condition engages opposing portions of an arterial wall defining said body lumen adjacent to the opening. The tissue closing condition urges the engaged opposing portions of the arterial wall substantially together such that the closure element may be deployed from the delivery assembly to engage the opposed portions of the arterial wall and to return to the natural, substantially planar configuration.
In one embodiment, the distal tissue engaging device includes two or more opposed engaging tongs having respective end tips configured to open radially in directions extending beyond the first diameter to initially engage the opposing portions of the arterial wall, in the engaging condition.
In one embodiment, the carrier assembly further includes a cover member protecting at least the closure element which is contained therein.
In one embodiment, the distal tissue engaging device is integral with a distal end of the cover member.
In one embodiment, the carrier assembly is formed and dimensioned for sliding axial, reciprocating, receipt in a lumen of an introducer sheath extending through said tissue and terminating proximate the opening. The tissue engaging device is configured to cooperate with the introducer sheath to enable movement between the engaging condition and the closing condition.
In one embodiment, the present invention includes an apparatus for delivering and deploying a substantially resilient closure element through tissue to an opening in a body lumen perimeterically defined by opposing arterial walls. The closure element is configured to substantially uniformly deform from a natural, substantially resilient planar configuration to a substantially tubular configuration having a substantially natural transverse cross-sectional dimension. The apparatus includes a delivery assembly positionable through the tissue toward the opening in the body lumen. Also, the delivery assembly has a distal tissue engaging device and a carrier assembly configured to support the closure element in the substantially tubular configuration in a first diameter. The distal tissue engaging device is selectably axially displaceable relative to at least a portion of the carrier assembly between a tissue engaging condition and a tissue closing condition. The tissue engaging condition engages the opposing arterial walls of the body lumen adjacent to the opening. The tissue closing condition urges the engaged opposing arterial walls substantially transversely together such that the closure element may be deployed from the delivery assembly, while substantially maintained in the first diameter, into the opposing arterial walls. The closure element is oriented to engage the engaged opposing arterial walls when deployed and to return to the natural, substantially planar configuration and the natural, transverse cross-sectional dimension such that the engaged opposing arterial walls are drawn substantially closed.
In one embodiment, the apparatus includes a locator configured to position the carrier assembly and distal tissue engaging device adjacent to the opening in the body lumen. Also, the locator has a distal locator portion selectably controllable between an unexpanded state and an expanded state for engaging the opposing portions of the arterial wall of the body lumen.
In one embodiment, the apparatus includes a distal tissue locator portion contained on the delivery assembly. The distal tissue locator portion is configured to facilitate detection of the body lumen and includes one or more expansion elements configured to expand substantially transversely with respect to a longitudinal axis of the distal locator portion.
In one embodiment, the distal locator portion is selectably controllable between an unexpanded state and an expanded state for engaging said opposing arterial walls of said body lumen.
In one embodiment, while in the unexpanded state, the distal locator portion has a transverse cross-sectional dimension less than that of the opening. Also, while in the expanded state, the distal locator portion has a transverse cross-sectional dimension greater than or substantially equal to that of said opening.
In one embodiment, the present invention includes an apparatus for positioning a closure element to close an opening in a body lumen. Such an apparatus includes a carrier assembly and a distal tissue engaging device. The carrier assembly has a tubular body configured to receive a closure element in a substantially tubular configuration in a first diameter prior to deployment. Also, the tubular body has a distal port. The distal tissue engaging device is disposed within the tubular body and is selectably axially displaceable from the distal port. A portion of the distal tissue engaging device is biased to selectively radially extend outwardly from a longitudinal axis of the tubular body to intravascularly engage opposing arterial walls of the body lumen. A portion of the distal tissue engaging device urges the engaged opposing portions of the arterial wall substantially together as the distal tissue engaging device moves proximally. The closure element is then deployed to engage the opposed portions of the arterial wall.
In one embodiment, the carrier assembly includes a cover member defining a lumen configured for slidable receipt of the closure element therein.
In one embodiment, the carrier assembly includes a pusher member that slides for distally deploying the closure element.
In one embodiment, the pusher member and the tubular body are disposed as a nested, telescoping tube set with a common longitudinal axis.
In one embodiment, the tubular body includes a tissue locator portion. The tissue locator portion includes a bleed back shaft having a bleed back port distally disposed on a distal end of the tubular body.
In one embodiment, the present invention includes a closure system for closing an opening formed in a body lumen perimeterically defined by opposing arterial walls. Such a closure system includes a closure element, a delivery assembly, and a pusher member. The closure element is adapted to deform from a natural, substantially resilient planar configuration to a substantially tubular configuration that has a substantially natural transverse cross-sectional dimension. The delivery assembly is capable of being positioned through the tissue and into the opening in the body lumen.
Additionally, the delivery assembly has an elongated body, a carrier assembly and a distal tissue engaging device. The carrier assembly includes a carrier seat configured to carry and peripherally support the closure element in the substantially tubular configuration in a first diameter. The distal tissue engaging device is selectably, axially displaceable relative to the carrier seat between an engaging condition and a closing condition. The engaging condition engages the opposing arterial walls of the body lumen adjacent to the opening. The closing condition urges the engaged opposing arterial walls substantially transversely together such that the closure element may be deployed from the carrier assembly, while substantially maintained in the first diameter, into the opposing arterial walls.
The pusher member is slidably disposed about the elongated body for relative axial sliding displacement therebetween. The pusher member has a contact portion disposed proximally adjacent to the closure element in order to selectively distally deploy the closure element from the carrier assembly. The closure element is deployed in the substantially tubular configuration so as to engage the opposing arterial walls and to return to the natural, substantially planar configuration and the natural, transverse cross-sectional dimension such that the engaged opposing arterial walls are drawn substantially closed.
In one embodiment, the delivery assembly includes a tubular body supporting the carrier seat. Also, the tubular body defines a central receiving lumen extending longitudinally therethrough that is configured for sliding support of the tissue engaging device for axial movement between the engaging condition and the closing condition.
In one embodiment, the pusher member comprises one or more distally extending longitudinal extensions.
In one embodiment, the closure system includes a locator slidably receivable within the pusher member and the delivery assembly.
In one embodiment, the present invention includes a method for closing an opening defined by edges of arterial walls of a body lumen. Such a method includes the following: positioning a distal end region of a carrier assembly through tissue adjacent to an opening so that a distal tissue engaging device engages opposing portions of arterial walls, the distal end region of the carrier assembly includes a carrier seat configured to seat said closure element thereon in a substantially tubular configuration, having a first diameter; urging the engaged arterial walls radially inwardly and toward one another such that at least opposed edges of the arterial walls drawn with the first diameter of the closure element; and distally deploying the closure element from the carrier assembly without further substantial radial expansion for the closure element, in the substantially tubular configuration, such that the closure element engages the arterial walls, and returns to the natural, planar configuration and the natural cross-section wherein the tissue is drawn substantially closed.
In one embodiment, the engagement of the arterial walls is performed by extravascularly engaging the arterial walls with the tissue engaging device.
In one embodiment, the engagement of the arterial walls is performed by intravascularly engaging the arterial walls with the tissue engaging device.
In one embodiment, the method includes placing a distal end region of a locator portion through tissue into the opening.
In one embodiment, the method includes engaging the arterial walls adjacent to the opening.
In one embodiment, the method includes orientating the carrier assembly proximal to the locator portion.
These and other embodiments and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
While the present invention will be described with reference to a few specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications to the present invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. It will be noted here that for a better understanding, like components are designated by like reference numerals throughout the various figures.
The apparatus is configured to receive and retain the closure element such that the closure element is disposed substantially within the apparatus. Thereby, if the apparatus is introduced via an introducer sheath, for example, the closure element can be disposed within, and delivered by way of, a lumen of the introducer sheath. The apparatus also is configured to engage the blood vessel wall adjacent to the opening and to position the closure element substantially adjacent to an outer surface of the blood vessel wall adjacent to the opening.
When properly positioned, the apparatus can be activated to distally deploy the closure element. During deployment, the apparatus preferably is configured to substantially uniformly expand the closure element beyond a natural cross-section of the closure element such that the closure element, when deployed, is configured to engage significant amount of the blood vessel wall and/or tissue. Engaging the blood vessel wall and/or tissue, the closure element is further configured to return to the natural cross-section. Thereby, the engaged blood vessel wall and/or tissue are drawn substantially closed and/or sealed, such that, for example, hemostasis within the opening is enhanced.
In one specific embodiment, an apparatus is provided for delivering and deploying a substantially resilient closure element through tissue to an opening in a body lumen perimeterically defined by opposing arterial walls. The closure element is configured to substantially uniformly deform from a natural, substantially resilient planar configuration to a substantially tubular configuration, having a substantially natural transverse cross-sectional dimension. The apparatus include a delivery assembly positionable through the tissue and into the opening in the body lumen, and having a distal tissue engaging device and a carrier assembly. The carrier assembly is configured to carry and support the closure element in the substantially tubular configuration in a first diameter. The distal tissue engaging device is selectably axially displaceable relative to at least a portion of the carrier assembly between a tissue engaging condition and a tissue closing condition. In the tissue engaging condition, the opposing arterial walls of the body lumen are engaged adjacent to the opening. In contrast, in the tissue closing condition, the engaged opposing arterial walls are urged substantially transversely together such that the closure element may be deployed from the delivery assembly, while substantially maintained in the first diameter, into the opposing arterial walls. The closure element is oriented to engage the engaged opposing arterial walls when deployed and to return to the natural, substantially planar configuration and the natural, transverse cross-sectional dimension such that the engaged opposing arterial walls are drawn substantially closed.
The distal tissue engaging device includes two or more opposed engaging tongs having respective end tips configured to open radially in directions extending beyond the first diameter of the carrier assembly to initially engage the opposing arterial walls, in the engaging condition. These engaging tongs are configured to close radially inward such that the engaged opposing arterial walls are disposed within the first diameter of the closure element, in the substantially tubular configuration, in the closing condition.
In another specific embodiment, the carrier assembly includes a cover member protecting the delivery assembly such that at least the closure element is contained therein. The cover member defines a lumen configured for slidable receipt of the closure element therein. The distal tissue engaging device is integral with a distal end of the cover member to enable movement of the two or more opposing tongs between the engaging condition and the closing condition.
Still another specific arrangement provides a delivery assembly that is formed and dimensioned for sliding axial, reciprocating, receipt in a lumen of an introducer sheath extending through the tissue and terminating proximate the opening. The tissue engaging device is configured to cooperate with the introducer sheath to enable movement between the engaging condition and the closing condition. Further, the two or more tongs are formed and dimensioned for sliding contact with the sheath lumen to effect movement between the engaging condition and the closing condition.
In yet another specific embodiment, the carrier assembly includes a carrier seat configured to seat the closure element, in the substantially tubular configuration, on the delivery assembly prior to deployment. The delivery assembly includes a tubular body supporting the carrier seat, and defines a central receiving lumen extending longitudinally therethrough that is configured for sliding support of the tissue engaging device for axial movement between the engaging condition and the closing condition. Each of the two or more tongs are bowed and biased radially outward, relative one another, from a longitudinal axis of the tubular body such that an end tip of each respective tong is urged outward and toward gripping intravascular engagement with an undersurface of the opposing arterial walls, in the engaging condition, when the tissue engaging device extends distally from the central lumen of the tubular body.
In another aspect of the present invention, a closure system is provided for closing an opening formed in a body lumen perimeterically defined by opposing arterial walls. The system includes a closure element adapted to deform from a natural, substantially resilient planar configuration to a substantially tubular configuration, having a substantially natural transverse cross-sectional dimension. A delivery assembly is positionable through the tissue and into the opening in the body lumen. The delivery assembly includes an elongated body, a carrier assembly and a distal tissue engaging device. The carrier assembly includes a carrier seat configured to carry and peripherally support the closure element in the substantially tubular configuration, in a first diameter. The distal tissue engaging device is selectably axially displaceable relative to the carrier seat between the engaging condition and the closing condition, while substantially maintaining the engaged walls within the first diameter. A pusher member is slidably disposed about the elongated body for relative axial sliding displacement therebetween. The pusher member includes a contact portion disposed proximally adjacent the closure element. The pusher member is applied to selectively distally deploy the closure element from the carrier assembly, in the substantially tubular configuration, to engage the opposing arterial walls and to return to the natural, substantially planar configuration and the natural, transverse cross-sectional dimension such that the engaged opposing arterial walls are drawn substantially closed.
In yet another aspect of the present invention, a method for closing an opening perimetrically defined by edges of the arterial walls of a body lumen is provided including placing a distal end region of a locator portion of a through tissue into the opening; and engaging the arterial walls adjacent to the opening. The method further includes positioning a distal end region of a carrier assembly through the tissue adjacent to the opening. The carrier assembly is oriented proximal to the locator portion, and the distal end region of the carrier assembly includes a carrier seat configured to seat the closure element thereon in a substantially tubular configuration, having a first diameter. The method includes urging the engaged arterial walls radially inward and toward one another such that at least opposed edges of the arterial walls drawn with the first diameter of the closure element. The closure element is distally deployed from the carrier assembly without further substantial radial expansion for the closure element, in the substantially tubular configuration, such that the closure element engages the arterial walls, and returns to the natural, planar configuration and the natural cross-section wherein the tissue is drawn substantially closed.
In one specific embodiment, the engaging of the arterial walls is performed by extravascularly engaging the arterial walls with a tissue engaging device. In contrast, the engaging of the arterial walls is performed by intravascularly engaging the arterial walls with a tissue engaging device.
Referring now generally to
Returning to the clip applier apparatus 100, in accordance with the present invention, a delivery assembly, generally designated 200, is included that is positionable through the tissue 630 and into the opening 610. The delivery assembly 200 includes a distal tissue engaging device 400 and a carrier assembly 300, oriented just proximal to the distal tissue engaging device, that houses and supports the closure element 500″. The carrier assembly 300 includes a carrier seat portion 302 configured to carry and support the closure element 500″ in a slightly expanded substantially tubular configuration (
The distal tissue engaging device 400 is selectably axially displaceable relative to the carrier assembly 300 between a tissue engaging condition (
Hence, applying a pusher member 320 (as will be described), the closure element 500″, which is retained in the substantially tubular configuration, can be deployed into the opposing arterial walls (
In accordance with the present invention, since the closure element 500″ can be deployed from the closure applier apparatus 100 without requiring substantial further radial expansion from the substantially tubular configuration atop the carrier assembly, the overall complexity of the closure applier can be significantly reduced. In turn, the diametric footprint can be significantly reduced, as compared to previous designs, which in effect permit the use of a smaller diameter GF introducer sheath. Moreover, a closure applier apparatus is provided that fully encloses the closure element within itself during advancement to the tissue site, prior to deployment and delivery to the targeted vessel walls. Unlike many current designs, the present invention significantly reduces potential tissue snag or contact by the closure element during advancement and positioning. This enclosure approach is similar to those disclosed in co-pending U.S. patent application Ser. No. 11/455,993, filed Jun. 19, 2006, and entitled “APPARATUS AND METHOD FOR DELIVERING A CLOSURE ELEMENT”; and U.S. patent application Ser. No. 10/356,214, filed Jan. 30, 2003, entitled “CLIP APPLIER AND METHODS OF USE” (hereinafter referred to as the '214 patent application), each of which is herein incorporated by reference in their entirely. These designs prove much more desirable and provide a basis for a wide range of medical applications, such as diagnostic and/or therapeutic procedures involving blood vessels or other body lumens of any size.
As will be discussed in more detail below, the clip applier apparatus 100 can deliver a closure element 500″ (shown in
Being configured to draw the opposed blood vessel arterial walls 620′, 620″ and/or the tissue 630 adjacent to the opening 610 substantially closed and/or to enhance hemostasis within the opening 610, the closure element 500 can be formed from any suitable material, including any biodegradable material, any shape memory alloy, such as alloys of nickel-titanium, or any combination thereof As desired, the closure element 500 can include radiopaque markers (not shown) or can be wholly or partially formed from a radiopaque material to facilitate observation of the closure element 500 using fluoroscopy or other imaging systems. Exemplary embodiments of a closure element are disclosed in U.S. Pat. No. 6,197,042, in co-pending application Ser. Nos. 09/546,998; 09/610,238 and 10/081,726. The disclosures of these references and any others cited therein are expressly incorporated herein by reference.
With the exception of the last specific embodiment shown in
In each embodiment, if the apparatus 100 is introduced via an introducer sheath 640 (shown in
Referring to the specific embodiments of
The carrier assembly 300, on the other hand, is configured to carry and support the closure element 500″ in the substantially tubular configuration (
Once strategically oriented, the clip applier apparatus 100 can be activated to distally deploy the closure element 500″. It will be appreciated that although the closure element 500″ is capable of significantly greater radial expansion from its tubular configuration mounted to the carrier assembly 300 of the tubular body 210, the delivery assembly is designed to deploy the closure element 500″ directly from the carrier seat 302 without requiring any further significant radial expansion.
The apparatus 100 can be provided as one or more integrated components and/or discrete components. As shown in the embodiment of
In fact, in accordance with the present invention, it is the position, implementation and execution of the tissue engaging device 400 that differentiates each embodiment. In one specific embodiment, for example, the tissue engaging device 400 is disposed on the distal end to the cover member 330 (
In each implementations, however, the tissue engaging device 400 is capable of gripping, snaring and/or piercing the tissue arterial walls 620, and urging them together and radially inward, toward one another, such that portions of the arterial walls 620′, 620″ are axially contained within the first diameter of the closure element 500″, in the substantially tubular configuration. As mentioned, this arrangement enables the deployment of the closure element 500″ directly from the carrier seat 302 of the carrier assembly 300 without requiring further radial expansion.
Referring back to
First, the delivery assembly 200 of this embodiment will be detailed which includes the tubular body 210, the carrier assembly 300 and the distal locator portion 202 integrated on a single subsystem. The tubular body 210 is preferably provided by a flexible, semi-rigid or rigid, tubular structure, such as an elongate rail, with a longitudinal axis 216. As illustrated in
The tubular body 210 is preferably of a predetermined length 218a and a predetermined outer cross-section 218b (
Turning now to
At least one, and preferably all, of the expansion elements 230 of the distal locator portion 202 can comprise a substantially flexible member 230′ with a substantially fixed end region 230a′, an intermediate region 230b′, and a movable end region 230c′ as shown in
Hence, the expansion elements 230 are relatively resilient, and can buckle without plastic deformation or pure elastic deformation. Further, although the expansion elements 230 are shown as comprising the flexible members 230′ in
Referring back to FIGS. 1 and 4-6, the delivery assembly 200 also includes the carrier assembly 300 positioned along the distal end of the tubular body 210, and oriented adjacent and proximate to the distal locator portion 202. The carrier assembly 300 is configured to receive and retain the closure element 500″ in the slightly expanded, substantially tubular configuration (shown in
Turning now to
A biocompatible glue or adhesive may further be applied to facilitate retaining the closure element 500″ on the carrier seat 302 of the carrier assembly 300. Together with the internal restrictive or confining nature of the cover member 330, the glue or adhesive must be sufficient to overcome the resilient tendency of the closure element 500″ (
In accordance with the present invention, the pusher member 320 is configured to slidably receive at least a portion of the carrier seat 302, as well as the tubular body 210, with a receiving lumen 324 therein and an external surface 322b. The pusher member 320 is of a predetermined length 328a and a predetermined cross-section 328b, both of which can be of any suitable dimension. The predetermined length 328a of the pusher member 320 can be greater than or substantially equal to the collective predetermined length 218a and diameter 218b of the tubular body 210 and the carrier assembly 300. The predetermined length 328a of the pusher member 320, however, is preferably less than the collective predetermined length 218a of the tubular body 210 and the carrier seat 302, such that a distal end region 320b of the pusher member 320 is axially offset proximally from the distal end region 302b of the carrier seat 302. This axial offset, together with the cover member 330, defines an annular space 360 designated for receipt of the substantially tubular closure element 500″ about the carrier seat 302.
Being formed from a substantially rigid, semi-rigid, or flexible material, the pusher member 320 preferably is substantially tubular and defines receiving lumen 324 that extends substantially between the proximal end region 320a and the distal end region 320b. This lumen 324 is configured to slidably receive at least a portion of the tubular body 210 and the carrier seat 302 therethrough. The cross-section 328b of the pusher member 320 preferably is substantially uniform, and the distal end region 320b of the pusher member 320 can comprise one or more longitudinal extensions 325, which extend distally from the pusher member 320 and along the periphery of the carrier seat 302, as shown in
As best shown in
In one preferred embodiment, as best illustrated in
The cross-section 338b of the cover member 330 preferably is substantially uniform. In the embodiment of
If the carrier assembly 300 is assembled as a plurality of nested, telescoping members as shown in
In accordance with this embodiment of the present invention, the tissue engaging device 400 is disposed and oriented on the distal end of the cover member 330 for operation between the tissue engaging condition (
As best illustrated in
The two or more tongs 402 of the tissue engaging device 400 are configured and oriented for sliding reciprocal cooperation with an interior wall 642 of the sheath 640 to control movement and operation of the engaging device between the tissue engaging condition (
Briefly, as will be described in greater detail below, once the arterial walls 620′, 620″ are snared or pierced by the tissue engaging device 400, in the tissue engaging condition, the GF sheath can be displaced distally, relative to the garage tube. Sliding contact between the interior wall 642 of the sheath and the outer facing surfaces 406 of the tongs 402 causes the distal tips of the engaging device to draw the tissue radially inward toward one another (
The present invention incorporates various switching systems, triggering systems, locking systems, etc. contained in the handle portion to effect use and operation of the delivery components described herein. While all these subsystems are not shown and described herein in detail, it will be appreciated that they are similar to the design and operation of the analogous subsystems shown and described in our '214 patent application, which as mentioned is incorporated by reference herein for all purposes.
By way of example, however, the locator portion 202 also can include a locator control system 240 that is coupled with the proximal end region 210a of the delivery assembly 200 and that is configured to selectively control the distal locator portion 202 between the unexpanded and expanded states (
The locator control system 240 preferably includes a locator release system (not shown, but one embodiment which may be similar to that disclosed in the '214 patent application) for maintaining the unexpanded state and/or the expanded state of the distal end region 210b, the expansion elements 230, and/or the substantially flexible members 230′. The locator release system is preferably configured to maintain the locator portion in the expanded state. Any type of locking system can be employed, and can be engaged, for instance, by activating the switching system. For example, once the substantially flexible members 230′ have entered the expanded state, the locator release system can secure the control member 250 to prevent axial movement relative to the tubular body 210, thereby maintaining the substantially flexible members 230′ in the expanded state.
The locator control system 240 also can be configured to disengage the locator release system, such that the distal end region 210b, the expansion elements 230, and/or the substantially flexible members 230′ can transition between the unexpanded and expanded states. The locator release system can be disengaged, for example, by activating an emergency release system (not shown). As desired, the locator control system 240 can further include a biasing system (not shown), such as one or more springs, to bias the distal end region 210b, the expansion elements 230, and/or the substantially flexible members 230′ to enter and/or maintain the unexpanded state when the locator release system is disengaged.
In use, the closure element 500″ is carried on the carrier seat 302, in the slightly radially expanded tubular configuration, and is disposed within the cover member 330. As shown in
After being received over the distal end region 302b, the substantially tubular closure element 500″ is disposed in the space 360, and the tines 520 are directed substantially distally as shown in
Once disposed in the space 360, the resiliency of the slightly expanded closure element 500″ and/or the addition of an adhesive or glue will facilitate retention of the element in place about the carrier seat. Moreover, the sliding receipt of the substantially tubular closure element 500″ and the distal end region 320b of the pusher member 320 within the lumen 334 of the cover member 330, as illustrated in
Turning now to
The introducer sheath 640 may be advanced over a guide wire or other rail (not shown) that was previously positioned through the opening 610 and into the blood vessel 600 using conventional procedures. In one specific use, the blood vessel 600 is a peripheral blood vessel, such as a femoral or carotid artery, although other body lumens may be accessed using the sheath 640 as will be appreciated by those skilled in the art. The opening 610, and consequently the sheath 640, may be oriented with respect to the blood vessel 600 such as to facilitate the introduction of devices through the lumen 644 of the sheath 640 and into the blood vessel 600 with minimal risk of damage to the blood vessel 600. One or more devices (not shown), such as a catheter, a guide wire, or the like, may be inserted through the sheath 640 and advanced to a predetermined location within the patient's body. For example, the devices may be used to perform a therapeutic or diagnostic procedure, such as angioplasty, atherectomy, stent implantation, and the like, within the patent's vasculature.
After the procedure is completed, the devices are removed from the sheath 640, and the apparatus 100 is prepared to be slidably received by the lumen 644 of the sheath 640 as shown in
Turning now to
While the relative distance between the distal end region of the carrier assembly 300 (i.e., the carrier seat 302) and the proximal end region of the distal locator portion 202 is preferably substantially fixed, it will be appreciated that such relative distances can be non-fixed as well. More particularly, upon establishing a first position of
Hence, once the distal end region of the locator portion 202 properly engages the inner surface 620b of the blood vessel wall 620 as the expansion elements 230 are selectively positioned and moved to the expanded state, the sheath 640 is further retracted proximally, exposing the tongs 402 of the tissue engaging device 400. As mentioned, the interior walls 642 of the sheath 640 cooperate with the garage tube 330 to maintain a substantially cylindrical profile, and to control and operate the use tongs 402 of the distal tissue engaging device, which are substantially distally facing and flush against the tubular body 210 when contained in the sheath 640. Further proximal retraction of the sheath 640 exposes the tongs 402 of the tissue engaging device 400 from inside the sheath lumen 644, allowing the distal tips 404 of the tongs to radially expand toward the engaging condition.
Depending upon the particular design of the tissue engaging device 400, movement of the distal tips 404 of the tongs may occur in different ways. For instance, if the tissue engaging device 400 is composed of a shape memory material, exposure of the heat set tissue engaging device 400 to the tissue environment causes radial expansion of the tongs 402 toward the engaging condition. In contrast, in a resilient, elbowed-type configuration of the engaging device tongs 402, as shown in
Once the tissue engaging device 400 has radially expanded to the tissue engaging condition, the garage tube 330 can be axially advanced distally, relative to the carrier assembly 300 and the tissue locator portion 202, maintaining the closure element 500″ seated in the carrier seat 302 (not shown). It will be appreciated, however, that the tube set 305, with the exception of the tubular body 210, can be axially advanced along the tubular body together as a unit, as best viewed in
Referring now to
During operation of the tissue engaging device from the tissue engaging condition to the closing condition, the substantially tubular closure element 500″ is advantageously retained on the outer periphery of the carrier seat 302 by the cover member 330 as illustrated in
As mentioned, in one specific embodiment, the carrier seat 302 and the cover member 330 of the carrier assembly 300 cooperate to maintain the substantially tubular closure element 500″ in the tubular configuration, and fixed relative to the distal tissue engaging device 400. After the tissue engaging device 400 engages the opposed arterial walls 620′, 620″ in the closing condition (
The proximal end region of the locator portion 202 can be retracted proximally, effectively retracting the tubular body 210 and the distal locator portion 202 into the lumen 324 of the pusher member 320, and relative to the garage tube 330, closure element 500″ and sheath 640 (
In accordance with the present invention, the closure element 500″, seated about the delivery assembly 200 in the slightly expanded, substantially tubular condition, is delivered into engagement with the opposed blood vessel arterial wall 620′, 620″ and/or tissue 630 adjacent to the opening 610 without further radial expansion thereof As previously indicated, this benefit is due to the fact that the tissue engaging device 400 is simultaneously engaged with the vessel wall 620, and draws the opposed engaged sides walls 620′, 620″ radially inward relative to one another and within the first diameter of the closure element.
Upon being advanced over the distal locator portion 202, in the unexpanded state, by the pusher member 320, the substantially tubular closure element 500″ is distally deployed as illustrated in
Once the substantially tubular closure element 500″ is deployed (
To reduce interference of the closure element tines 520 with the tissue engaging tongs, while the tongs are engaged with the vessel walls 620′, 620″ in the closing condition, the tips 404 and the tongs 402 can be configured so as to be angularly off-set (at virtually any angle resulting in non-interference) from one another (not shown) about the common longitudinal axis 350. For example, as little as about a 5 degrees angular off-set between the engaging device tongs 402 and the closure element tines 520, about the common longitudinal axis 350, will significantly reduce contact of the tines with the tongs during delivery of the closure element.
Turning now to
The primary orientation and operation of the remaining components of the delivery assembly 200, however, are similar to the previously discussed embodiments. That is, the delivery assembly 200 contains a similar tube set 305 consisting of the locator portion 202 and the carrier assembly 300, the carrier assembly of which is located at the distal end of the tubular body 210, just proximal to the locator portion 202. Briefly, the carrier assembly 300 similarly consists of the carrier seat 302, the tubular pusher member 320 and a nested garage tube 330; the latter of which surrounds the former two, and all of which are coaxial with longitudinal axis 216 of the tubular body 210.
The tissue locator portion 202 includes a tubular bleed back shaft 260 distally extending from a distal end of the carrier seat 302. Preferably, both the carrier seat and the bleed back shaft 260 are integrally formed with one another on the end of the delivery assembly tubular body 210. The bleed back shaft 260 includes a bleed back port 262 that functions to locate the vessel opening 610 at puncture site in the vessel 600. This port 262 is oriented a predetermined distance from the distal end from the bleed back shaft 260. The bleed back port 262 communicates with a bleed back lumen (not shown) that longitudinally extends from the locator portion and through the tubular body 210 of the delivery assembly, although it will be appreciated that the port could also sharing a lumen with the tissue engaging device.
In accordance with this specific embodiment, the cover member or garage tube 330 similarly covers the pusher member 320, the carrier seat 302 of the carrier assembly 300, and the tubular body 210 (i.e., tube set 305). Since the tissue engaging device is not disposed at the distal end of the garage tube, the annular distal end preferably terminates just distal to the carrier seat 302, defining the annular space 360 that seats the closure element 500″ in the substantially tubular configuration. In one preferred embodiment, one or more longitudinal extensions extend distally from the garage tube or cover member 330, similar to extensions 355 of
Referring back to
Once tissue locator portion 202 is properly oriented, the tissue engaging device 400 can be distally deployed from a distal end of the tubular body 210. As shown in
Accordingly, the resilient tongs 410 are sufficiently flexible for sliding reciprocal receipt in the receiving lumen 204 of the tubular body 210 of the delivery assembly 200, yet sufficiently rigid to enable piercing, snaring or grabbing of the arterial walls when engaged therewith. Such materials exhibiting these characteristics, for example, include Nitinol and stainless steel.
Once the opposing arterial walls 620′, 620″ are sufficiently grasped, snared or penetrated, the tubular body 210 of the delivery assembly 200 is retracted extravascularly through the receiving lumen 204 of the pusher member 320. This operation is performed while the garage tube 330, the closure element 500″ and the pusher member 320 are substantially axially maintained at their position relative to the vessel opening 610 of the body vessel 600. Accordingly, the relative movement between the tubular body 210 and the pusher member 320, in turn, unseats the closure element 500″ from the carrier seat 302 and advances it toward the distal end of the tubular body 210. Alone or in combination with the above tubular body retraction, the tongs 410 of the tissue engaging device 400 may also be retracted into the receiving lumen 204 of the tubular body 210. As the tubular body 210 and/or the tongs 410 are being retracted, the arterial walls 620′, 620″ are pulled together radially inward until they are disposed within the first diameter of the closure element 500″, in a closing condition (
To permit the substantially tubular closure element 500″ to be deployed from the annular cavity 360, the cover member 330 can also be slidably retracted, relative the tubular body 210. The longitudinal extensions 335 of the cover member 330 preferably are sufficiently flexible to expand radially to permit retroactive movement of the distal end region of the cover member 330 peripherally over the mounted closure element 500″. This opens the annular cavity 360 such that the distal end region of the cover member 330 no longer fully encloses the closure element.
Turning now to
It will be appreciated that the bleed back shaft 260 is composed of a material that reduces sticking of the tines 520 of the closure element during deployment, should any contact ensue. This would be detrimental, of course to the proper clip deployment. Essentially, the composition should be at least as hard as the tines of the closure element so as not to stick into the bleed back shaft itself Beneficial shaft compositions include any hard material that can be formed into a tube and is also biocompatible, such as stainless steel and Nitinol to name a few. Further, similar to the embodiments above-mentioned, the seating of the closure element 500″ about the carrier seat 302 is in a manner angularly off-setting the closure element tines 520 (relative to the longitudinal axis 216) from the angular position of the tissue engaging tongs 410, to reduce interference during deployment of the closure element.
Again, using similar placement and advancement techniques through the sheath lumen 644 of the sheath 640, as show and described in
Once the arterial walls 620′, 620″ are sufficiently initially engaged, further advancement of the tongs from the distal end port 264 of the bleed back shaft 260 causes the tong tips 412 to return to their natural state, in their respective plane (i.e., directed back toward longitudinal axis 216 of the bleed back shaft 260). In effect, the engaged opposed arterial walls 620′, 620″ are pushed together by the advancing tong tips 412, which return to their natural state, until the edges 622′, 622″ of the opposing arterial walls 620′, 620″ contact the exterior surface of the bleed back shaft 260. Accordingly, unlike the previous embodiment, the engaged opposing arterial walls 620′, 620″ are urged together without retracting the bleed back shaft 260 and/or retracting the tongs 410 back into the receiving lumen 204. This is beneficial in that it allows the user to continue monitoring the proper location of the device. Further, by not retracting the tongs, the chance that the tongs dislodge from the arterial walls decreases prior to deployment of the closure element.
Accordingly, the tips 412 of the respective tongs 410 are configured to not fully penetrate the engaged opposing arterial wall 620′, 620″ or each tong may experience difficulty urging and pushing the opposing walls back toward and against the bleed back shaft. For example, the tip configuration can be more blunted, radiused or roughened, so as to partially pierce the tissue, but not fully penetrate it.
Regarding the resilient tongs 410, they must be capable of sufficient flexibility to unfold from their naturally curved and hooked configuration to a substantially straight configuration when housed or stored within the lumen 204 of the tubular body 210. However, the tongs 410 of the tissue engaging device 400 must also be sufficiently stiff, strong and resilient to push the engaged arterial walls together, and back against the bleed back shaft 260 when the tongs are fully deployed from the distal end of the bleed back shaft 260. Such materials for each tong 410, for example, may include Nitinol and stainless steel.
Since the opposed arterial walls 620′, 620″ must be pushed, as opposed to pulled, radially together to an orientation within the first diameter of the seated closure element 500″, the diameter of the bleed back shaft 260 at the region of contact by the edge 622′, 622″ of the arterial walls 620′, 620″ is reduced from that of the carrier seat 302. Such a diameter reduction, relative to the carrier seat, increases the width of tissue engagement about by the tines 520 of the closure element 500″, about the vessel opening 610, by enabling the opposed arterial walls to be pushed closer together.
Referring now to
It will again be appreciated that the bleed back shaft 260 is composed of a material that reduces sticking of the tines 520 of the closure element therewith during deployment and withdrawal of the shaft from the opening, should any contact ensue. As mentioned above, beneficial shaft compositions include any hard material that can be formed into a tube and is also biocompatible, such as Nitinol and Stainless steel. Furthermore, the seating of the closure element 500″ about the carrier seat 302 is in a manner angularly off-setting the closure element tines 520 (relative to the longitudinal axis 216) from the angular position of the tissue engaging tongs 410, to reduce interference during deployment of the closure element.
Referring now to
As above-mentioned, the diametric footprint of the clip applier apparatus 100 in this specific embodiment is further reduced by an amount equivalent to the removal of the garage tube from the tube set 305. Hence, the tube set 305 of the delivery assembly only includes the pusher member 320 of the carrier assembly 300, and the tubular body 210. The tubular body 210, which supports the carrier seat 302, the tissue locator assembly 202 and the tissue engaging device 400 supported within the receiving tubular body lumen 204, may similarly be capable of axial displacement, relative to the sheath 640, the pusher member 320 and the closure element 500″, in the substantially tubular configuration.
Furthermore, the introducer sheath 640 will selected to cooperate with the tube set 305 of the delivery assembly 200 in a manner similar to the cooperation between the garage tube 330 and the pusher member 302 and closure element 500″ of the previous embodiments. That is, the interior diameter of the sheath lumen 644 should be sized to cooperate with the exterior diameter of the pusher member 320 and the seated closure element 500″ to permit sliding axial displacement therebetween, yet be sufficiently snug at the distal tip to retain the closure element in the substantially tubular configuration until it is released out of its distal thereof.
Referring back to
Again, similar to the operation of the embodiment of
The pusher member 320 is then advanced distally to deploy the closure element 500″ off of the end of the obturator or tissue locator device 202, and out of the lumen 644 of the introducer sheath 640. The distally directed tines 520 of the closure element 500″ pierce the opposing arterial walls 620′, 620″ that are radially pulled together, via the tissue engaging device 400 in the closing condition, within the first diameter. Once the substantially tubular closure element 500″ is deployed, it begins to transition from the tubular configuration to the natural, planar configuration with opposing tines 520 and a natural cross-section 530 of the closure element 500 (substantially similar to the deployment of the closure element detailed and shown in
The present invention has been described using various element identifiers to represent elements in the figures. It should be considered that the element identifiers described in connection with a particular figure may be shown in a different figure for purposes of clarity. Thus, the element identifies described in connection to a particular figure may be illustrated in a different figure for clarity because the same element identifiers have been used to describe the same elements.
The invention is susceptible to various modifications, alternative forms and uses, and specific examples thereof have been shown by way of example in the drawings and are herein described in detail. For instance, while the present invention has been primarily described for use in vessel closure, it will be appreciated that the present invention may be suitable for other repair applications as well, such as for patent foramina ovalia (PFO) application. Other modifications may include a guide wire lumen so that the distal ends may be positioned over a guide wire as well. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the claims.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 60/843,325, filed Sep. 8, 2006, entitled “APPARATUS AND METHOD FOR DELIVERING A CLOSURE ELEMENT,” the disclosure of which is incorporated herein in its entirety by specific reference.
Number | Name | Date | Kind |
---|---|---|---|
287046 | Norton | Oct 1883 | A |
438400 | Brennen | Oct 1890 | A |
556082 | Boeddinghaus | Mar 1896 | A |
1088393 | Backus | Feb 1914 | A |
1242139 | Callahan | Oct 1917 | A |
1331401 | Summers | Feb 1920 | A |
1480935 | Gleason | Jan 1924 | A |
1596004 | De Bengoa | Aug 1926 | A |
1647958 | Ciarlante | Nov 1927 | A |
1880569 | Weis | Oct 1932 | A |
2087074 | Tucker | Jul 1937 | A |
2210061 | Caminez | Aug 1940 | A |
2254620 | Miller | Sep 1941 | A |
2316297 | Southerland et al. | Apr 1943 | A |
2371978 | Perham | Mar 1945 | A |
2453227 | James | Nov 1948 | A |
2583625 | Bergan | Jan 1952 | A |
2684070 | Kelsey | Jul 1954 | A |
2755699 | Forster | Jul 1956 | A |
2910067 | White | Oct 1959 | A |
2944311 | Schneckenberger | Jul 1960 | A |
2951482 | Sullivan | Sep 1960 | A |
2969887 | Darmstadt et al. | Jan 1961 | A |
3015403 | Fuller | Jan 1962 | A |
3113379 | Frank | Dec 1963 | A |
3120230 | Skold | Feb 1964 | A |
3142878 | Santora | Aug 1964 | A |
3029754 | Brown | Oct 1965 | A |
3348595 | Stevens, Jr. | Oct 1967 | A |
3357070 | Sloan | Dec 1967 | A |
3482428 | Kapitanov et al. | Dec 1969 | A |
3494533 | Green et al. | Feb 1970 | A |
3510923 | Blake | May 1970 | A |
3523351 | Filia | Aug 1970 | A |
3586002 | Wood | Jun 1971 | A |
3604425 | Le Roy | Sep 1971 | A |
3618447 | Goins | Nov 1971 | A |
3677243 | Nerz | Jul 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3757629 | Schneider | Sep 1973 | A |
3805337 | Branstetter | Apr 1974 | A |
3823719 | Cummings | Jul 1974 | A |
3828791 | Santos | Aug 1974 | A |
3856016 | Davis | Dec 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3908662 | Razgulov et al. | Sep 1975 | A |
3926194 | Greenberg et al. | Dec 1975 | A |
3939820 | Grayzel | Feb 1976 | A |
3944114 | Coppens | Mar 1976 | A |
3960147 | Murray | Jun 1976 | A |
3985138 | Jarvik | Oct 1976 | A |
4007743 | Blake | Feb 1977 | A |
4014492 | Rothfuss | Mar 1977 | A |
4018228 | Goosen | Apr 1977 | A |
4047533 | Perciaccante et al. | Sep 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4112944 | Williams | Sep 1978 | A |
4153321 | Pombrol | May 1979 | A |
4162673 | Patel | Jul 1979 | A |
4169476 | Hiltebrandt | Oct 1979 | A |
4189808 | Brown | Feb 1980 | A |
4192315 | Hilzinger et al. | Mar 1980 | A |
4201215 | Crossett et al. | May 1980 | A |
4204541 | Kapitanov | May 1980 | A |
4207870 | Eldridge | Jun 1980 | A |
4214587 | Sakura, Jr. | Jul 1980 | A |
4215699 | Patel | Aug 1980 | A |
4217902 | March | Aug 1980 | A |
4267995 | McMillan | May 1981 | A |
4273129 | Boebel | Jun 1981 | A |
4274415 | Kanamoto et al. | Jun 1981 | A |
4278091 | Borzone | Jul 1981 | A |
4317445 | Robinson | Mar 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4318401 | Zimmerman | Mar 1982 | A |
4327485 | Rix | May 1982 | A |
4345606 | Littleford | Aug 1982 | A |
4359052 | Staub | Nov 1982 | A |
4368736 | Kaster | Jan 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4407286 | Noiles et al. | Oct 1983 | A |
4411654 | Boarini et al. | Oct 1983 | A |
4412832 | Kling et al. | Nov 1983 | A |
4428376 | Mericle | Jan 1984 | A |
4440170 | Golden et al. | Apr 1984 | A |
4449531 | Cerwin et al. | May 1984 | A |
4475544 | Reis | Oct 1984 | A |
4480356 | Martin | Nov 1984 | A |
4485816 | Krumme | Dec 1984 | A |
RE31855 | Osborne | Mar 1985 | E |
4505273 | Braun et al. | Mar 1985 | A |
4505274 | Speelman | Mar 1985 | A |
4523591 | Kaplan et al. | Jun 1985 | A |
4523695 | Braun et al. | Jun 1985 | A |
4525157 | Valaincourt | Jun 1985 | A |
4526174 | Froehlich | Jul 1985 | A |
4586503 | Kirsch et al. | May 1986 | A |
4592498 | Braun et al. | Jun 1986 | A |
4596559 | Fleischhacker | Jun 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4610251 | Kumar | Sep 1986 | A |
4610252 | Catalano | Sep 1986 | A |
4635634 | Santos | Jan 1987 | A |
4651737 | Deniega | Mar 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4687469 | Osypka | Aug 1987 | A |
4693249 | Schenck et al. | Sep 1987 | A |
4697312 | Freyer | Oct 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4724840 | McVay et al. | Feb 1988 | A |
4738658 | Magro et al. | Apr 1988 | A |
4744364 | Kensey | May 1988 | A |
4747407 | Liu et al. | May 1988 | A |
4759364 | Boebel | Jul 1988 | A |
4771782 | Millar | Sep 1988 | A |
4772266 | Groshong | Sep 1988 | A |
4777950 | Kees, Jr. | Oct 1988 | A |
4789090 | Blake, III | Dec 1988 | A |
4832688 | Sagae et al. | May 1989 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4860746 | Yoon | Aug 1989 | A |
4865026 | Barrett | Sep 1989 | A |
4874122 | Froelich et al. | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4885003 | Hillstead | Dec 1989 | A |
4886067 | Palermo | Dec 1989 | A |
4887601 | Richards | Dec 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4902508 | Badylak et al. | Feb 1990 | A |
4917087 | Walsh et al. | Apr 1990 | A |
4917089 | Sideris | Apr 1990 | A |
4929240 | Kirsch et al. | May 1990 | A |
4934364 | Green | Jun 1990 | A |
4950258 | Kawai et al. | Aug 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4961729 | Vaillancourt | Oct 1990 | A |
4967949 | Sandhaus | Nov 1990 | A |
4976721 | Blasnik et al. | Dec 1990 | A |
4983176 | Cushman et al. | Jan 1991 | A |
4997436 | Oberlander | Mar 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5007921 | Brown | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5026390 | Brown | Jun 1991 | A |
5030226 | Green et al. | Jul 1991 | A |
5032127 | Frazee et al. | Jul 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5059201 | Asnis | Oct 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5092941 | Miura | Mar 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5100422 | Berguer et al. | Mar 1992 | A |
5108420 | Marks | Apr 1992 | A |
5108421 | Fowler | Apr 1992 | A |
5114032 | Laidlaw | May 1992 | A |
5114065 | Storace | May 1992 | A |
5116349 | Aranyi | May 1992 | A |
5122122 | Allgood | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5131379 | Sewell, Jr. | Jul 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5147381 | Heimerl et al. | Sep 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5163343 | Gish | Nov 1992 | A |
5167634 | Corrigan, Jr. et al. | Dec 1992 | A |
5167643 | Lynn | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5176648 | Holmes et al. | Jan 1993 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5192300 | Fowler | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5192302 | Kensey et al. | Mar 1993 | A |
5192602 | Spencer et al. | Mar 1993 | A |
5193533 | Body et al. | Mar 1993 | A |
5197971 | Bonutti | Mar 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209756 | Seedhorm et al. | May 1993 | A |
5217024 | Dorsey et al. | Jun 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5226908 | Yoon | Jul 1993 | A |
5236435 | Sewell, Jr. | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5250058 | Miller et al. | Oct 1993 | A |
5254105 | Haaga | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5269792 | Kovac et al. | Dec 1993 | A |
5275616 | Fowler | Jan 1994 | A |
5281422 | Badylak et al. | Jan 1994 | A |
5282808 | Kovac et al. | Feb 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290243 | Chodorow et al. | Mar 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5292309 | Van Tassel et al. | Mar 1994 | A |
5292332 | Lee | Mar 1994 | A |
5304183 | Gourlay et al. | Apr 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5306254 | Nash et al. | Apr 1994 | A |
5309927 | Welch | May 1994 | A |
5318542 | Hirsch et al. | Jun 1994 | A |
5320639 | Rudnick | Jun 1994 | A |
5327908 | Gerry | Jul 1994 | A |
5330445 | Haaga | Jul 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334216 | Vidal et al. | Aug 1994 | A |
5334217 | Das | Aug 1994 | A |
5335680 | Moore | Aug 1994 | A |
5340360 | Stefanchik | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344439 | Otten | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5364406 | Sewell, Jr. | Nov 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5366458 | Korthoff et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5383897 | Wholey | Jan 1995 | A |
RE34866 | Kensey et al. | Feb 1995 | E |
5392978 | Velez | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5404621 | Heinke | Apr 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5413584 | Schulze | May 1995 | A |
5416584 | Kay | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5419765 | Weldon et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5425489 | Shichman et al. | Jun 1995 | A |
5425740 | Hutchinson, Jr. | Jun 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5431667 | Thompson et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437631 | Janzen | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5443477 | Marin et al. | Aug 1995 | A |
5443481 | Lee | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5449359 | Groiso | Sep 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5464413 | Siska, Jr. et al. | Nov 1995 | A |
5466241 | Leroy et al. | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5474557 | Mai | Dec 1995 | A |
5474569 | Zinreich et al. | Dec 1995 | A |
5476505 | Limon | Dec 1995 | A |
5478352 | Fowler | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5486195 | Myers et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5522840 | Krajicek | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5540716 | Hlavacek | Jul 1996 | A |
5544802 | Crainich | Aug 1996 | A |
5547474 | Kloeckl et al. | Aug 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5571120 | Yoon | Nov 1996 | A |
5573784 | Badylak et al. | Nov 1996 | A |
5575771 | Walinsky | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5584879 | Reimold et al. | Dec 1996 | A |
5591205 | Fowler | Jan 1997 | A |
5593412 | Martinez et al. | Jan 1997 | A |
5601602 | Fowler | Feb 1997 | A |
5609597 | Lehrer | Mar 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5618291 | Thompson et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5620461 | Muijs et al. | Apr 1997 | A |
5626614 | Hart | May 1997 | A |
5634936 | Lindon et al. | Jun 1997 | A |
5643318 | Tsukernik et al. | Jul 1997 | A |
5645565 | Rudd et al. | Jul 1997 | A |
5645566 | Brenneman et al. | Jul 1997 | A |
5645567 | Crainich | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
D383539 | Croley | Sep 1997 | S |
5669935 | Rosenman et al. | Sep 1997 | A |
5674231 | Green et al. | Oct 1997 | A |
5676689 | Kensey et al. | Oct 1997 | A |
5676974 | Valdes et al. | Oct 1997 | A |
5681280 | Rusk et al. | Oct 1997 | A |
5681334 | Evans et al. | Oct 1997 | A |
5683405 | Yacoubian et al. | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5700273 | Buelna et al. | Dec 1997 | A |
5709224 | Behl et al. | Jan 1998 | A |
5713899 | Marnay et al. | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716375 | Fowler | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5725498 | Janzen et al. | Mar 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728114 | Evans et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5728122 | Leschinsky et al. | Mar 1998 | A |
5728132 | Van Tassel et al. | Mar 1998 | A |
5728133 | Kontos | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5735736 | Volk | Apr 1998 | A |
5735873 | MacLean | Apr 1998 | A |
5749826 | Faulkner | May 1998 | A |
5752966 | Chang | May 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5766217 | Christy | Jun 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5769870 | Salahieh et al. | Jun 1998 | A |
5776147 | Dolendo | Jul 1998 | A |
5779707 | Bertholet et al. | Jul 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5782860 | Epstein et al. | Jul 1998 | A |
5782861 | Cragg et al. | Jul 1998 | A |
5795958 | Rao et al. | Aug 1998 | A |
5797928 | Kogasaka | Aug 1998 | A |
5797931 | Bito et al. | Aug 1998 | A |
5797933 | Snow et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810776 | Bacich et al. | Sep 1998 | A |
5810846 | Virnich et al. | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5830125 | Scribner et al. | Nov 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5843167 | Dwyer et al. | Dec 1998 | A |
5845657 | Carberry et al. | Dec 1998 | A |
5853421 | Leschinsky et al. | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855312 | Toledano | Jan 1999 | A |
5858082 | Cruz et al. | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5861005 | Kontos | Jan 1999 | A |
5868755 | Kanner et al. | Feb 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5868763 | Spence et al. | Feb 1999 | A |
5871474 | Hermann et al. | Feb 1999 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5873876 | Christy | Feb 1999 | A |
5873891 | Sohn | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5891088 | Thompson et al. | Apr 1999 | A |
5897487 | Ouchi | Apr 1999 | A |
5902310 | Foerster et al. | May 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5906631 | Imran | May 1999 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5910155 | Ratcliff et al. | Jun 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5922009 | Epstein et al. | Jul 1999 | A |
5928231 | Klein et al. | Jul 1999 | A |
5928251 | Aranyi et al. | Jul 1999 | A |
5935147 | Kensey et al. | Aug 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5947999 | Groiso | Sep 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5951518 | Licata et al. | Sep 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5951589 | Epstein et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957900 | Ouchi | Sep 1999 | A |
5957936 | Yoon et al. | Sep 1999 | A |
5957938 | Zhu et al. | Sep 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5976161 | Kirsch et al. | Nov 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5984934 | Ashby et al. | Nov 1999 | A |
5984948 | Hasson | Nov 1999 | A |
5984949 | Levin | Nov 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
5993476 | Groiso | Nov 1999 | A |
6001110 | Adams | Dec 1999 | A |
6004341 | Zhu et al. | Dec 1999 | A |
6007563 | Nash et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6013084 | Ken et al. | Jan 2000 | A |
6015815 | Mollison | Jan 2000 | A |
6019779 | Thorud et al. | Feb 2000 | A |
6022372 | Kontos | Feb 2000 | A |
6024750 | Mastri | Feb 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6030364 | Durgin et al. | Feb 2000 | A |
6030413 | Lazarus | Feb 2000 | A |
6033427 | Lee | Mar 2000 | A |
6036703 | Evans et al. | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6045570 | Epstein et al. | Apr 2000 | A |
6048358 | Barak | Apr 2000 | A |
6056768 | Cates et al. | May 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6056770 | Epstein et al. | May 2000 | A |
6059800 | Hart et al. | May 2000 | A |
6059825 | Hobbs et al. | May 2000 | A |
6063085 | Tay et al. | May 2000 | A |
6063114 | Nash et al. | May 2000 | A |
6071300 | Brenneman et al. | Jun 2000 | A |
6077281 | Das | Jun 2000 | A |
6077291 | Das | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6080183 | Tsugita et al. | Jun 2000 | A |
6083242 | Cook | Jul 2000 | A |
6090130 | Nash et al. | Jul 2000 | A |
6095155 | Criscuolo | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6110184 | Weadock | Aug 2000 | A |
6113610 | Poncet | Sep 2000 | A |
6113612 | Swanson et al. | Sep 2000 | A |
6117125 | Rothbarth et al. | Sep 2000 | A |
6117148 | Ravo | Sep 2000 | A |
6117157 | Tekulve | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6120513 | Bailey et al. | Sep 2000 | A |
6120524 | Taheri | Sep 2000 | A |
6126675 | Schervinsky et al. | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6146385 | Torrie et al. | Nov 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152936 | Christy et al. | Nov 2000 | A |
6152937 | Peterson et al. | Nov 2000 | A |
6161263 | Anderson | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6171277 | Ponzi | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6179849 | Yencho et al. | Jan 2001 | B1 |
6179860 | Fulton, III et al. | Jan 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6200329 | Fung et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6206913 | Yencho et al. | Mar 2001 | B1 |
6206931 | Cook et al. | Mar 2001 | B1 |
6210407 | Webster | Apr 2001 | B1 |
6220248 | Voegele et al. | Apr 2001 | B1 |
6221102 | Baker et al. | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6248124 | Pedros et al. | Jun 2001 | B1 |
6254617 | Spence et al. | Jul 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6267773 | Gadberry et al. | Jul 2001 | B1 |
6273903 | Wilk | Aug 2001 | B1 |
6277140 | Ginn et al. | Aug 2001 | B2 |
6280460 | Bolduc et al. | Aug 2001 | B1 |
6287322 | Zhu et al. | Sep 2001 | B1 |
6296657 | Brucker | Oct 2001 | B1 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6305891 | Burlingame | Oct 2001 | B1 |
6309416 | Swanson et al. | Oct 2001 | B1 |
6319258 | McAllen, III et al. | Nov 2001 | B1 |
6322580 | Kanner | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6329386 | Mollison | Dec 2001 | B1 |
6334865 | Redmond et al. | Jan 2002 | B1 |
6348064 | Kanner | Feb 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6358258 | Arcia et al. | Mar 2002 | B1 |
6375671 | Kobayashi et al. | Apr 2002 | B1 |
D457958 | Dycus | May 2002 | S |
6383208 | Sancoff et al. | May 2002 | B1 |
6391048 | Ginn et al. | May 2002 | B1 |
6395015 | Borst et al. | May 2002 | B1 |
6398752 | Sweezer et al. | Jun 2002 | B1 |
6402765 | Monassevitch et al. | Jun 2002 | B1 |
6409739 | Nobles et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6421899 | Zitnay | Jul 2002 | B1 |
6423054 | Ouchi | Jul 2002 | B1 |
6425911 | Akerfeldt et al. | Jul 2002 | B1 |
6428472 | Haas | Aug 2002 | B1 |
6428548 | Durgin et al. | Aug 2002 | B1 |
6443158 | Lafontaine et al. | Sep 2002 | B1 |
6443963 | Baldwin et al. | Sep 2002 | B1 |
6447540 | Fontaine et al. | Sep 2002 | B1 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6461364 | Ginn et al. | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6488692 | Spence et al. | Dec 2002 | B1 |
6500115 | Krattiger et al. | Dec 2002 | B2 |
6506210 | Kanner | Jan 2003 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6514280 | Gilson | Feb 2003 | B1 |
6517555 | Caro | Feb 2003 | B1 |
6517569 | Mikus et al. | Feb 2003 | B2 |
6527737 | Kaneshige | Mar 2003 | B2 |
6533762 | Kanner et al. | Mar 2003 | B2 |
6533812 | Swanson et al. | Mar 2003 | B2 |
6537288 | Vargas et al. | Mar 2003 | B2 |
6547806 | Ding | Apr 2003 | B1 |
6551319 | Lieberman | Apr 2003 | B2 |
6558349 | Kirkman | May 2003 | B1 |
6569173 | Blatter et al. | May 2003 | B1 |
6569185 | Ungs | May 2003 | B2 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6578585 | Stachowski et al. | Jun 2003 | B1 |
6582452 | Coleman et al. | Jun 2003 | B2 |
6582482 | Gillman et al. | Jun 2003 | B2 |
6596012 | Akerfeldt et al. | Jul 2003 | B2 |
6599303 | Peterson et al. | Jul 2003 | B1 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6602263 | Swanson et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6613060 | Adams et al. | Sep 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6620165 | Wellisz | Sep 2003 | B2 |
6623509 | Ginn | Sep 2003 | B2 |
6623510 | Carley et al. | Sep 2003 | B2 |
6626918 | Ginn et al. | Sep 2003 | B1 |
6626919 | Swanstrom | Sep 2003 | B1 |
6626920 | Whayne | Sep 2003 | B2 |
6632197 | Lyon | Oct 2003 | B2 |
6632238 | Ginn et al. | Oct 2003 | B2 |
6634537 | Chen | Oct 2003 | B2 |
6645205 | Ginn | Nov 2003 | B2 |
6645225 | Atkinson | Nov 2003 | B1 |
6645255 | Atkinson | Nov 2003 | B2 |
6652538 | Kayan et al. | Nov 2003 | B2 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6663633 | Pierson, III | Dec 2003 | B1 |
6663655 | Ginn et al. | Dec 2003 | B2 |
6669714 | Coleman et al. | Dec 2003 | B2 |
6673083 | Kayan et al. | Jan 2004 | B1 |
6676671 | Robertson et al. | Jan 2004 | B2 |
6676685 | Pedros et al. | Jan 2004 | B2 |
6679904 | Gleeson et al. | Jan 2004 | B2 |
6685707 | Roman et al. | Feb 2004 | B2 |
6689147 | Koster, Jr. | Feb 2004 | B1 |
6695867 | Ginn et al. | Feb 2004 | B2 |
6699256 | Logan et al. | Mar 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6712837 | Akerfeldt et al. | Mar 2004 | B2 |
6719777 | Ginn et al. | Apr 2004 | B2 |
6726704 | Loshakove et al. | Apr 2004 | B1 |
6736822 | McClellan et al. | May 2004 | B2 |
6743195 | Zucker | Jun 2004 | B2 |
6743243 | Roy et al. | Jun 2004 | B1 |
6743259 | Ginn | Jun 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6749621 | Pantages et al. | Jun 2004 | B2 |
6749622 | McGuckin et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755842 | Kanner et al. | Jun 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6776785 | Yencho et al. | Aug 2004 | B1 |
6780197 | Roe et al. | Aug 2004 | B2 |
6786915 | Akerfeldt et al. | Sep 2004 | B2 |
6790218 | Jayaraman | Sep 2004 | B2 |
6790220 | Morris et al. | Sep 2004 | B2 |
6837893 | Miller | Jan 2005 | B2 |
6837906 | Ginn | Jan 2005 | B2 |
6846319 | Ginn et al. | Jan 2005 | B2 |
6849078 | Durgin et al. | Feb 2005 | B2 |
6860895 | Akerfeldt et al. | Mar 2005 | B1 |
6890343 | Ginn et al. | May 2005 | B2 |
6896687 | Dakov | May 2005 | B2 |
6896692 | Ginn et al. | May 2005 | B2 |
6904647 | Byers, Jr. | Jun 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6926723 | Mulhauser et al. | Aug 2005 | B1 |
6926731 | Coleman et al. | Aug 2005 | B2 |
6929634 | Dorros et al. | Aug 2005 | B2 |
6942641 | Seddon | Sep 2005 | B2 |
6942674 | Belef et al. | Sep 2005 | B2 |
6942691 | Chuter | Sep 2005 | B1 |
6964668 | Modesitt et al. | Nov 2005 | B2 |
6969397 | Ginn | Nov 2005 | B2 |
6984238 | Gifford, III et al. | Jan 2006 | B2 |
6989003 | Wing et al. | Jan 2006 | B2 |
6989016 | Tallarida et al. | Jan 2006 | B2 |
7001398 | Carley et al. | Feb 2006 | B2 |
7001400 | Modesitt et al. | Feb 2006 | B1 |
7008435 | Cummins | Mar 2006 | B2 |
7008439 | Janzen et al. | Mar 2006 | B1 |
7025776 | Houser et al. | Apr 2006 | B1 |
7033379 | Peterson | Apr 2006 | B2 |
7060084 | Loshakove et al. | Jun 2006 | B1 |
7063711 | Loshakove et al. | Jun 2006 | B1 |
7074232 | Kanner et al. | Jul 2006 | B2 |
7076305 | Imran et al. | Jul 2006 | B2 |
7083635 | Ginn | Aug 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7108709 | Cummins | Sep 2006 | B2 |
7111768 | Cummins et al. | Sep 2006 | B2 |
7112225 | Ginn | Sep 2006 | B2 |
7144411 | Ginn et al. | Dec 2006 | B2 |
7163551 | Anthony et al. | Jan 2007 | B2 |
7169158 | Sniffin et al. | Jan 2007 | B2 |
7169164 | Borillo et al. | Jan 2007 | B2 |
7211101 | Carley et al. | May 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7261716 | Strobel et al. | Aug 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7316704 | Bagaoisan et al. | Jan 2008 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7322995 | Buckman et al. | Jan 2008 | B2 |
7326230 | Ravikumar | Feb 2008 | B2 |
7331979 | Khosravi et al. | Feb 2008 | B2 |
7335220 | Khosravi et al. | Feb 2008 | B2 |
D566272 | Walburg et al. | Apr 2008 | S |
7361178 | Hearn et al. | Apr 2008 | B2 |
7361183 | Ginn | Apr 2008 | B2 |
7361185 | O'Malley et al. | Apr 2008 | B2 |
7393363 | Ginn | Jul 2008 | B2 |
7396359 | Derowe et al. | Jul 2008 | B1 |
7431727 | Cole et al. | Oct 2008 | B2 |
7431729 | Chanduszko | Oct 2008 | B2 |
7465286 | Patterson et al. | Dec 2008 | B2 |
7533790 | Knodel et al. | May 2009 | B1 |
7582103 | Young et al. | Sep 2009 | B2 |
7582104 | Corcoran et al. | Sep 2009 | B2 |
7597706 | Kanner et al. | Oct 2009 | B2 |
7618427 | Ortiz et al. | Nov 2009 | B2 |
7622628 | Bergin et al. | Nov 2009 | B2 |
7645285 | Cosgrove et al. | Jan 2010 | B2 |
D611144 | Reynolds | Mar 2010 | S |
7678135 | Maahs et al. | Mar 2010 | B2 |
7727249 | Rahmani | Jun 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7799042 | Williamson, IV et al. | Sep 2010 | B2 |
7819895 | Ginn et al. | Oct 2010 | B2 |
7931671 | Tenerz | Apr 2011 | B2 |
7967842 | Bakos | Jun 2011 | B2 |
8103327 | Harlev et al. | Jan 2012 | B2 |
8105352 | Egnelöv | Jan 2012 | B2 |
8226666 | Zarbatany et al. | Jul 2012 | B2 |
20010007077 | Ginn et al. | Jul 2001 | A1 |
20010031972 | Robertson et al. | Oct 2001 | A1 |
20010031973 | Nobles et al. | Oct 2001 | A1 |
20010044639 | Levinson | Nov 2001 | A1 |
20010046518 | Sawhney | Nov 2001 | A1 |
20010047180 | Grudem et al. | Nov 2001 | A1 |
20020022822 | Cragg et al. | Feb 2002 | A1 |
20020026208 | Belef | Feb 2002 | A1 |
20020026215 | Redmond et al. | Feb 2002 | A1 |
20020026216 | Grimes | Feb 2002 | A1 |
20020029050 | Gifford, III et al. | Mar 2002 | A1 |
20020038127 | Blatter et al. | Mar 2002 | A1 |
20020042622 | Vargas et al. | Apr 2002 | A1 |
20020049427 | Wiener et al. | Apr 2002 | A1 |
20020049472 | Coleman et al. | Apr 2002 | A1 |
20020058960 | Hudson et al. | May 2002 | A1 |
20020062104 | Ashby et al. | May 2002 | A1 |
20020072768 | Ginn | Jun 2002 | A1 |
20020077657 | Ginn et al. | Jun 2002 | A1 |
20020082641 | Ginn et al. | Jun 2002 | A1 |
20020095181 | Beyar | Jul 2002 | A1 |
20020099389 | Michler et al. | Jul 2002 | A1 |
20020106409 | Sawhney et al. | Aug 2002 | A1 |
20020107542 | Kanner et al. | Aug 2002 | A1 |
20020133193 | Ginn et al. | Sep 2002 | A1 |
20020151921 | Kanner et al. | Oct 2002 | A1 |
20020151963 | Brown et al. | Oct 2002 | A1 |
20020183786 | Girton | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020193808 | Belef et al. | Dec 2002 | A1 |
20020198562 | Ackerfeldt et al. | Dec 2002 | A1 |
20020198589 | Leong | Dec 2002 | A1 |
20030004543 | Gleeson et al. | Jan 2003 | A1 |
20030009180 | Hinchliffe et al. | Jan 2003 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030023248 | Parodi | Jan 2003 | A1 |
20030032981 | Kanner et al. | Feb 2003 | A1 |
20030033006 | Phillips et al. | Feb 2003 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030055455 | Yang et al. | Mar 2003 | A1 |
20030060846 | Egnelov et al. | Mar 2003 | A1 |
20030065358 | Frecker et al. | Apr 2003 | A1 |
20030078598 | Ginn et al. | Apr 2003 | A1 |
20030083679 | Grudem et al. | May 2003 | A1 |
20030093096 | McGuckin et al. | May 2003 | A1 |
20030093108 | Avellanet et al. | May 2003 | A1 |
20030097140 | Kanner | May 2003 | A1 |
20030109890 | Kanner et al. | Jun 2003 | A1 |
20030125766 | Ding | Jul 2003 | A1 |
20030139819 | Beer et al. | Jul 2003 | A1 |
20030144695 | McGuckin, Jr. et al. | Jul 2003 | A1 |
20030158577 | Pantages et al. | Aug 2003 | A1 |
20030158578 | Pantages et al. | Aug 2003 | A1 |
20030195504 | Tallarida et al. | Oct 2003 | A1 |
20030195561 | Carley et al. | Oct 2003 | A1 |
20030208211 | Kortenbach | Nov 2003 | A1 |
20030233095 | Urbanski et al. | Dec 2003 | A1 |
20040009205 | Sawhney | Jan 2004 | A1 |
20040009289 | Carley et al. | Jan 2004 | A1 |
20040010285 | Carley et al. | Jan 2004 | A1 |
20040039414 | Carley et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040059376 | Breuniger | Mar 2004 | A1 |
20040068273 | Fariss et al. | Apr 2004 | A1 |
20040073236 | Carley et al. | Apr 2004 | A1 |
20040073255 | Ginn et al. | Apr 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040082906 | Tallarida et al. | Apr 2004 | A1 |
20040087985 | Loshakove et al. | May 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040092964 | Modesitt et al. | May 2004 | A1 |
20040092968 | Caro et al. | May 2004 | A1 |
20040092973 | Chandusko et al. | May 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040093027 | Fabisiak et al. | May 2004 | A1 |
20040097978 | Modesitt et al. | May 2004 | A1 |
20040106980 | Solovay et al. | Jun 2004 | A1 |
20040127940 | Ginn et al. | Jul 2004 | A1 |
20040143290 | Brightbill | Jul 2004 | A1 |
20040143291 | Corcoran et al. | Jul 2004 | A1 |
20040153122 | Palermo | Aug 2004 | A1 |
20040153123 | Palermo et al. | Aug 2004 | A1 |
20040158127 | Okada | Aug 2004 | A1 |
20040158287 | Cragg et al. | Aug 2004 | A1 |
20040158309 | Wachter et al. | Aug 2004 | A1 |
20040167511 | Buehlmann et al. | Aug 2004 | A1 |
20040167570 | Pantages | Aug 2004 | A1 |
20040191277 | Sawhney et al. | Sep 2004 | A1 |
20040215232 | Belhe et al. | Oct 2004 | A1 |
20040243216 | Gregorich | Dec 2004 | A1 |
20040249412 | Snow et al. | Dec 2004 | A1 |
20040254591 | Kanner et al. | Dec 2004 | A1 |
20040267193 | Bagaoisan et al. | Dec 2004 | A1 |
20040267308 | Bagaoisan et al. | Dec 2004 | A1 |
20040267312 | Kanner et al. | Dec 2004 | A1 |
20050038460 | Jayaraman | Feb 2005 | A1 |
20050038500 | Boylan et al. | Feb 2005 | A1 |
20050059982 | Zung et al. | Mar 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050075665 | Brenzel et al. | Apr 2005 | A1 |
20050085851 | Fiehler et al. | Apr 2005 | A1 |
20050085854 | Ginn | Apr 2005 | A1 |
20050085855 | Forsberg | Apr 2005 | A1 |
20050090859 | Ravlkumar | Apr 2005 | A1 |
20050119695 | Carley et al. | Jun 2005 | A1 |
20050121042 | Belhe et al. | Jun 2005 | A1 |
20050149117 | Khosravi et al. | Jul 2005 | A1 |
20050152949 | Hotchkiss et al. | Jul 2005 | A1 |
20050154401 | Weldon et al. | Jul 2005 | A1 |
20050165357 | McGuckin et al. | Jul 2005 | A1 |
20050169974 | Tenerez et al. | Aug 2005 | A1 |
20050177189 | Ginn et al. | Aug 2005 | A1 |
20050187564 | Jayaraman | Aug 2005 | A1 |
20050203552 | Laufer et al. | Sep 2005 | A1 |
20050216057 | Coleman et al. | Sep 2005 | A1 |
20050222614 | Ginn et al. | Oct 2005 | A1 |
20050228443 | Yassinzadeh | Oct 2005 | A1 |
20050234508 | Cummins et al. | Oct 2005 | A1 |
20050245876 | Khosravi et al. | Nov 2005 | A1 |
20050267528 | Ginn et al. | Dec 2005 | A1 |
20050267530 | Cummins et al. | Dec 2005 | A1 |
20050273136 | Belef et al. | Dec 2005 | A1 |
20050273137 | Ginn | Dec 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20060020270 | Jabba et al. | Jan 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060034930 | Khosravi et al. | Feb 2006 | A1 |
20060047313 | Khanna et al. | Mar 2006 | A1 |
20060058844 | White et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060100664 | Pai et al. | May 2006 | A1 |
20060135989 | Carley et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060144479 | Carley et al. | Jul 2006 | A1 |
20060167484 | Carley et al. | Jul 2006 | A1 |
20060190014 | Ginn et al. | Aug 2006 | A1 |
20060190036 | Wendel et al. | Aug 2006 | A1 |
20060190037 | Carley et al. | Aug 2006 | A1 |
20060190038 | Carley et al. | Aug 2006 | A1 |
20060195123 | Ginn et al. | Aug 2006 | A1 |
20060195124 | Ginn et al. | Aug 2006 | A1 |
20060206146 | Tenerez | Sep 2006 | A1 |
20060253037 | Ginn et al. | Nov 2006 | A1 |
20060253072 | Pai et al. | Nov 2006 | A1 |
20060259049 | Harada et al. | Nov 2006 | A1 |
20060287674 | Ginn et al. | Dec 2006 | A1 |
20060293698 | Douk | Dec 2006 | A1 |
20070005093 | Cox | Jan 2007 | A1 |
20070010853 | Ginn et al. | Jan 2007 | A1 |
20070010854 | Cummins et al. | Jan 2007 | A1 |
20070021778 | Carly | Jan 2007 | A1 |
20070027476 | Harris et al. | Feb 2007 | A1 |
20070027525 | Ben-Muvhar | Feb 2007 | A1 |
20070049967 | Sibbitt, Jr. et al. | Mar 2007 | A1 |
20070049968 | Sibbitt, Jr. et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070060895 | Sibbitt, Jr. et al. | Mar 2007 | A1 |
20070060950 | Khosravi et al. | Mar 2007 | A1 |
20070060951 | Shannon | Mar 2007 | A1 |
20070083230 | Javois | Apr 2007 | A1 |
20070083231 | Lee | Apr 2007 | A1 |
20070112304 | Voss | May 2007 | A1 |
20070112365 | Hilal et al. | May 2007 | A1 |
20070112385 | Conlon | May 2007 | A1 |
20070123816 | Zhu et al. | May 2007 | A1 |
20070123817 | Khosravi et al. | May 2007 | A1 |
20070123936 | Goldin et al. | May 2007 | A1 |
20070172430 | Brito et al. | Jul 2007 | A1 |
20070179527 | Eskuri et al. | Aug 2007 | A1 |
20070185530 | Chin-Chen et al. | Aug 2007 | A1 |
20070203506 | Sibbitt, Jr. et al. | Aug 2007 | A1 |
20070203507 | McLaughlin et al. | Aug 2007 | A1 |
20070213747 | Monassevitch et al. | Sep 2007 | A1 |
20070225755 | Preinitz et al. | Sep 2007 | A1 |
20070225756 | Preinitz et al. | Sep 2007 | A1 |
20070225757 | Preinitz et al. | Sep 2007 | A1 |
20070225758 | Preinitz et al. | Sep 2007 | A1 |
20070239209 | Fallman | Oct 2007 | A1 |
20070250080 | Jones et al. | Oct 2007 | A1 |
20070265658 | Nelson et al. | Nov 2007 | A1 |
20070270904 | Ginn | Nov 2007 | A1 |
20070275036 | Green, III et al. | Nov 2007 | A1 |
20070276416 | Ginn et al. | Nov 2007 | A1 |
20070276488 | Wachter et al. | Nov 2007 | A1 |
20070282352 | Carley et al. | Dec 2007 | A1 |
20070282373 | Ashby et al. | Dec 2007 | A1 |
20080004636 | Walberg | Jan 2008 | A1 |
20080004640 | Ellingwood | Jan 2008 | A1 |
20080009794 | Bagaoisan et al. | Jan 2008 | A1 |
20080033459 | Shafi et al. | Feb 2008 | A1 |
20080058839 | Nobles et al. | Mar 2008 | A1 |
20080065151 | Ginn | Mar 2008 | A1 |
20080086075 | Isik et al. | Apr 2008 | A1 |
20080093414 | Bender et al. | Apr 2008 | A1 |
20080114378 | Matsushita | May 2008 | A1 |
20080114395 | Mathisen et al. | May 2008 | A1 |
20080177288 | Carlson | Jul 2008 | A1 |
20080210737 | Ginn et al. | Sep 2008 | A1 |
20080221616 | Ginn et al. | Sep 2008 | A1 |
20080243148 | Mikkaichi et al. | Oct 2008 | A1 |
20080243182 | Bates et al. | Oct 2008 | A1 |
20080269801 | Coleman et al. | Oct 2008 | A1 |
20080269802 | Coleman et al. | Oct 2008 | A1 |
20080272173 | Coleman et al. | Nov 2008 | A1 |
20080287988 | Smith et al. | Nov 2008 | A1 |
20080300628 | Ellingwood | Dec 2008 | A1 |
20080312666 | Ellingwood et al. | Dec 2008 | A1 |
20080312686 | Ellingwood | Dec 2008 | A1 |
20080312740 | Wachter et al. | Dec 2008 | A1 |
20080319475 | Clark | Dec 2008 | A1 |
20090054912 | Heanue et al. | Feb 2009 | A1 |
20090105728 | Noda et al. | Apr 2009 | A1 |
20090112306 | Bonsignore et al. | Apr 2009 | A1 |
20090137900 | Bonner et al. | May 2009 | A1 |
20090157101 | Reyes et al. | Jun 2009 | A1 |
20090157102 | Reynolds et al. | Jun 2009 | A1 |
20090157103 | Walberg et al. | Jun 2009 | A1 |
20090171388 | Dave et al. | Jul 2009 | A1 |
20090177212 | Carley et al. | Jul 2009 | A1 |
20090177213 | Carley et al. | Jul 2009 | A1 |
20090187215 | Mackiewicz et al. | Jul 2009 | A1 |
20090216267 | Willard et al. | Aug 2009 | A1 |
20090227938 | Fasching et al. | Sep 2009 | A1 |
20090230168 | Coleman et al. | Sep 2009 | A1 |
20090254119 | Sibbitt, Jr. et al. | Oct 2009 | A1 |
20090287244 | Kokish | Nov 2009 | A1 |
20090312789 | Kassab et al. | Dec 2009 | A1 |
20100042144 | Bennett | Feb 2010 | A1 |
20100114156 | Mehl | May 2010 | A1 |
20100114159 | Roorda et al. | May 2010 | A1 |
20100130965 | Sibbitt, Jr. et al. | May 2010 | A1 |
20100168790 | Clark | Jul 2010 | A1 |
20100179567 | Voss et al. | Jul 2010 | A1 |
20100179571 | Voss | Jul 2010 | A1 |
20100179572 | Voss et al. | Jul 2010 | A1 |
20100179589 | Roorda et al. | Jul 2010 | A1 |
20100179590 | Fortson et al. | Jul 2010 | A1 |
20100185234 | Fortson et al. | Jul 2010 | A1 |
20100249828 | Mavani et al. | Sep 2010 | A1 |
20110066163 | Cho et al. | Mar 2011 | A1 |
20110178548 | Tenerz | Jul 2011 | A1 |
20110270282 | Lemke | Nov 2011 | A1 |
20120035630 | Roorda | Feb 2012 | A1 |
20120245603 | Voss | Sep 2012 | A1 |
20120245623 | Karineimi et al. | Sep 2012 | A1 |
20120245626 | Ellingwood et al. | Sep 2012 | A1 |
20120310261 | Cummins et al. | Dec 2012 | A1 |
20130006274 | Walberg et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2003297432 | Jul 2004 | AU |
2 339 060 | Feb 2000 | CA |
197 11 288 | Jan 1998 | DE |
297 23 736 | Apr 1999 | DE |
19859952 | Feb 2000 | DE |
102006056283 | Jun 2008 | DE |
0 386 361 | Sep 1990 | EP |
0 534 696 | Mar 1993 | EP |
0 621 032 | Oct 1994 | EP |
0 756 851 | Feb 1997 | EP |
0 774 237 | May 1997 | EP |
0 858 776 | Aug 1998 | EP |
0 941 697 | Sep 1999 | EP |
1 867 287 | Dec 2007 | EP |
2 443 238 | Jul 1980 | FR |
2 715 290 | Jul 1995 | FR |
2 722 975 | Feb 1996 | FR |
2 768 324 | Mar 1999 | FR |
1 358 466 | Jul 1974 | GB |
2 075 144 | Nov 1981 | GB |
2 397 240 | Jul 2004 | GB |
S 20000722 | Oct 2001 | IE |
S 20000724 | Oct 2001 | IE |
S 20010547 | Jul 2002 | IE |
S 20010815 | Jul 2002 | IE |
S 20010748 | Aug 2002 | IE |
S 20010749 | Aug 2002 | IE |
S 20020452 | Dec 2002 | IE |
S 20020664 | Feb 2003 | IE |
S 20020665 | Feb 2003 | IE |
S 20020451 | Jul 2003 | IE |
S 20020552 | Jul 2003 | IE |
S 20030424 | Dec 2003 | IE |
S 20030490 | Jan 2004 | IE |
S 20040368 | Nov 2005 | IE |
S 20050342 | Nov 2005 | IE |
58-181006 | Dec 1983 | JP |
12 74750 | Nov 1989 | JP |
11500642 | Aug 1997 | JP |
2000102546 | Apr 2000 | JP |
9302140 | Jul 1995 | NL |
171425 | Apr 1997 | PL |
2086192 | Aug 1997 | RU |
495067 | Dec 1975 | SU |
912155 | Mar 1982 | SU |
1243708 | Jul 1986 | SU |
1324650 | Jul 1987 | SU |
1405828 | Jun 1988 | SU |
1456109 | Feb 1989 | SU |
1560133 | Apr 1990 | SU |
WO 9624291 | Aug 1996 | WO |
WO 9707741 | Mar 1997 | WO |
WO 9720505 | Jun 1997 | WO |
WO 9727897 | Aug 1997 | WO |
WO 9806346 | Feb 1998 | WO |
WO 9806448 | Feb 1998 | WO |
WO 9816161 | Apr 1998 | WO |
WO 9817179 | Apr 1998 | WO |
WO 9818389 | May 1998 | WO |
WO 9824374 | Jun 1998 | WO |
WO 9825508 | Jun 1998 | WO |
WO 9858591 | Dec 1998 | WO |
WO 9921491 | May 1999 | WO |
WO 9940849 | Aug 1999 | WO |
WO 9960941 | Dec 1999 | WO |
WO 9962408 | Dec 1999 | WO |
WO 9962415 | Dec 1999 | WO |
WO 0006029 | Feb 2000 | WO |
WO 0007505 | Feb 2000 | WO |
WO 0007640 | Feb 2000 | WO |
WO 0027311 | May 2000 | WO |
WO 0027313 | May 2000 | WO |
WO 0056223 | Sep 2000 | WO |
WO 0056227 | Sep 2000 | WO |
WO 0056228 | Sep 2000 | WO |
WO 0071032 | Nov 2000 | WO |
WO 0121058 | Mar 2001 | WO |
WO 0135832 | May 2001 | WO |
WO 0147594 | Jul 2001 | WO |
WO 0149186 | Jul 2001 | WO |
WO 0191628 | Dec 2001 | WO |
WO 0219915 | Mar 2002 | WO |
WO 0219920 | Mar 2002 | WO |
WO 0219922 | Mar 2002 | WO |
WO 0219924 | Mar 2002 | WO |
WO 0228286 | Apr 2002 | WO |
WO 0238055 | May 2002 | WO |
WO 0245593 | Jun 2002 | WO |
WO 0245594 | Jun 2002 | WO |
WO 02062234 | Aug 2002 | WO |
WO 02098302 | Dec 2002 | WO |
WO 03013363 | Feb 2003 | WO |
WO 03013364 | Feb 2003 | WO |
WO 03047434 | Jun 2003 | WO |
WO 03071955 | Sep 2003 | WO |
WO 03071956 | Sep 2003 | WO |
WO 03071957 | Sep 2003 | WO |
WO 03094748 | Nov 2003 | WO |
WO 03101310 | Dec 2003 | WO |
WO 2004004578 | Jan 2004 | WO |
WO 2004012602 | Feb 2004 | WO |
WO 2004060169 | Jul 2004 | WO |
WO 2004069054 | Aug 2004 | WO |
WO 2005000126 | Jan 2005 | WO |
WO 2005006990 | Jan 2005 | WO |
WO 2005041782 | May 2005 | WO |
WO 2005063129 | Jul 2005 | WO |
WO 2005082256 | Sep 2005 | WO |
WO 2005092204 | Oct 2005 | WO |
WO 2005110240 | Nov 2005 | WO |
WO 2005112782 | Dec 2005 | WO |
WO 2005115251 | Dec 2005 | WO |
WO 2005115521 | Dec 2005 | WO |
WO 2006000514 | Jan 2006 | WO |
WO 2006026116 | Mar 2006 | WO |
WO 2006052611 | May 2006 | WO |
WO 2006052612 | May 2006 | WO |
WO 2006078578 | Jul 2006 | WO |
WO 2006083889 | Aug 2006 | WO |
PCTUS0778051 | Sep 2006 | WO |
WO 2006115901 | Nov 2006 | WO |
WO 2006115904 | Nov 2006 | WO |
WO 2006118877 | Nov 2006 | WO |
WO 2007005585 | Jan 2007 | WO |
WO 2007025014 | Mar 2007 | WO |
WO 2007025017 | Mar 2007 | WO |
WO 2007025018 | Mar 2007 | WO |
WO 2007025019 | Mar 2007 | WO |
WO 2007081836 | Jul 2007 | WO |
WO 2007088069 | Aug 2007 | WO |
WO 2008031102 | Mar 2008 | WO |
WO 2008036384 | Mar 2008 | WO |
WO 2008074027 | Jun 2008 | WO |
WO 2008150915 | Dec 2008 | WO |
WO 2009079091 | Jun 2009 | WO |
WO 2010031050 | Mar 2010 | WO |
WO 2010062693 | Jun 2010 | WO |
WO 2010081101 | Jul 2010 | WO |
WO 2010081102 | Jul 2010 | WO |
WO 2010081103 | Jul 2010 | WO |
WO 2010081106 | Jul 2010 | WO |
20010527 | Jan 2001 | ZA |
200100528 | Jan 2001 | ZA |
Entry |
---|
U.S. Appl. No. 61/015,144, filed Dec. 19, 2007, Mackiewicz et al. |
U.S. Appl. No. 61/109,822, filed Oct. 30, 2008, Mehl et al. |
U.S. Appl. No. 61/143,748, filed Jan. 9, 2009, Mehl et al. |
U.S. Appl. No. 61/143,751, filed Jan. 9, 2009, Voss et al. |
U.S. Appl. No. 61/145,468, filed Jan. 16, 2009, Fortson et al. |
U.S. Appl. No. 09/610,128, filed Jul. 5, 2000, Kerievsky. |
U.S. Appl. No. 09/866,551, filed May 25, 2001, Ginn. |
U.S. Appl. No. 12/548,274, filed Aug. 26, 2009, Clark. |
U.S. Appl. No. 12/724,304, filed Mar. 15, 2010, Fortson. |
U.S. Appl. No. 12/848,642, filed Aug. 2, 2010, Fortson et al. |
U.S. Appl. No. 10/006,400, Aug. 2, 2010, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Aug. 3, 2010, Notice of Allowance. |
U.S. Appl. No. 10/541,083, Aug. 17, 2010, Notice of Allowance. |
U.S. Appl. No. 10/638,115, Aug. 13, 2010, Notice of Allowance. |
U.S. Appl. No. 10/682,459, Apr. 28, 2010, Office Action. |
U.S. Appl. No. 10/787,073, Aug. 25, 2010, Notice of Allowance. |
U.S. Appl. No. 11/048,503, Jul. 30, 2010, Notice of Allowance. |
U.S. Appl. No. 11/427,309, May 28, 2008, Office Action. |
U.S. Appl. No. 11/427,309, Jan. 2, 2009, Office Action. |
U.S. Appl. No. 11/427,309, Apr. 20, 2009, Office Action. |
U.S. Appl. No. 11/427,309, Nov. 6, 2009, Office Action. |
U.S. Appl. No. 11/427,309, Apr. 26, 2010, Office Action. |
U.S. Appl. No. 11/508,656, Aug. 30, 2010, Office Action. |
U.S. Appl. No. 11/675,462, Aug. 31, 2010, Office Action. |
U.S. Appl. No. 11/757,108, Nov. 25, 2009, Office Action. |
U.S. Appl. No. 11/958,281, Sep. 2, 2010, Office Action. |
U.S. Appl. No. 11/959,334, Jul. 23, 2010, Notice of Allowance. |
U.S. Appl. No. 12/403,256, Aug. 19, 2010, Notice of Allowance. |
U.S. Appl. No. 10/616,832, Sep. 20, 2010, Notice of Allowance. |
U.S. Appl. No. 10/787,073, Sep. 15, 2010, Issue Notification. |
U.S. Appl. No. 11/152,562, Sep. 16, 2010, Notice of Allowance. |
U.S. Appl. No. 11/427,297, Sep. 15, 2010, Office Action. |
U.S. Appl. No. 11/767,818, Sep. 30, 2010, Office Action. |
U.S. Appl. No. 12/365,397, Sep. 13, 2010, Office Action. |
U.S. Appl. No. 60/693,531, filed Jun. 24, 2005, Carly. |
U.S. Appl. No. 60/696,069, filed Jul. 1, 2005, Pantages et al. |
U.S. Appl. No. 60/711,279, filed Aug. 24, 2005, Sibbitt, Jr. et al. |
U.S. Appl. No. 60/726,985, filed Oct. 14, 2005, Sibbitt, Jr. et al. |
U.S. Appl. No. 60/793,444, filed Apr. 20, 2006, Jones et al. |
U.S. Appl. No. 60/946,026, filed Jun. 25, 2007, Ellingwood. |
U.S. Appl. No. 60/946,030, filed Jun. 25, 2007, Voss et al. |
U.S. Appl. No. 60/946,042, filed Jun. 25, 2007, Ellingwood et al. |
U.S. Appl. No. 61/097,072, filed Sep. 15, 2008, Sibbitt, Jr. et al. |
U.S. Appl. No. 61/139,995, filed Dec. 22, 2008, Clark. |
U.S. Appl. No. 61/141,597, filed Dec. 30, 2008, Clark. |
U.S. Appl. No. 12/113,092, filed Apr. 30, 2008, Ginn et al. |
U.S. Appl. No. 12/393,877, filed Feb. 26, 2009, Ellingwood et al. |
U.S. Appl. No. 12/481,377, filed Jun. 9, 2009, Clark. |
Deepak Mital et al, Renal Transplantation Without Sutures Using the Vascular Clipping System for Renal Artery and Vein Anastomosis—A New Technique, Transplantation Issue, Oct. 1996, pp. 1171-1173, vol. 62—No. 8, Section of Transplantation Surgery, Department of General Surgery, Rush-Presbyterian/St. Luke's Medical Center, Chigago, IL. |
DL Wessel et al, Outpatient closure of the patent ductus arteriosus, Circulation, May 1988, pp. 1068-1071, vol. 77—No. 5, Department of Anesthesia, Children's Hospital, Boston, MA. |
E Pikoulis et al, Arterial reconstruction with vascular clips is safe and quicker than sutured repair, Cardiovascular Surgery, Dec. 1998, pp. 573-578(6), vol. 6—No. 6, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD. |
G Gershony et al, Novel vascular sealing device for closure of percutaneous vascular access sites, Cathet. Cardiovasc. Diagn., Jan. 1998, pp. 82-88, vol. 45. |
H De Swart et al, A new hemostatic puncture closure device for the immediate sealing of arterial puncture sites, American journal of cardiology, Aug. 1993, pp. 445-449, vol. 72—No. 5, Department of Cardiology, Academic Hospital Maastricht, The Netherlands. |
Harrith M. Hasson M.D. , Laparoscopic Cannula Cone with Means for Cannula Stabilization and Wound Closure, The Journal of the American Association of Gynecologic Laparoscopists, May 1998, pp. 183-185, vol. 5—No. 2, Division of Obstetrics and Gynecology, University of Chicago, Chigago, IL. |
J. Findlay et al, Carotid Arteriotomy Closure Using a Vascular Clip System, Neurosurgery, Mar. 1998, pp. 550-554, vol. 42—No. 3, Division of Neurosurgery, University of Alberta, Edmonton, Canada. |
Jeremy L Gilbert Phd, Wound Closure Biomaterials and Devices, Shock., Mar. 1999, p. 226, vol. 11—No. 3, Institution Northwestern University (editorial review). |
Jochen T. Cremer, MD, et al, Different approaches for minimally invasive closure of atrial septal defects, Ann. Thorac. Surg., Nov. 1998, pp. 1648-1652, vol. 67, a Division of Thoracic and Cardiovascular Surgery, Surgical Center, Hannover Medical School. Hannover, Germany. |
K Narayanan et al, Simultaneous primary closure of four fasciotomy wounds in a single setting using the Sure-Closure device, Injury, Jul. 1996, pp. 449-451, vol. 27—No. 6, Department of Surgery, Mercy Hospital of Pittsburgh, PA. |
Marshall A.C., Lock J.E., Structural and Compliant Anatomy of the Patent Foramen Ovale in Patients Undergoing Transcatheter Closure, Am Heart J Aug. 2000; 140(2); pp. 303-307. |
MD Gonze et al, Complications associated with percutaneous closure devices, Conference: Annual Meeting of the Society for Clinical Vascular Surgery, The American journal of surgery, Mar. 1999, pp. 209-211, vol. 178, No. 3, Department of Surgery, Section of Vascular Surgery, Ochsner Medical Institutions, New Orleans, LA. |
MD Hellinger et al, Effective peritoneal and fascial closure of abdominal trocar sites utilizing the Endo-Judge, J Laparoendosc Surg., Oct. 1996, pp. 329-332, vol. 6—No. 5, Orlando Regional Medical Center, FL. |
Michael Gianturco, A Play on Catheterization, Forbes, Dec. 1996, p. 146, vol. 158—No. 15. |
Om Elashry et al, Comparative clinical study of port-closure techniques following laparoscopic surgery, Department of Surgery, Mallickrodt Institute of Radiography, J Am Coll Surg., Oct. 1996, pp. 335-344, vol. 183—No. 4. |
P M N Werker, et al, Review of facilitated approaches to vascular anastomosis surgery, Conference: Utrecht MICABG Workshop 2, The Annals of thoracic surgery, Apr. 1996, pp. S122-S127, vol. 63—No. 6, Department of Plastic, Reconstructive and Hand surgery, University Hospital Utrecht Netherlands Departments of Cardiology and Cardiopulmonary Surgery, Heart Lung Institute, Utrecht Netherlands.; Utrect University Hospital Utrecht Netherlands. |
Peter Rhee MD et al, Use of Titanium Vascular Staples in Trauma, Journal of Trauma-Injury Infection & Critical Care, Dec. 1998, pp. 1097-1099, vol. 45—No. 6, Institution from the Department of Surgery, Washington Hospital Center, Washington DC, and Uniformed Services University of the Health Sciences, Bethesda, Maryland. |
ProstarXL—Percutaneous Vascular Surgical Device, www.Archive.org, Jun. 1998, Original Publisher: http://prostar.com, may also be found at http://web.archive.org/web/19980630040429/www.perclose.com/html/prstrxl.html. |
SA Beyer-Enke et al, Immediate sealing of arterial puncture site following femoropopliteal angioplasty: A prospective randomized trial, Cardiovascular and Interventional Radiology 1996, Nov.-Dec. 1996, pp. 406-410, vol. 19—No. 6, Gen Hosp North, Dept Dianost & Intervent Radiol, Nurnberg, Germany (Reprint). |
Scott Hensley, Closing Wounds. New Devices seal arterial punctures in double time, Modern Healthcare (United States), Mar. 23, 2008, p. 48. |
Sigmund Silber et al, A novel vascular device for closure of percutaneous arterial access sites, The American Journal of Cardiology, Apr. 1999, pp. 1248-1252, vol. 83—No. 8. |
Simonetta Blengino et al, A Randomized Study of the 8 French Hemostatic Puncture Closure Device vs Manual Compression After Coronary Interventions, Journal of the American College of Cardiology, Feb. 1995, p. 262A, vol. 25.—No. 2, Supplement 1. |
Stretch Comb by Scunci, retrieved via internet at www.scunci.com/productdetail by examiner on Oct. 9, 2007, publication date unavailable. |
Sy Nakada et al, Comparison of newer laparoscopic port closure techniques in the porcine model, J Endourol, Oct. 1995, pp. 397-401, vol. 9—No. 5, Department of Surgery/Urology, University of Wisconsin Medical School, Madison. |
Taber's Cyclopedic Medical Dictionary, 18th Ed. 1997, pp. 747 and 1420. |
Thomas P. Baum RPA-C et al, Delayed Primary Closure Using Silastic Vessel Loops and Skin Staples: Description of the Technique and Case Reports, Annals of Plastic Surgery, Mar. 1999, pp. 337-340, vol. 42—No. 3, Institution Department of Plastic and Reconstructive Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY. |
Tomoaki Hinohara, Percutaneous vascular surgery (Prostar® Plus and Techstar® for femoral artery site closure), Interventional Cardiology Newsletter, May-Jul. 1997, pp. 19-28, vol. 5—No. 3-4. |
Ut Aker et al, Immediate arterial hemostasis after cardiac catheterization: initial experience with a new puncture closure device, Cathet Cardiovasc Diagn, Mar. 1994, pp. 228-232, vol. 33—No. 3, Missouri Baptist Medical Center, St. Louis. |
Wei Qu et al, An absorbable pinned-ring device for microvascular anastomosis of vein grafts: Experimental studies, Microsurgery 1999, Mar. 1999, pp. 128-134, vol. 19—No. 3, Department of Orthopaedic Surgery, Hiroshima University School of Medicine, Hiroshima, Japan. |
William G. Kussmaul III MD, et al., Rapid arterial hemostasis and decreased access site complications after cardiac catheterization and angioplasty: Results of a randomized trial of a novel hemostatic device, Journal of the American College of Cardiology, Jun. 1995, pp. 1685-1692, vol. 25—No. 7. |
U.S. Appl. No. 09/680,837, Jul. 9, 2002, Office Action. |
U.S. Appl. No. 09/680,837, Nov. 6, 2002, Office Action. |
U.S. Appl. No. 09/680,837, Mar. 25, 2003, Office Action. |
U.S. Appl. No. 09/680,837, Jun. 16, 2003, Notice of Allowance. |
U.S. Appl. No. 09/732,178, Aug. 1, 2002, Office Action. |
U.S. Appl. No. 09/732,178, Dec. 24, 2002, Office Action. |
U.S. Appl. No. 09/732,178, Jun. 10, 2003, Office action. |
U.S. Appl. No. 09/732,178, Jul. 3, 2003, Office Action. |
U.S. Appl. No. 09/732,178, Nov. 17, 2003, Notice of Allowance. |
U.S. Appl. No. 09/732,835, Sep. 11, 2003, Office Action. |
U.S. Appl. No. 09/732,835, Feb. 9, 2004, Office Action. |
U.S. Appl. No. 09/732,835, Mar. 17, 2004, Notice of Allowance. |
U.S. Appl. No. 09/764,813, Mar. 26, 2001 Office Action. |
U.S. Appl. No. 09/764,813, Jun. 4, 2001, Notice of Allowance. |
U.S. Appl. No. 09/933,299, Feb. 26, 2003, Office Action. |
U.S. Appl. No. 09/933,299, Jun. 16, 2003, Notice of Allowance. |
U.S. Appl. No. 09/948,813, Jan. 31, 2003, Notice of Allowance. |
U.S. Appl. No. 09/949,398, Mar. 4, 2003, Office Action. |
U.S. Appl. No. 09/949,398, Jul. 28, 2003, Notice of Allowance. |
U.S. Appl. No. 09/949,438, Dec. 17, 2002, Office Action. |
U.S. Appl. No. 09/949,438, Apr. 21, 2003, Notice of Allowance. |
U.S. Appl. No. 10/006,400, Aug. 27, 2004, Office Action. |
U.S. Appl. No. 10/006,400, Feb. 23, 2005, Office Action. |
U.S. Appl. No. 10/006,400, Apr. 11, 2005, Office Action. |
U.S. Appl. No. 10/006,400, Jul. 27, 2005, Office Action. |
U.S. Appl. No. 10/006,400, Mar. 6, 2006, Office Action. |
U.S. Appl. No. 10/006,400, May 24, 2006, Office Action. |
U.S. Appl. No. 10/006,400, Oct. 26, 2006, Office Action. |
U.S. Appl. No. 10/006,400, Apr. 19, 2007, Office Action. |
U.S. Appl. No. 10/006,400, Apr. 2, 2008, Office Action. |
U.S. Appl. No. 10/006,400, Jan. 2, 2009, Office Action. |
U.S. Appl. No. 10/006,400, Jul. 9, 2009, Notice of Allowance. |
U.S. Appl. No. 10/006,400, Jan. 13, 2010, Notice of Allowance. |
U.S. Appl. No. 10/006,400, Apr. 27, 2010, Notice of Allowance. |
U.S. Appl. No. 10/081,717, Sep. 29, 2003, Notice of Allowance. |
U.S. Appl. No. 10/081,723, Sep. 29, 2004, Office Action. |
U.S. Appl. No. 10/081,723, May 13, 2005, Notice of Allowance. |
U.S. Appl. No. 10/081,725, Feb. 9, 2004, Notice of Allowance. |
U.S. Appl. No. 10/081,725, Apr. 13, 2004, Office Action. |
U.S. Appl. No. 10/081,726, Apr. 11, 2003, Notice of Allowance. |
U.S. Appl. No. 10/081,726, Jun. 9, 2003, Notice of Allowance. |
U.S. Appl. No. 10/147,774, Nov. 4, 2004, Office Action. |
U.S. Appl. No. 10/147,774, May 4, 2005, Office Action. |
U.S. Appl. No. 10/147,774, Oct. 18, 2005, Office Action. |
U.S. Appl. No. 10/147,774, Apr. 18, 2007, Notice of Allowance. |
U.S. Appl. No. 10/147,774, Sep. 27, 2007, Notice of Allowance. |
U.S. Appl. No. 10/147,774, Feb. 4, 2008, Notice of Allowance. |
U.S. Appl. No. 10/147,774, Jun. 30, 2008, Office Action. |
U.S. Appl. No. 10/147,774, Mar. 18, 2009, Office Action. |
U.S. Appl. No. 10/147,774, Oct. 26, 2009, Office Action. |
U.S. Appl. No. 10/147,774, Jun. 8, 2010, Office Action. |
U.S. Appl. No. 10/240,183, Jul. 27, 2004, Office Action. |
U.S. Appl. No. 10/240,183, Dec. 17, 2004, Office Action. |
U.S. Appl. No. 10/240,183, Mar. 9, 2005, Notice of Allowance. |
U.S. Appl. No. 10/240,183, Aug. 11, 2006, Office Action. |
U.S. Appl. No. 10/264,306, Feb. 9, 2005, Office Action. |
U.S. Appl. No. 10/264,306, Oct. 4, 2005, Office Action. |
U.S. Appl. No. 10/264,306, May 10, 2006, Notice of Allowance. |
U.S. Appl. No. 10/264,306, Jul. 2, 2007, Notice of Allowance. |
U.S. Appl. No. 10/264,306, Feb. 4, 2008, Notice of Allowance. |
U.S. Appl. No. 10/264,306, Jun. 27, 2008, Office Action. |
U.S. Appl. No. 10/264,306, Feb. 26, 2009, Office Action. |
U.S. Appl. No. 10/264,306, Aug. 13, 2009, Office Action. |
U.S. Appl. No. 10/264,306, Jan. 27, 2010, Office Action. |
U.S. Appl. No. 10/264,306, Jun. 15, 2010, Office Action. |
U.S. Appl. No. 10/335,075, Aug. 10, 2005, Office Action. |
U.S. Appl. No. 10/335,075, Dec. 19, 2005, Office Action. |
U.S. Appl. No. 10/335,075, Apr. 21, 2006, Office Action. |
U.S. Appl. No. 10/335,075, Dec. 27, 2006, Notice of Allowance. |
U.S. Appl. No. 10/356,214, Nov. 30, 2005, Office Action. |
U.S. Appl. No. 10/356,214, Aug. 23, 2006, Office Action. |
U.S. Appl. No. 10/356,214, Feb. 13, 2007, Office Action. |
U.S. Appl. No. 10/356,214, Sep. 12, 2007, Office Action. |
U.S. Appl. No. 10/356,214, Mar. 6, 2008, Office Action. |
U.S. Appl. No. 10/356,214, Nov. 4, 2008, Office Action. |
U.S. Appl. No. 10/356,214, Apr. 29, 2009, Office Action. |
U.S. Appl. No. 10/356,214, Jan. 13, 2010, Notice of Allowance. |
U.S. Appl. No. 10/356,214, May 13, 2010, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jun. 10, 2004, Office Action. |
U.S. Appl. No. 10/435,104, Sep. 21, 2004, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jan. 3, 2006, Office Action. |
U.S. Appl. No. 10/435,104, May 16, 2006, Office Action. |
U.S. Appl. No. 10/435,104, Dec. 28, 2006, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jul. 10, 2007, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Aug. 2, 2007, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Oct. 26, 2007, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Nov. 14, 2007, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Apr. 4, 2008, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Sep. 26, 2008, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Dec. 22, 2008, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jul. 23, 2009, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jan. 20, 2010, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jun. 2, 2010, Office Action. |
U.S. Appl. No. 10/455,768, Nov. 16, 2004, Office Action. |
U.S. Appl. No. 10/455,768, Apr. 6, 2005, Notice of Allowance. |
U.S. Appl. No. 10/486,067, Jan. 10, 2006, Office Action. |
U.S. Appl. No. 10/486,067, Sep. 20, 2006, Notice of Allowance. |
U.S. Appl. No. 10/486,070, Apr. 20, 2005, Office Action. |
U.S. Appl. No. 10/486,070, Aug. 10, 2005, Office Action. |
U.S. Appl. No. 10/486,070, Oct. 18, 2005, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Aug. 13, 2007, Office Action. |
U.S. Appl. No. 10/517,004, Jan. 30, 2008, Office Action. |
U.S. Appl. No. 10/517,004, Aug. 13, 2008, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Feb. 10, 2009, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Mar. 24, 2009, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Jun. 26, 2009, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Jan. 11, 2010, Notice of Allowance. |
U.S. Appl. No. 10/517,004, Apr. 23, 2010, Notice of Allowance. |
U.S. Appl. No. 10/519,778, Feb. 23, 2006, Office Action. |
U.S. Appl. No. 10/519,778, May 31, 2006, Notice of Allowance. |
U.S. Appl. No. 10/541,083, Oct. 16, 2007, Office Action. |
U.S. Appl. No. 10/541,083, Oct. 31, 2007, Office Action. |
U.S. Appl. No. 10/541,083, May 5, 2008, Office Action. |
U.S. Appl. No. 10/541,083, Sep. 19, 2008, Notice of Allowance. |
U.S. Appl. No. 10/541,083, Dec. 29, 2008, Notice of Allowance. |
U.S. Appl. No. 10/541,083, Apr. 16, 2009, Notice of Allowance. |
U.S. Appl. No. 10/541,083, Sep. 30, 2009, Notice of Allowance. |
U.S. Appl. No. 10/541,083, Feb. 5, 2010, Notice of Allowance. |
U.S. Appl. No. 10/541,083, May 10, 2010, Notice of Allowance. |
U.S. Appl. No. 10/616,832, Jun. 30, 2006, Office Action. |
U.S. Appl. No. 10/616,832, Oct. 20, 2006, Office Action. |
U.S. Appl. No. 10/616,832, May 29, 2007, Office Action. |
U.S. Appl. No. 10/616,832, Jan. 22, 2008, Office Action. |
U.S. Appl. No. 10/616,832, Sep. 17, 2008, Office Action. |
U.S. Appl. No. 10/616,832, Jul. 21, 2009, Office Action. |
U.S. Appl. No. 10/616,832, Jan. 11, 2010, Notice of Allowance. |
U.S. Appl. No. 10/616,832, May 12, 2010, Notice of Allowance. |
U.S. Appl. No. 10/617,090, Mar. 22, 2005, Office Action. |
U.S. Appl. No. 10/617,090, Jul. 6, 2005, Notice of Allowance. |
U.S. Appl. No. 10/617,090, Oct. 5, 2005, Notice of Allowance. |
U.S. Appl. No. 10/638,115, Sep. 22, 2006, Office Action. |
U.S. Appl. No. 10/638,115, Jan. 31, 2007, Office Action. |
U.S. Appl. No. 10/638,115, Sep. 18, 2007, Office Action. |
U.S. Appl. No. 10/638,115, Feb. 7, 2008, Office Action. |
U.S. Appl. No. 10/638,115, Oct. 29, 2008, Office Action. |
U.S. Appl. No. 10/638,115, May 7, 2009, Notice of Allowance. |
U.S. Appl. No. 10/638,115, Dec. 1, 2009, Notice of Allowance. |
U.S. Appl. No. 10/638,115, Apr. 2, 2010, Notice of Allowance. |
U.S. Appl. No. 10/667,144, Sep. 19, 2006, Office Action. |
U.S. Appl. No. 10/667,144, May 2, 2007, Office Action. |
U.S. Appl. No. 10/667,144, Nov. 19, 2007, Office Action. |
U.S. Appl. No. 10/667,144, Dec. 5, 2007, Office Action. |
U.S. Appl. No. 10/667,144, May 12, 2008, Office Action. |
U.S. Appl. No. 10/667,144, Mar. 24, 2009, Office Action. |
U.S. Appl. No. 10/667,144, Nov. 23, 2009, Office Action. |
U.S. Appl. No. 10/667,144, Jun. 22, 2010, Office Action. |
U.S. Appl. No. 10/669,313, Oct. 31, 2005, Office Action. |
U.S. Appl. No. 10/669,313, Jan. 11, 2006, Notice of Allowance. |
U.S. Appl. No. 10/669,313, Jun. 28, 2006, Notice of Allowance. |
U.S. Appl. No. 10/682,459, Apr. 2, 2008, Office Action. |
U.S. Appl. No. 10/682,459, Dec. 4, 2008, Office Action. |
U.S. Appl. No. 10/682,459, Jun. 10, 2009, Office Action. |
U.S. Appl. No. 10/682,459, Dec. 23, 2009, Office Action. |
U.S. Appl. No. 10/786,444, Apr. 24, 2008, Office Action. |
U.S. Appl. No. 10/786,444, Oct. 17, 2008, Office Action. |
U.S. Appl. No. 10/786,444, Jun. 18, 2009, Office Action. |
U.S. Appl. No. 10/786,444, Jan. 14, 2010, Office Action. |
U.S. Appl. No. 10/787,073, Feb. 22, 2008, Office Action. |
U.S. Appl. No. 10/787,073, Nov. 12, 2008, Office Action. |
U.S. Appl. No. 10/787,073, Aug. 13, 2009, Office Action. |
U.S. Appl. No. 10/787,073, Feb. 17, 2010, Notice of Allowance. |
U.S. Appl. No. 10/908,721, Nov. 25, 2008, Office Action. |
U.S. Appl. No. 10/908,721, Jun. 23, 2009, Office Action. |
U.S. Appl. No. 10/908,721, Feb. 2, 2010, Office Action. |
U.S. Appl. No. 11/048,503, Mar. 13, 2009, Office Action. |
U.S. Appl. No. 11/048,503, Jun. 26, 2009, Office Action. |
U.S. Appl. No. 11/048,503, Jan. 11, 2010, Notice of Allowance. |
U.S. Appl. No. 11/048,503, Apr. 26, 2010, Notice of Allowance. |
U.S. Appl. No. 11/113,549, Apr. 16, 2008, Office Action. |
U.S. Appl. No. 11/113,549, Jul. 21, 2009, Office Action. |
U.S. Appl. No. 11/113,549, Jul. 6, 2010, Office Action. |
U.S. Appl. No. 11/152,562, May 13, 2008, Office Action. |
U.S. Appl. No. 11/152,562, Feb. 13, 2009, Office Action. |
U.S. Appl. No. 11/152,562, Jul. 6, 2009, Office Action. |
U.S. Appl. No. 11/152,562, Mar. 31, 2010, Office Action. |
U.S. Appl. No. 11/198,811, Aug. 26, 2008, Office Action. |
U.S. Appl. No. 11/198,811, Apr. 6, 2009, Office Action. |
U.S. Appl. No. 11/198,811, Sep. 22, 2009, Office Action. |
U.S. Appl. No. 11/198,811, Jun. 29, 2010, Notice of Allowance. |
U.S. Appl. No. 11/316,775, Apr. 16, 2008, Office Action. |
U.S. Appl. No. 11/316,775, Aug. 6, 2008, Office Action. |
U.S. Appl. No. 11/344,793, Jan. 22, 2009, Office Action. |
U.S. Appl. No. 11/344,868, Mar. 25, 2009, Office Action. |
U.S. Appl. No. 11/344,891, Apr. 29, 2008, Office Action. |
U.S. Appl. No. 11/344,891, Dec. 8, 2008, Office Action. |
U.S. Appl. No. 11/344,891, Feb. 26, 2009, Office Action. |
U.S. Appl. No. 11/344,891, Oct. 7, 2009, Office Action. |
U.S. Appl. No. 11/344,891, May 7, 2010, Office Action. |
U.S. Appl. No. 11/390,586, Jun. 24, 2009, Office Action. |
U.S. Appl. No. 11/390,586, Jul. 6, 2010, Office Action. |
U.S. Appl. No. 11/396,141, May 22, 2009, Office Action. |
U.S. Appl. No. 11/396,141, Aug. 26, 2009, Office Action. |
U.S. Appl. No. 11/396,141, May 4, 2010, Office Action. |
U.S. Appl. No. 11/396,731, Feb. 13, 2009, Office Action. |
U.S. Appl. No. 11/396,731, May 22, 2009, Office Action. |
U.S. Appl. No. 11/396,731, Jun. 29, 2010, Office Action. |
U.S. Appl. No. 11/406,203, May 23, 2008, Notice of Allowance. |
U.S. Appl. No. 11/406,203, Sep. 22, 2008, Notice of Allowance. |
U.S. Appl. No. 11/406,203, Mar. 3, 2009, Office Action. |
U.S. Appl. No. 11/406,203, Sep. 16, 2009, Office Action. |
U.S. Appl. No. 11/406,203, Jun. 18, 2010, Notice of Allowance. |
U.S. Appl. No. 11/411,925, Feb. 5, 2008, Office Action. |
U.S. Appl. No. 11/411,925, Jan. 12, 2009, Office Action. |
U.S. Appl. No. 11/411,925, Sep. 10, 2009, Office Action. |
U.S. Appl. No. 11/427,297, Jan. 30, 2009, Office Action. |
U.S. Appl. No. 11/427,297, Sep. 15, 2009, Office Action. |
U.S. Appl. No. 11/455,993, Feb. 17, 2009, Office Action. |
U.S. Appl. No. 11/455,993, Dec. 16, 2009, Office Action. |
U.S. Appl. No. 11/508,656, Dec. 9, 2009, Office Action. |
U.S. Appl. No. 11/508,656, Mar. 25, 2010, Office Action. |
U.S. Appl. No. 11/508,662, Dec. 28, 2009, Office Action. |
U.S. Appl. No. 11/508,662, Apr. 14, 2010, Office Action. |
U.S. Appl. No. 11/508,715, Jan. 6, 2010, Office Action. |
U.S. Appl. No. 11/508,715, Apr. 26, 2010, Office Action. |
U.S. Appl. No. 11/532,325, Feb. 23, 2009, Office Action. |
U.S. Appl. No. 11/532,325, Jun. 17, 2009, Office Action. |
U.S. Appl. No. 11/532,325, Jan. 5, 2010, Office Action. |
U.S. Appl. No. 11/532,576, Mar. 1, 2010, Office Action. |
U.S. Appl. No. 11/532,576, Apr. 23, 2010, Office Action. |
U.S. Appl. No. 11/674,930, Jan. 8, 2009, Office Action. |
U.S. Appl. No. 11/674,930, Jun. 4, 2009, Office Action. |
U.S. Appl. No. 11/674,930, Jan. 8, 2010, Office Action. |
U.S. Appl. No. 11/675,462, Dec. 10, 2009, Office Action. |
U.S. Appl. No. 11/744,089, Nov. 26, 2008, Office Action. |
U.S. Appl. No. 11/744,089, Aug. 14, 2009, Office Action. |
U.S. Appl. No. 11/767,818, Dec. 24, 2009, Office Action. |
U.S. Appl. No. 11/767,818, Mar. 22, 2010, Office Action. |
U.S. Appl. No. 11/958,295, Aug. 27, 2009, Office Action. |
U.S. Appl. No. 11/958,295, May 25, 2010, Office Action. |
U.S. Appl. No. 11/959,334, Aug. 19, 2009, Office Action. |
U.S. Appl. No. 11/959,334, Jan. 12, 2010, Notice of Allowance. |
U.S. Appl. No. 11/959,334, Apr. 14, 2010, Notice of Allowance. |
U.S. Appl. No. 12/106,928, Jan. 23, 2009, Office Action. |
U.S. Appl. No. 12/106,928, Oct. 5, 2009, Office Action. |
U.S. Appl. No. 12/106,928, May 10, 2010, Office Action. |
U.S. Appl. No. 12/106,937, Mar. 30, 2009, Office Action. |
U.S. Appl. No. 12/106,937, Nov. 18, 2009, Office Action. |
U.S. Appl. No. 12/113,851, Apr. 27, 2010, Office Action. |
U.S. Appl. No. 12/113,851, Jun. 24, 2010, Office Action. |
U.S. Appl. No. 12/402,398, Mar. 9, 2010, Office Action. |
U.S. Appl. No. 12/402,398, May 20, 2010, Office Action. |
U.S. Appl. No. 12/403,256, Dec. 16, 2009, Office Action. |
U.S. Appl. No. 12/403,256, Mar. 30, 2010, Office Action. |
U.S. Appl. No. 12/403,277, Jul. 8, 2010, Office Action. |
U.S. Appl. No. 29/296,370, Aug. 18, 2008, Office Action. |
U.S. Appl. No. 29/296,370, Dec. 2, 2008, Notice of Allowance. |
U.S. Appl. No. 29/296,370, Apr. 1, 2009, Notice of Allowance. |
U.S. Appl. No. 29/296,370, Feb. 10, 2010, Issue Notification. |
U.S. Appl. No. 09/866,551, filed May 25, 2001. |
U.S. Appl. No. 11/396,141, filed Mar. 31. 2006. |
U.S. Appl. No. 11,675,462, filed Feb. 15, 2007. |
U.S. Appl. No. 11/744,089, filed May 3, 2007. |
Database WPI; Section PQ, Week 200120; Derwent Publications Ltd., London GB; AN 2001-203165; XP002199926 & ZA 200 100 528 A (Anthony T), Feb. 28, 2001 abstract. |
“Hand tool for forming telephone connections—comprises pliers with reciprocably driven ram crimping clip around conductors against anvil”, Derwant-ACC—No. 1978-B8090A. |
U.S. Appl. No. 10/356,214, Sep. 3, 2010, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Oct. 5, 2010, Notice of Allowance. |
U.S. Appl. No. 10/682,459, Oct. 12, 2010, Office Action. |
U.S. Appl. No. 11/406,203, Oct. 6, 2010, Issue Notification. |
U.S. Appl. No. 11/532,576, Oct. 13, 2010, Notice of Allowance. |
U.S. Appl. No. 11/958,281, Oct. 8, 2010, Office Action. |
U.S. Appl. No. 12/114,031, Oct. 5, 2010, Office Action. |
U.S. Appl. No. 12/403,277, Oct. 12, 2010, Office Action. |
U.S. Appl. No. 11/508,715, Oct. 18, 2010, Office Action. |
U.S. Appl. No. 10/616,832, Jan. 26, 2011, Issue Notification. |
U.S. Appl. No. 11/152,562, Jan. 26, 2011, Issue Notification. |
U.S. Appl. No. 12/897,358, filed Oct. 4, 2010, Carley. |
U.S. Appl. No. 12/941,809, filed Nov. 8, 2010, Ginn et al. |
U.S. Appl. No. 12/950,628, filed Nov. 19, 2010, Walberg et al. |
U.S. Appl. No. 12/955,859, filed Nov. 29, 2010, Ginn. |
U.S. Appl. No. 12/961,331, filed Dec. 6, 2010, Voss. |
U.S. Appl. No. 12/945,646, filed Nov. 12, 2010, Carley et al. |
U.S. Appl. No. 12/966,923, filed Dec. 13, 2010, Cummins et al. |
U.S. Appl. No. 12/973,204, filed Dec. 20, 2010, Jabba et al. |
U.S. Appl. No. 12/987,792, filed Jan. 10, 2011, Palermo et al. |
U.S. Appl. No. 10/147,774, Dec. 2, 2010, Notice of Allowance. |
U.S. Appl. No. 10/435,104, Jan. 12, 2011, Issue Notification. |
U.S. Appl. No. 10/517,004, Nov. 23, 2010, Issue Notification. |
U.S. Appl. No. 10/541,083, Dec. 1, 2010, Issue Notification. |
U.S. Appl. No. 10/638,115, Dec. 22, 2010, Issue Notification. |
U.S. Appl. No. 11/048,503, Dec. 8, 2010, Issue Notification. |
U.S. Appl. No. 11/113,549, Jan. 4, 2011, Office Action. |
U.S. Appl. No. 11/198,811, Oct. 20, 2010, Issue Notification. |
U.S. Appl. No. 11/427,309, Nov. 15, 2010, Office Action. |
U.S. Appl. No. 11/959,334, Nov. 10, 2010, Issue Notification. |
U.S. Appl. No. 12/106,928, Oct. 25, 2010, Office Action. |
U.S. Appl. No. 12/113,851, Dec. 16, 2010, Office Action. |
U.S. Appl. No. 12/114,031, Nov. 22, 2010, Office Action. |
U.S. Appl. No. 12/114,091, Oct. 27, 2010, Office Action. |
U.S. Appl. No. 12/114,091, Dec. 17, 2010, Office Action. |
U.S. Appl. No. 12/402,398, Jan. 24, 2011, Office Action. |
U.S. Appl. No. 12/403,256, Nov. 23, 2010, Issue Notification. |
U.S. Appl. No. 12/945,646, Jan. 20, 2011, Office Action. |
U.S. Appl. No. 11/344,891, Jan. 22, 2013, Notice of Allowance. |
U.S. Appl. No. 12/961,331, Feb. 1, 2013, Office Action. |
U.S. Appl. No. 13/030,922, Jan. 31, 2013, Office Action. |
U.S. Appl. No. 13/153,594, Jan. 29, 2013, Office Action. |
U.S. Appl. No. 13/615,547, Jan. 18, 2013, Office Action. |
U.S. Appl. No. 11/767,818, Feb. 3, 2012, Notice of Allowance. |
U.S. Appl. No. 12/684,542, Jan. 30, 2012, Office Action. |
U.S. Appl. No. 12/941,809, Jan. 30, 2012, Office Action. |
U.S. Appl. No. 12/966,923, Feb. 3, 2012, Notice of Allowance. |
U.S. Appl. No. 13/488,233, Feb. 5, 2013, Notice of Allowance. |
U.S. Appl. No. 10/667,144, Feb. 15, 2012, Issue Notification. |
U.S. Appl. No. 12/135,858, Feb. 16, 2012, Office Action. |
U.S. Appl. No. 12/608,769, Feb. 10, 2012, Office Action. |
U.S. Appl. No. 12/684,400, Feb. 13, 2012, Office Action. |
U.S. Appl. No. 12/684,562, Feb. 16, 2012, Office Action. |
U.S. Appl. No. 12/724,304, Feb. 10, 2012, Office Action. |
U.S. Appl. No. 12/945,646, Feb. 21, 2012, Notice of Allowance. |
U.S. Appl. No. 12/114,091, Apr. 5, 2012, Office Action. |
U.S. Appl. No. 12/684,542, Apr. 16, 2012, Office Action. |
U.S. Appl. No. 12/143,020, May 30, 2012, Issue Notification. |
U.S. Appl. No. 12/393,877, May 21, 2012, Office Action. |
U.S. Appl. No. 12/941,809, Jun. 1, 2012, Office Action. |
U.S. Appl. No. 12/945,646, May 30, 2012, Issue Notification. |
U.S. Appl. No. 12/973,204, May 30, 2012, Issue Notification. |
U.S. Appl. No. 12/338,977, Jan. 19, 2012, Office Action. |
U.S. Appl. No. 12/684,569, Jan. 27, 2012, Office Action. |
U.S. Appl. No. 12/113,851, Mar. 29, 2012, Office Action. |
U.S. Appl. No. 12/403,277, Apr. 3, 2012, Office Action. |
U.S. Appl. No. 13/308,227, filed Nov. 30, 2011, Yibarren. |
U.S. Appl. No. 12/688,065, Apr. 26, 2012, Office Action. |
U.S. Appl. No. 13/028,041, filed Feb. 15, 2011, Von Oepen. |
U.S. Appl. No. 13/030,922, filed Feb. 18, 2011, Cummins. |
U.S. Appl. No. 13/039,087, filed Mar. 2, 2011, Palermo et al. |
U.S. Appl. No. 13/112,618, filed May 20, 2011, Gianotti et al. |
U.S. Appl. No. 13/112,631, filed May 20, 2011, Voss. |
U.S. Appl. No. 10/682,459, Apr. 1, 2011, Notice of Allowance. |
U.S. Appl. No. 11/396,731, Mar. 22, 2011, Office Action. |
U.S. Appl. No. 11/427,297, Mar. 21, 2011, Office Action. |
U.S. Appl. No. 11/958,281, Mar. 10, 2011, Office Action. |
U.S. Appl. No. 12/113,851, Apr. 27, 2011, Office Action. |
U.S. Appl. No. 12/114,031, May 11, 2011, Office Action. |
U.S. Appl. No. 12/122,603, Mar. 3, 2011, Office Action. |
U.S. Appl. No. 12/122,603, Apr. 22, 2011, Office Action. |
U.S. Appl. No. 12/143,020, May 11, 2011, Restriction Requirement. |
U.S. Appl. No. 12/403,277, Mar. 31, 2011, Office Action. |
U.S. Appl. No. 12/481,377, Apr. 28, 2011, Restriction Requirement. |
U.S. Appl. No. 12/955,859, May 26, 2011, Restriction Requirement. |
U.S. Appl. No. 10/667,144, Oct. 28, 2011, Notice of Allowance. |
U.S. Appl. No. 12/945,646, Oct. 26, 2011, Office Action. |
U.S. Appl. No. 11/427,297, Oct. 31, 2012, Issue Notification. |
U.S. Appl. No. 12/114,091, Nov. 8, 2012, Office Action. |
U.S. Appl. No. 12/403,277, Nov. 5, 2012, Office Action. |
U.S. Appl. No. 12/608,769, Nov. 5, 2012, Notice of Allowance. |
U.S. Appl. No. 12/684,400, Oct. 16, 2012, Office Action. |
U.S. Appl. No. 12/848,642, Nov. 9, 2012, Office Action. |
U.S. Appl. No. 12/850,242, Oct. 17, 2012, Office Action. |
U.S. Appl. No. 13/039,087, Nov. 6, 2012, Notice of Allowance. |
U.S. Appl. No. 12/393,877, Dec. 13, 2011, Office Action. |
U.S. Appl. No. 12/941,809, Dec. 13, 2011, Restriction Requirement. |
U.S. Appl. No. 12/338,977, Nov. 28, 2012, Office Action. |
U.S. Appl. No. 12/961,331, Dec. 4, 2012, Office Action. |
U.S. Appl. No. 13/030,922, Dec. 18, 2012, Office Action. |
U.S. Appl. No. 12/955,859, Dec. 15, 2011. Office Action. |
U.S. Appl. No. 12/481,377, Jan. 3, 2012, Office Action. |
U.S. Appl. No. 12/548,274, Dec. 28, 2011, Office Action. |
U.S. Appl. No. 12/684,562, Dec. 28, 2011, Office Action. |
U.S. Appl. No. 12/143,020, Feb. 23, 2012, Notice of Allowance. |
U.S. Appl. No. 12/548,274, Mar. 2, 2012, Office Action. |
U.S. Appl. No. 12/642,319, Feb. 27, 2012, Office Action. |
U.S. Appl. No. 12/402,398, Mar. 13, 2013, Notice of Allowance. |
U.S. Appl. No. 13/028,041, Jan. 4, 2013, Office Action. |
U.S. Appl. No. 13/028,041, Feb. 26, 2013, Office Action. |
U.S. Appl. No. 12/114,031, Mar. 6, 2012, Office Action. |
U.S. Appl. No. 12/684,470, Mar. 23, 2012, Office Action. |
U.S. Appl. No. 12/688,065, Mar. 13, 2012, Office Action. |
U.S. Appl. No. 12/897,358, Mar. 5, 2012, Notice of Allowance. |
U.S. Appl. No. 12/973,204, Mar. 7, 2012, Notice of Allowance. |
U.S. Appl. No. 12/987,792, Mar. 13, 2012, Office Action. |
U.S. Appl. No. 13/112,618, Mar. 29, 2013, Office Action. |
U.S. Appl. No. 13/112,631, Mar. 29, 2013, Office Action. |
U.S. Appl. No. 13/308,227, Apr. 10, 2013, Office Action. |
U.S. Appl. No. 13/525,839, Apr. 1, 2013, Office Action. |
U.S. Appl. No. 13/791,829, filed Mar. 8, 2013, Roorda et al. |
U.S. Appl. No. 13/791,846, filed Mar. 8, 2013, Palermo. |
U.S. Appl. No. 11/390,586, May 3, 2012, Notice of Allowance. |
U.S. Appl. No. 12/684,400, May 9, 2012, Office Action. |
U.S. Appl. No. 12/897,358, May 2, 2012, Issue Notification. |
U.S. Appl. No. 12/966,923, May 16, 2012, Issue Notification. |
U.S. Appl. No. 10/682,459, Aug. 10, 2011, Issue Notification. |
U.S. Appl. No. 11/396,731, Sep. 1, 2011, Office Action. |
U.S. Appl. No. 12/608,773, Jun. 7, 2012, Office Action. |
U.S. Appl. No. 13/026,989, Jun. 8, 2012, Office Action. |
U.S. Appl. No. 12/481,377, Jun. 21, 2011, Office Action. |
U.S. Appl. No. 13/525,839, filed Jun. 18, 2012, Carley et al. |
U.S. Appl. No. 11/427,297, Jun. 26, 2012, Notice of Allowance. |
U.S. Appl. No. 11/767,818, Jul. 4, 2012, Issue Notification. |
U.S. Appl. No. 12/338,977, Jul. 11, 2012, Office Action. |
U.S. Appl. No. 11/390,586, Jul. 18, 2012, Issue Notification. |
U.S. Appl. No. 12/608,773, Jul. 20, 2012, Office Action. |
U.S. Appl. No. 12/684,569, Jul. 30, 2012, Office Action. |
U.S. Appl. No. 13/039,087, Jul. 17, 2012, Office Action. |
U.S. Appl. No. 11/675,462, Aug. 3, 2011, Office Action. |
U.S. Appl. No. 12/114,031, Aug. 2, 2011, Office Action. |
U.S. Appl. No. 11/675,462, Aug. 16, 2012, Issue Notification. |
U.S. Appl. No. 11/744,089, Aug. 8, 2012, Office Action. |
U.S. Appl. No. 12/481,377, Aug. 10, 2012, Notice of Allowance. |
U.S. Appl. No. 12/850,242, Aug. 6, 2012, Office Action. |
U.S. Appl. No. 12/955,859, Aug. 6, 2012, Office Action. |
U.S. Appl. No. 12/608,769, Aug. 22, 2012, Office Action. |
U.S. Appl. No. 12/642,319, Aug. 28, 2012, Office Action. |
U.S. Appl. No. 12/684,562, Aug. 21, 2012, Office Action. |
U.S. Appl. No. 13/222,899, filed Aug. 31, 2011, Carley et al. |
U.S. Appl. No. 12/143,020, Aug. 31, 2011, Office Action. |
U.S. Appl. No. 12/897,358, Aug. 22, 2011, Office Action. |
U.S. Appl. No. 12/548,274, Sep. 10, 2012, Office Action. |
U.S. Appl. No. 12/684,470, Aug. 30, 2012, Office Action. |
U.S. Appl. No. 12/684,542, Sep. 13, 2012, Office Action. |
U.S. Appl. No. 12/122,603, Sep. 23, 2011, Office Action. |
U.S. Appl. No. 12/393,877, Sep. 29, 2011, Office Action. |
U.S. Appl. No. 12/402,398, Sep. 20, 2012, Office Action. |
U.S. Appl. No. 12/688,065, Oct. 12, 2012, Office Action. |
U.S. Appl. No. 12/848,642, Sep. 20, 2012, Office Action. |
U.S. Appl. No. 12/987,792, Sep. 17, 2012, Office Action. |
U.S. Appl. No. 12/684,470, Dec. 20, 2011, Restriction Requirement. |
U.S. Appl. No. 12/684,569, Dec. 20, 2011, Restriction Requirement. |
U.S. Appl. No. 11/675,462, Dec. 22, 2011, Notice of Allowance. |
U.S. Appl. No. 12/135,858, Jul. 13, 2011, Office Action. |
U.S. Appl. No. 12/955,859, Jul. 21, 2011, Office Action. |
U.S. Appl. No. 13/026,989, Sep. 16, 2011, Office Action. |
U.S. Appl. No. 12/608,773, Jan. 7, 2013, Office Action. |
U.S. Appl. No. 13/490,143, Jan. 4, 2013, Office Action. |
U.S. Appl. No. 12/897,358, Jan. 12, 2012, Notice of Allowance. |
U.S. Appl. No. 11/744,089, Aug. 8, 2013, Notice of Allowance. |
U.S. Appl. No. 12/850,242, Aug. 6, 2013, Notice of Allowance. |
U.S. Appl. No. 12/955,859, Aug. 1, 2013, Notice of Allowance. |
U.S. Appl. No. 13/615,547, Aug. 7, 2013, Issue Notification. |
U.S. Appl. No. 13/026,989, Aug. 23, 2013, Office Action. |
U.S. Appl. No. 13/308,227, Sep. 11, 2013, Office Action. |
U.S. Appl. No. 14/017,039, filed Sep. 3, 2013, Ellingwood et al. |
U.S. Appl. No. 14/023,428, filed Sep. 10, 2013, Ellingwood. |
U.S. Appl. No. 13/898,202, filed May 20, 2013, Walberg et al. |
U.S. Appl. No. 10/786,444, Jul. 11, 2013, Notice of Allowance. |
U.S. Appl. No. 10/908,721, Jul. 18, 2013, Notice of Allowance. |
U.S. Appl. No. 11/396,141, Apr. 30, 2013, Office Action. |
U.S. Appl. No. 11/427,309, Jun. 7, 2013, Notice of Allowance. |
U.S. Appl. No. 11/532,325, Jul. 17, 2013, Office Action. |
U.S. Appl. No. 11/744,089, Apr. 15, 2013, Office Action. |
U.S. Appl. No. 12/106,928, Jun. 28, 2013, Office Action. |
U.S. Appl. No. 12/106,937, Jun. 28, 2013, Office Action. |
U.S. Appl. No. 12/338,977, Jun. 19, 2013, Office Action. |
U.S. Appl. No. 12/848,642, Apr. 26, 2013, Office Action. |
U.S. Appl. No. 12/850,242, Apr. 18, 2013, Office Action. |
U.S. Appl. No. 12/941,809, Jul. 3, 2013, Office Action. |
U.S. Appl. No. 12/955,859, May 16, 2013, Office Action. |
U.S. Appl. No. 12/961,331, Jul. 3, 2013, Office Action. |
U.S. Appl. No. 13/030,922, Jul. 18, 2013, Office Action. |
U.S. Appl. No. 13/052,634, Feb. 8, 2013, Office Action. |
U.S. Appl. No. 13/052,634, Apr. 22, 2013, Office Action. |
U.S. Appl. No. 13/112,618, Jun. 7, 2013, Office Action. |
U.S. Appl. No. 13/112,631, Jun. 26, 2013, Office Action. |
U.S. Appl. No. 13/153,594, May 29, 2013, Office Action. |
U.S. Appl. No. 13/490,143, Apr. 29, 2013, Notice of Allowance. |
U.S. Appl. No. 13/525,839, Jul. 15, 2013, Notice of Allowance. |
U.S. Appl. No. 13/615,547, Apr. 12, 2013, Notice of Allowance. |
U.S. Appl. No. 13/615,547, Jul. 10, 2013, Issue Notification. |
U.S. Appl. No. 13/791,829, May 29, 2013, Office Action. |
U.S. Appl. No. 12/114,091, Jul. 7, 2011, Office Action. |
U.S. Appl. No. 12/945,646, Jul. 6, 2011, Office Action. |
U.S. Appl. No. 13/017,636, filed Jan. 31, 2011, Carley et al. |
U.S. Appl. No. 13/026,989, filed Feb. 14, 2011, Cummins. |
U.S. Appl. No. 10/264,306, filed Feb. 16, 2011, Issue Notification. |
U.S. Appl. No. 11/767,818, filed Feb. 16, 2011, Office Action. |
U.S. Appl. No. 11/396,141, Aug. 21, 2013, Office Action. |
U.S. Appl. No. 13/028,041, Aug. 21, 2013, Notice of Allowance. |
U.S. Appl. No. 13/490,143, Aug. 21, 2013, Issue Notification. |
U.S. Appl. No. 10/908,721, Nov. 6, 2013, Issue Notification. |
U.S. Appl. No. 11/396,141, Nov. 4, 2013, Notice of Allowance. |
U.S. Appl. No. 11/411,925, Oct. 1, 2013, Office Action. |
U.S. Appl. No. 11/744,089, Nov. 20, 2013, Issue Notification. |
U.S. Appl. No. 12/122,603, Nov. 20, 2013, Office Action. |
U.S. Appl. No. 12/688,065, Oct. 18, 2013, Office Action. |
U.S. Appl. No. 12/850,242, Nov. 20, 2013, Issue Notification. |
U.S. Appl. No. 12/941,809, Nov. 8, 2013, Office Action. |
U.S. Appl. No. 12/955,859, Nov. 13, 2013, Issue Notification. |
U.S. Appl. No. 12/961,331, Sep. 20, 2013, Advisory Action. |
U.S. Appl. No. 13/052,634, Nov. 8, 2013, Office Action. |
U.S. Appl. No. 13/112,618, Nov. 20, 2013, Office Action. |
U.S. Appl. No. 13/153,594, Oct. 16, 2013, Notice of Allowance. |
U.S. Appl. No. 13/791,829, Oct. 8, 2013, Notice of Allowance. |
U.S. Appl. No. 11/113,549, Mar. 14, 2014, Notice of Allowance. |
U.S. Appl. No. 11/396,141, Mar. 19, 2014, Issue Notification. |
U.S. Appl. No. 11/411,925, Feb. 5, 2014, Notice of Allowance. |
U.S. Appl. No. 12/106,937, Jan. 22, 2014, Office Action. |
U.S. Appl. No. 12/848,642, Feb. 3, 2014, Notice of Allowance. |
U.S. Appl. No. 12/941,809, Feb. 3, 2014, Notice of Allowance. |
U.S. Appl. No. 12/987,792, Jan. 21, 2014, Office Action. |
U.S. Appl. No. 13/030,922, Jan. 8, 2014, Notice of Allowance. |
U.S. Appl. No. 13/222,899, Jan. 10, 2014, Office Action. |
U.S. Appl. No. 13/898,202 Jan. 3, 2014, Office Action. |
Number | Date | Country | |
---|---|---|---|
20080065152 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60843325 | Sep 2006 | US |