The present invention claims priority of Korean Patent Applications No. 10-2009-0069418, filed on Jul. 14, 2009, which is incorporated herein by reference.
The present invention relates to an apparatus and method for detecting network attack based on visual data analysis, and more particularly, to an apparatus and method wherein traffic information is transformed into traffic images and various attack data occurring in a network is detected from the traffic images using a visual data analysis technique.
Generally, two intrusion detection models, such as an abnormal detection model and a misuse detection model, have been used in order to detect attack data occurring in a network. The abnormal detection model models the property of the normal behavior of network traffic, and then, decides the modeled property different from that of a normal behavior model as a network attack. The misuse detection model generates a signature for a prior attack and checks whether or not the signature exists in network traffic at current to detect network attack.
These detection models have been applied properly to those where network establishment is required, but have defects in coping with intrusions as it is under the current circumstance where the types of intrusion are being diversified.
As mentioned above, the conventional detection models have many problems in applying them to the network, some important problems of which will be given below.
For the abnormal detection model, it has a great difficulty in creating a sophisticated normal behavior model because it depends on network properties and, among other things, makes many misjudgments of deciding non-attacks as attacks.
Further, the misuse detection model enables precise detection for known attacks, but does not make detection for unknown attacks. Especially, with increase in the type of attacks, the misuse detection model has a bulky database storing signatures.
The present invention provides an apparatus and method for detecting network attack based on visual data analysis wherein traffic information is transformed into traffic images and various attack data occurring in a network is detected from the traffic images using a visual data analysis technique.
In accordance with the present invention, there is provided an apparatus for detecting a network attack, including:
a traffic image generator for generating a traffic image using traffic information and additional IP information extracted from the traffic information;
a network attack detector for comparing similarities between the traffic image and a previously generated traffic image based on a predetermined similarity threshold to detect the presence of the network attack;
a network attack analyzer for analyzing the traffic image at a time when the network attack is detected to detect network attack information and pattern information of the network attack; and
a representation unit for visualizing the network attack information and the pattern information of the network attack.
In accordance with the present invention, there is provided a method for detecting a network attack, including:
generating a traffic image using traffic information and additional IP information extracted from the traffic information;
comparing similarities between the traffic image and a previously generated traffic image based on a predetermined similarity threshold to detect the presence of the network attack;
analyzing the traffic image to detect network attack information and pattern information of the network attack; and
visualizing the network attack information and the pattern information of the network attack.
The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments, given in conjunction with the accompanying drawings, in which:
Hereinafter, the operational principle of the present invention will be described in detail with reference to the accompanying drawings. In the following description, well-known functions or constitutions will not be described in detail if they would obscure the invention in unnecessary detail. Further, the terminologies to be described below are defined in consideration of functions in the present invention and may vary depending on a user's or operator's intention or practice. Therefore, the definitions should be understood based on all the contents of the specification.
The traffic image generator 100 collects traffic information and transforms the traffic information into a traffic image based on additional IP information. The network attack detector 200 compares similarities between the traffic image and a previous traffic image based on a predetermined similarity threshold to detect a network attack. The network attack analyzer 300 analyzes the traffic image at a time when the network attack is detected to identify network attack information and pattern information of the network attack. And, the representation unit 400 displays the network attack information and the pattern information of the network attack on a screen.
Referring to
The traffic image generator 100 includes a traffic information collector 101, an internet protocol (IP) address extractor 103, an IP information database (DB) 105, and a traffic image generator 107. The IP information DB 105 stores, in DB or file format, source IPs and destination IPs, source ports, destination ports, protocols, statistics, and additional information such as country, autonomous system (AS), company, internet service provider (ISP), latitude, longitude, management domain, and the like to which an IP address contained in a source IP or an destination IP belongs, which are collected from all over the world.
The traffic information collector 101 collects traffic information (e.g., using Netflow or sflow standards for network monitoring to capture traffic information) received from a network equipment S1 (e.g., a router, etc.) or a traffic generation equipment S2 through network communications (e.g., communications using the transmission control protocol (TCP) or user datagram protocol (UDP)). The collected traffic information is normalized and the normalized traffic information is then provided to the IP address extractor 103 and the traffic image generator 107.
The IP address extractor 103 searches the IP information DB 105 for additional IP information of the normalized traffic information, such as source IP and destination IP, source port, destination port, protocol, statistic, and so on. Further, the IP address extractor 103 extracts geographical information including country, AS, company, ISP, latitude, longitude, and management domain to which the IP address belongs. The IP address extractor 103 then provides the source IP, destination IP, statistic and the additional IP information to the image generator 107.
The image generator 107 generates N×N traffic image using the additional IP information from the IP address extractor 103 and the normalized traffic information from the traffic information collector 101 in synchronized with a cycle T during which the traffic information is collected.
For example,
The traffic image of N×N pixel is plotted with vertical and horizontal axes having destination and source information. The source information includes the source IP and the additional IP information having the country, AS, company, ISP, latitude, longitude, and management domain to which an IP address of the source IP belongs. In similar, the destination information includes the destination IP and the additional IP information having the country, AS, company, ISP, latitude, longitude, and management domain to which an IP address of the destination IP belongs. In shown in
For example, if the source IP and destination IP are used to plot the horizontal and vertical axes, respectively, the IP address is composed of 32 bits, resulting in a very wide range of traffic image. Therefore, it is necessary to abbreviate the wide range of the traffic image. For another example, if the country information of the IP address is used to plot the horizontal and vertical axes, the horizontal and vertical axes become 260, which is the maximal country number, to generate a 260×260 traffic image. In this case, a value of any pixel (x,y) S601 in the traffic image in
Alternatively, only the frequency of traffic is normalized to the value of 0 to 255 for a black-and-white image, thereby detecting network attack based on the black-and-white image.
In
The network attack detector 200 includes the traffic image manager 201 and the attack detector 203.
The traffic image manager 201 stores the traffic image provided from the traffic image generation unit 100 for each cycle T. In response to a request from the attack detector 203, the traffic images stored in the traffic image manager 201 is transmitted to the attack detector 203.
The attack detector 203 compares similarities between a traffic image for each cycle T and a previously generated traffic image. If the similarity difference exceeds a similarity threshold, the attack detector 203 detects that there exists a network attack, and provides a detection result to the network attack analyzer 300 through the traffic image manager 201. It is preferred that the similarity comparison is performed by a scene change detection technique using the change in pixel color or between discrete cosine transform (DCT) variables.
For example, as shown in
The network attack analyzer 300 includes a network attack analysis administrator 301, a global attack detector 303, and a local attack detector 305.
The network attack analysis administrator 301 decides that there is a global attack or a local attack depending on the detection result from the network attack detector 200, and provides the global attack detector 303 and the local attack detector 305 with the detection result from the network attack detector 200 to make a request for network attack analysis. Further, the network attack analysis administrator 301 generates network attack information and pattern information of the network attack based on an analysis result received from the global attack detector 303 and the local attack detector 305 in response to the request of the network attack analysis. The network attack information and pattern information of the network attack are then provided to the network attack detection result representation unit 400.
The global attack detector 303 serves to analyze a large-scale network to detect a kind of a global attack. The global attack refers to, e.g., a large-scale network attack which is the DDos attack, Internet warm attack, and so on. For the global attack, the global attack detector 303 detects a line in the traffic image using a line detection algorithm and decides whether the detected line is a horizontal line or a vertical line depending on the slope of the detected line. If the detected line is the horizontal line, which means that the traffic is being sent from a specific source IP to multiple destination IPs, the global attack detector 303 analyzes the traffic on the basis of the source IP to identify a kind of network attack. On the other hand, if the detected line is the vertical line, which means that the traffic is being sent from multiple source IPs to a specific destination IP, the global attack detector 303 analyzes the traffic on the basis of the destination IP to identify a kind of the network attack. Meanwhile, if the decision result indicates neither of the vertical line or the horizontal line, the global attack detector 303 analyzes the network attack based on the distribution of the source and destination IPs. The analysis result by the global attack detector 303 is then provided to the network attack analysis administrator 301.
The local attack detector 305 serves to analyze a small-scale network to detect a kind of a local attack. The local attack refers to, e.g., the denial-of-service (DDos) attack and the other attack such as host scan, port scan, and so on. For the local attack, the local attack detector 305 selects a specific region in the traffic image. The selection of the specific region may be made by considering the traffic volume between the source and the destination, the distribution of source and destination ports existing in the corresponding traffic, and the distribution of the source and destination IP addresses. The local attack detector 305 then generates an image for destination host analysis and an image for port analysis with respect to the selected specific region to detect a uniform region and a spot region, as shown in
For example, in case where the range of the specific region in the detection of the local attack is set as B class, the local attack detector 305 analyzes the network attack based on traffics generated between B class networks.
Firstly, as shown in
Secondly, as shown in
On the other hand, the representation unit 400 represents the detection information of the attack and original traffic flow of the attack as well as attack patterns of the traffic image, the host analysis image, and the port analysis image, so that a user or a network manager can intuitively understand and decide the phenomenon of the network.
The detection result manager 401 provides the detection result representation part 403 with the network attack information and pattern information of the network attacks from the network attack analyzer 300. The detection result manager 401 also generates and transmits an alarm message notifying that the network attack has occurred to other secure equipment or other network equipment S3 upon a manager's request or system setting, while managing the network attack information and the pattern information of network attack.
The result representation part 403 discriminately constructs a map for the network attack information and the pattern information of the network attack received from the detection result manager 401, to thereby represent the attack map on a display device S4.
For example,
Therefore, the user or the network manager can view the network attacks from the attack detection list S901. Also, the map may be designed to select any attack on the attack detection list, so that the manager can selectively view the images used for attack analysis, such as the traffic image S904 where the attack exists, the host analysis image 905, and the port analysis image S906, and can intuitively recognize the source and destination of the original traffic, the used protocol and the port number from the original traffic flow S903. Additionally, it is possible to check the time of occurrence of abnormal phenomenon based on the similarity between traffic images with the passage of time, thereby confirming the network attack list and image pattern detected at the time of occurrence of abnormal phenomenon in real time.
Hereinafter, a procedure of detecting network attack based on visual data analysis in accordance with the embodiment of the present invention having the configuration as above will be described with reference to
Referring to
In steps S104 and S105, the IP address extractor 103 searches the IP information DB 105 for IP information of the traffic information such as a source IP and a destination IP, source port, destination port, protocol, and statistics), and then, extracts additional (geographical) IP information including country, AS, company, ISP, latitude, longitude, and management domain to which the IP address belongs. The IP information and the geographical information are then provided to the image generator in step S107.
Thereafter, in the image generator 107, an N×N traffic image is generated using the IP information and the geographical information from the IP address extractor 103, in step S109. The N×N traffic image is then provided to the traffic image manager 201 in the network attack detector 200, in step S113.
In addition, in step S111, the image generator 107 may generates a traffic image in a graph form where a color of pixel represents a numerously-distributed port in traffics. The pixel color of traffic image may also be provided to the traffic image manager 201 in the network attack detector 200, in step S114.
The traffic image manager 201 in the network attack detector 200 stores the traffic image from the image generator 107 in step S115. Upon a request from the attack detector 203, the stored traffic image is provided to the attack detector 203, in step S117.
Subsequently, in step S119, the attack detector 203 compares similarity between the traffic image from the traffic image manager 201 and a previously generated traffic image. If the similarity difference exceeds a similarity threshold, it is decided that network attack has occurred, and the detection result for the network attack is provided to the traffic image manager 201, in step S121.
After that, in step S123, the traffic image manager 201 sends the detection result from the attack detector 203 along with the traffic image to the network attack analyzer 300 through a tab ‘F’.
In the network attack analyzer 300, the network attack analysis administrator 301 decides whether there is a global attack or a local attack in view of the detection result of the network attack, in step S125 (see
If the decision result in step S125 indicates the global attack in step S127, the network attack analysis administrator 301 provides the traffic image to the global attack detector 303 to make a request for network attack analysis through a tab ‘H’, in step S129.
Then, in the global attack detector 303, as shown in
If the detected line is the horizontal line, which means that the traffic is being sent from a specific source IP to multiple destination IPs, the global attack detector 303 analyzes the traffic on the basis of the source IP to detect a kind of the network attack, in step S133, and provides the network attack analysis manager 301 with the analysis result, in step S135.
If, however, in step S131, the detected line is the vertical line, which means that multiple source IPs is sending traffic to a specific destination IP, the global attack detector 303 analyzes the traffic based on the destination IP in step S137 to detect a kind of the network attack. The analysis result for the network attack is provided to the network attack analysis manager 301, in step S139.
Meanwhile, if the decision result in step S131 is neither of a horizontal line nor a vertical line as in step S141, the global attack detector 303 detects network attack depending on the distribution of source and destination IPs in step S143. The analysis result for the network attack is then provided to the network attack analysis manager 301, in step S145.
Thereafter, in step S147, the network attack analysis administrator 301 generates network attack information and pattern information for the network attack based on the analysis results, and provides the network attack information and pattern information to the detection result manager 401 in the representation unit through a tab ‘I’.
On the other hand, if the decision result indicates the local attack as in step S149 (see
The local attack detector 305 selects a specific region in the traffic image in step S153. And then, the local attack detector 305 generates a host analysis image and a port analysis image for the selected specific region to detect a uniform region and spot region in step S155, and detects host and port with features from the traffic image based on the intensity of the traffic image, color analysis, edge detection, and so on in step S157.
Thereafter, the local attack detector 305 checks the traffic related to the host and port based on the detected uniform region and the spot region to identify a kind of the network attack in step S159. The analysis result is then provided to the network attack analysis administrator 301 in step S161.
In subsequence, the network attack analysis administrator 301 generates network attack information and pattern information of the network attack based on the analysis results in step S163. The network attack information and pattern information is then provided to the detection result representation unit 400 through a tab ‘J’, in step S164.
As shown in
Then, the detection result representation part 403 discriminately constructs the network attack information and pattern information of the network attack in the form of a map for the network attack detection as shown in
Also, in step S169, the detection result manager 401 generates and transmits, to other secure equipment or other network equipment S3, an alarm message notifying that network attack has occurred. The method for detecting network attack based on visual data analysis in accordance with the present invention can be written in computer program. Codes and code segments constituting the computer program can easily be deduced by a computer programmer in the art. Further, the computer program is stored in a computer-readable storage medium, and then read and executable by the computer, thereby implementing the method for detecting network attack based on the visual data analysis. Examples of the computer-readable storage medium include a magnetic storage medium, an optical storage medium and a carrier wave medium.
As described above, according to the present invention, traffic information is transformed into traffic images and then the traffic images is then processed using the visual data analysis technique to detect various attacks occurring in the network, thus solving the existing problems that a conventional abnormal detection model misjudges non-attacks as attacks and a conventional misuse detection model cannot perform detection on unknown attacks.
While the present invention has been described with respect to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the scope of the present invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0069418 | Jul 2009 | KR | national |