The present disclosure relates to package integrity testing apparatus and methods and more specifically to apparatus and methods for testing package integrity that are capable of testing porous packages.
Medical devices are commonly packaged by form fill seal or F/F/S machines to place the devices in packages in which they can be sterilized and the sterilization maintained until usage. In order to verify the package integrity, a subset of packages from each batch processed by a machine are typically pulled and subject to testing for seal completeness. For packages made of a non-porous material, such tests are typically burst tests in which a needle is used to pressurize the package until the seal or package ruptures. Properly sealed packages will require at least a known pressure before bursting. However, for packages with a porous portion, such as a plastic package with a paper top, such burst testing does not work as the injected air flows through the porous portion of the package. Prior art attempts to address this issue by utilizing a sealing patch that is manually applied to the packaging web area that is to be punctured. However, such a seal can mask issues with the web area, for example holes in the porous portion that are covered by the seal, but which would represent a breach of the package integrity.
Some examples of known testing devices include those disclosed in the following U.S. Pat. No. 7,810,377, U.S. Pat. No. 6,640,614, U.S. Pat. No. 4,916,936, U.S. Pat. No. 4,459,843, U.S. Pat. No. 6,038,915, U.S. Pat. No. 4,539,836, U.S. Pat. No. 4,837,707, and U.S. Pat. No. 4,733,555, the contents of each of which are incorporated by reference herein in their entirety. However, current package burst test technology does not provide a reliable method for testing different types of packages directly on the F/F/S machine. Testing devices or methods that addressed these various shortcomings would be an improvement in the art.
The present disclosure includes a package testing apparatus that may be mounted directly onto an F/F/S machine. The apparatus allows for communication with an F/F/S machine in the form of either a digital or analog signal. The communication may be implemented into a PID (Proportional, Integral, Derivative) loop which allows for a predetermined burst pressure set point to be reached “automatically” by either the burst pressure controller or the F/F/S controller to automatically adjust the sealing parameters via the PID loop. This apparatus may employ a novel sealing system that uses either a viscous solution to seal the needle entry point or a series of laminated materials to seal either the needle entry point or the puncture side of the material in its entirety. This apparatus greatly reduces the time for each test by eliminating the use of the known sealing patches that cover the porous webbing whether “offline” or “in-line” in testing.
Methods for conducting such testing, methods for operating such devices and systems including such devices are also as part of the present disclosure. Commercial applications of the methods, systems, and devices in accordance with the present disclosure may include offline, in-line, flexible, rigid, porous, and non-porous packaging. The application may be implemented on any packaging sealing machine.
It will be appreciated by those of ordinary skill in the art that the various drawings are for illustrative purposes only. The nature of the present disclosure, as well as various embodiments, may be more clearly understood by reference to the following detailed description, to the appended claims, and to the several drawings.
The present disclosure relates to systems and methods for testing package integrity. It will be appreciated by those skilled in the art that the embodiments herein described, while illustrative, are not intended to so limit the scope of the appended claims. Those skilled in the art will also understand that various combinations or modifications of the embodiments discussed herein can be made without departing from the scope of this disclosure. All such alternate embodiments are within the scope of the appended claims.
Referring to
A number of individual modular testing units 20 are organized into one or more rows 11. A framework 12 supports a number of individual modular testing units 20 in each row 11. The individual units 20 may be attached to the framework 12 by set screws or bolts 102 passing through one or more attachment slots 104, allowing for adjustment of the position of the units 20. It will be appreciated that for certain embodiments, only a single row 11 of individual modular testing units 20 may be used and will vary upon the particular F/F/S machine with which the system 10 will be used. The framework 12 may be positioned to the individual modular units 20 to test individual packages P as they emerge from a F/F/S machine.
An individual modular testing unit 20 is depicted in isolation from the row 11 in
A pressure transducer 208 may be disposed on the upper assembly 200 and a connection 206 thereto may similarly be disposed with a connecting line therebetween. It will be appreciated that in some embodiments a single transducer may be used to which all the modular units 20 in a row or all the modular units 20 in a system 10 may be connected, depending on the desired installation.
A solenoid valve 205 may also be present and in communication with an air source, the pressure transducer 208, and/or the needles. The type of solenoid valve may vary based on desired use, as discussed further herein. In some instances, a three-way solenoid valve may be used.
The lower assembly 250 is depicted more clearly in
As depicted in
In another embodiment, depicted in
To perform a flow rate test on a porous package, the needles 252 and 254 pierce the top surface of the package P inside a sealed area. A known volume and pressure of gas are injected into the package through the “in needle” and the rate of gas flow out of the package through the “out needle” is then measured by the pressure transducer 208. Since the porous packaging material has a known, or expected, flow rate therethough, the difference between the inflow and outflow of gas through the needles can be used to determine whether the package exhibits variation from the expected rate to thereby determine seal integrity, for example if the package has a gap or opening that allows for an increased rate of flow.
One application for the system 10 is to characterize the integrity of a package being made of rigid, flexible, porous, or non-porous material. The apparatus 10 may be used to find holes in packaging material of a certain size that are not of a torturous path in the packaging material. The apparatus 10 may then be used to characterize the seal strength between two materials by relating the burst pressure of the package to the seal strength of the package, following the initial test. The apparatus is meant to be either mounted directly on a form/fill/seal machine as an inline test or on a bench-top mounting system. The apparatus may be utilized as a development device for characterizing machine sealing parameters either “off-line” or “in-line”.
As depicted, the apparatus uses a pneumatic air supply, a pneumatic air cylinder, and a pneumatic solenoid valve to drive a puncture assembly into packaging web. It will be appreciated that the linear actuator may be mechanical rather than pneumatic, if desired. The puncture assembly may employ one needle or a series of needles that connect to a pneumatic airline for pressurizing the package, a transducer (208,
The process for testing each package entails the puncturing of the package with the two needles followed by a procedure which varies the flow of pressurized air to one of the two puncture needles. This allows for pressurized air to flow into the package from the “in needle” and out of the package through the “out needle”. Once the pressurized air flows through the out needle, the volume is measured by an electronic pneumatic flow sensor and is then released to ambient air pressure. This value is captured by several data points and stored in the PLC for further calculation.
Once the “flow” data points have been collected, a second test may be initiated which entails sealing the “out needle” from ambient air pressure with a “three way” electronic solenoid valve, which is connected to a pneumatic pressure transducer. Another procedure is then executed which varies the flow of pressurized air to the “in needle” while concurrently collecting and storing a series of pressure sensor readings from the pneumatic pressure transducer.
The “Non-Torturous Path Hole Evaluation Test is divided into two main tests, the “Flow Test” and the “Pressure Test”, which are executed subsequently. Each main test may be broken into a number of specific data points, in one example 72 data points which are separated into 12 subsets may be used. The 12 subsets may then be divided in half leaving 2 groups. An average value for the six data points contained in each subset may then be calculated. An average value is then calculated for each group leaving one value for each group. The two values from each group may be mathematically manipulated to produce a higher statistically significant confidence in the test. Results for such a test are depicted in Table 1 and a Data Points Hierarchy Chart for conducting the test is presented in
Additionally, applicant notes that if tests of packages in accordance with the present invention are conducted in a solution, such as underwater, rather than in air, then the variability of the test results goes down dramatically. This is because the water acts as a weak seal by creating greater pressure outside the package. Essentially, it takes more force to break through the paper making it more porous. It also makes the paper fibers swell in paper webs which decreases the porosity.
While this invention has been described in certain embodiments, the present invention can be further modified with the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practices in the art to which this invention pertains and which fall within the limits of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/592,735, filed Jan. 31, 2012, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4205551 | Clifford et al. | Jun 1980 | A |
4398413 | Rao | Aug 1983 | A |
4459843 | Durham | Jul 1984 | A |
4539836 | Hester et al. | Sep 1985 | A |
4733555 | Franks | Mar 1988 | A |
4837707 | Giometti et al. | Jun 1989 | A |
4916936 | Wilson | Apr 1990 | A |
4930344 | Fleenor et al. | Jun 1990 | A |
5212993 | Mayer | May 1993 | A |
5347845 | Kepler | Sep 1994 | A |
5939619 | Achter et al. | Aug 1999 | A |
6038915 | O'Herron et al. | Mar 2000 | A |
6065133 | Draber | May 2000 | A |
6640614 | Bode et al. | Nov 2003 | B1 |
7578170 | Mayer et al. | Aug 2009 | B2 |
7624623 | Mayer et al. | Dec 2009 | B2 |
7810377 | Gysi et al. | Oct 2010 | B2 |
7921625 | Mayer | Apr 2011 | B1 |
20070289390 | Ascheman | Dec 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20130192346 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61592735 | Jan 2012 | US |