The present invention relates generally to improved semiconductor imaging devices, and in particular to an imaging device employing temperature compensation.
Imaging sensors are used to capture visible light or other types of incident radiation emissions and produce an image in a variety of applications. Many parameters of an imaging sensor are temperature dependent. It is therefore desirable to be able to determine image sensor temperature and use the temperature data in a variety of ways including compensation for the effects of temperature.
For example, in CMOS active pixel sensors (APS), overall analog power consumption is primarily the sum of the bias currents of each of the individual analog circuits. These bias currents are proportional to the master current Iref, generated by a dedicated analog cell commonly referred to as the master current reference. In many cases, the master current reference cell has a positive thermal coefficient (PFAT) proportional to changes in absolute temperature, that is, as temperature increases, the master current increases, leading to a higher power consumption. On the other hand, as the temperature decreases, the reference current decreases leading to a reduction of the bias current for the analog circuits. With respect to its room temperature nominal value and within the temperature range of −20° C. to +65° C., it has been observed that the master current linearly varies from −15% to +15% from a nominal value. Furthermore, at room temperature the distribution of master current values in a population of CMOS chips is gaussian shaped with a standard deviation (sigma) of ˜7% of the mean value. Chip-to-chip variations in master current values originate from manufacturing process variations and can typically only be corrected by individual trimming of the master current reference cell output. When process and temperature variations are combined together, temperature drift or changes cause variations of the master current Iref causing erroneous operation or possibly chip failure if the chip temperature changes too much.
Contemporary CMOS imager chips lack an optimal system for automatically compensating for variations in temperature in large measure because sensing of imager temperature requires dedicated circuitry which adds to design cost. Thus, a new approach is needed to provide a simplified temperature sensing system for CMOS imaging operations.
In one aspect, the invention provides a temperature sensor, a current correction apparatus and operating method which uses dark pixel measurements from a chip during operation in combination with a known fabrication process constant and a chip dependent constant to more accurately calculate chip temperature. The chip temperature can be used to generate a temperature corrected current signal.
In another aspect of the invention, an imager chip is tested during manufacturing to determine chip dependent constants and one or more values representing a dark current scalar which are stored in an imager chip memory. The imager chip includes a pixel array with one or more dark current pixels for providing dark current signals. A logic circuit is configured to calculate a sensor temperature value based on the one or more dark current signals, the stored constants and calculated or stored scalar values. The temperature value can be used to adjust a master current source and/or individual circuit current sources on the imager chip to correct current supply for temperature variations.
The above and other features and advantages of the invention will be more readily understood from the following detailed description which is provided in connection with the accompanying drawings.
a shows a simplified imager pixel array with dark pixel structures;
b shows an exemplary signal chain for an imager;
c shows an exemplary portion of the
The inventors have observed that a CMOS imager pixel dark current doubles every N° C. with N being a value which is process dependent and which in general ranges from 6 to 10. Dark current is that current which, under specified biasing conditions, flows in a photoconductive pixel when there is no incident radiation. Consequently, even in the absence of visible light or incident radiation dark current is present. Background radiation and thermal effects constitutes the dark current.
A variety of technical problems arise with making estimations of temperature from dark current and using such measurements for performing automatic current corrections. One difficulty is obtaining an accurate dark current measurement. Another problem is temperature calibration of the measured value of the dark current. While dark current measured from a pixel varies with temperature, there is not a direct proportional relationship between temperature and dark current. Several additional factors influence the relationship of dark current to temperature. For example, dark current relationships to temperature vary by manufacturing process. Also, the effects of temperature on dark current vary chip-to-chip.
The following equation illustrates various factors which have been found to affect a pixel dark current relationship to sensor temperature:
Idark=IoeαT (1)
The constant α has a value which is dependent on the particular manufacturing process used to fabricate an image sensor. Experimentally, it has been found that the value of α does not significantly change from one pixel design to another pixel design, nor does it vary from chip to chip (or from wafer to wafer) but it is a process dependent constant.
The
Equation 1 can be further explained in the context of the
Once the a constant is known from the slope of the
where Idark, ref is the measured value of dark current taken at reference temperature Tref.
Once the values of α and I0 are known for a particular chip, they may be stored on the chip in a memory as either the values α and I0 or the values α, Idark ref, Tref. In the latter case, I0 is calculated when needed from the stored Idark ref and Tref values using equation (3) or these values can be directly used to calculate temperature. If the values α and I0 are stored or the value Tref is calculated using equation 3, a sensor temperature T can be calculated from these values and a pixel dark current measurement Idark using equation (2). Alternatively, sensor temperature can be calculated from the stored values α, Idark ref, Tref and a pixel dark current measurement Idark from the following equation:
In either case, a reliable measurement of sensor temperature can be produced from a pixel dark current measurement taken from a dark pixel of the sensor.
a shows peripheral areas 31 of a pixel array 30 which contains dark pixels from which dark current measurements are taken. The dark pixels in peripheral areas 31 are read-out using the same signal path and timing diagram as for clear pixels in area 32 which are used for imaging.
Referring to
c shows in greater detail the above mentioned sample and hold circuits 33 of
While temperature T can be calculated from a single dark pixel of an array, an improvement in sensor temperature calculations accuracy can be obtained by calibrating the Idark signal through signal conditioning. It is well recognized that after amplification and digitization of the pixel signal, the converted Idark signal obtained from a dark pixel is composed of two components. A first component is related to the pixel current signal which, for a dark pixel, is proportional to the integrated dark current during the selected integration time. For a given integration time, this signal is temperature dependent and doubles about every 8° C. Another component is a systematic offset independent of the integration time. The offset component originates from signal conditioning procedures such as sampling, amplification and digitization and in general, is temperature dependent, although its exact dependence from temperature is not known in advance.
A large systematic offset may prevent the use of a sampled dark pixel signal Idark by itself to accurately determine array temperature, depending on the temperature accuracy which is required. Such an offset is removed by sampling two signals integrated by a dark pixel where each signal has different integration times, t1 and t2 to produce a calibrated dark current signal. A calibrated dark current Idark value with offset removed can be computed using equation 5 as follows:
Idark=((S1+Voff)−(S2+Voff))/(t1−t2)=(S1−S2)/(t1−t2) (5)
where S1 and S2 are the net pixel signals (Vrst−Vsig) from a dark current pixel taken for different respective integration times t1 and t2. Voff is the offset component associated with each measurement. S1 and S2 are digitized output signals from an analog to digital converter (ADC), in this embodiment, which represent the digital value associated with uncalibrated net dark current sampling for integration times t1 and t2. A processor calculates Idark using S1, S2 and t1 and t2. In this way, the offset component (Voff) can be removed and a calibrated pixel dark current Idark value computed for use in a temperature calculation.
An automatic procedure for computing the calibrated dark current Idark using equation 5 can be implemented on-chip and produced as a result of computation made available at an output register of the imager. Calculation of calibrated Idark can be configured to be periodically executed by the imager or for instance as a part of those operations the imager routinely executes during an initialization phase. Once a dark current value Idark is obtained, then a sensor temperature can be computed in a processor or other logic circuit using the on-chip stored reference values using equation (2) or equation (4), as described above.
Referring to
It should be noted that a highly precise temperature measurement may not be required in many applications. Moreover, it is often desirable to convert a larger bit digital value to a lower bit digital value in order to reduce processing or look-up table requirements. Thus, an estimated temperature with a desired precision can also be produced and used in accordance with the invention.
One temperature estimation technique which may be used is an estimation of variations in sensor working temperature from a reference temperature. Frequently, such an estimate will suffice for many applications. One way an estimate of a difference between actual temperature T1 and a reference temperature Tref can be produced is shown in equation 6:
T1−Tref=1/α*ln(Idark/Idark ref) (6)
Temperature estimation can also be accomplished using a temperature range corresponding to binary notation. A range scheme may be used to reduce the size of temperature values stored in an onboard register when a precise temperature value is not required.
Once a temperature value representing chip temperature is known, it can be used to compensate for temperature induced operational variations in an imager device.
Temperature compensation of the bias current can also be accomplished based on temperature measurements taken at various locations of a chip. Referring to
A local correction of a bias current on a region-by-region basis can be employed by itself of or in addition to the master current control illustrated and described with reference to
Referring to
In addition, clusters of dark pixels in proximity to imager components can also be used to supply dark pixel signal for use in temperature calculations. The pixel clusters at each localized area can be used in connection with equation (5) to obtain the effect noted above. Also, the temperature calculations for individual or pairs of pixels in a cluster can be averaged to provide a more accurate temperature calculation. Whichever technique is used, on-chip dark current data Idark is processed and converted into temperature data T167, T269 and TN 71 from various dark clusters of pixels at different areas of the sensor chip (i.e., 61, 63 and 65). In this exemplary embodiment, cluster one is in the vicinity of an ADC 38, cluster two is in the vicinity of a read-out amplifier 35 and cluster N is in the vicinity of an N component, a DAC 38 in this case. The temperature data (e.g., 67, 69, 71) is input into a digital logic unit 73 which determines scaling control signals MADC 77, MAMP 79 and MDAC 81.
Scaling control signals (M) can determined using one or more look-up tables which store M values that correspond to a particular calculated temperature (e.g., T2, T2 or T2) value or a range of calculated temperature values. For example, in this embodiment control signal MADC 77 is determined by looking up the M value in a look-up table which corresponds to the calculated T1 value.
The look-up tables can be used to store scaling signal M values which correspond to ranges of calculated temperature values. Look-up tables which associate calculated temperature ranges with scaling signal M values can be used to reduce the number of look up table entries used to determine scaling value M for a particular calculated temperature, e.g., T1, T2 or T3.
Scaling signal MADC 77 is input into a current multiplication stage 83 along with current reference IADCr 82. Scaling signal MAMP 79 is input into a current multiplication stage 85 along with current reference IAMPr 85. Scaling signal MDAC 81 is input into another multiplication stage 87 along with current reference Iref 85.
Scaling signals MADC 77, MAMP 79 and MDAC 81 are used in multiplication stages 83, 85, 87 to adjust the respective input reference currents IADCr 82, IAMPr 84 and IDACr 86 such that the reference currents are increased or decreased in a manner indicated by the scaling signals. Current signals IADC 89, IAMP 91, IDAC 93 from multiplication stages 83, 85, 87 are respectively provided to ADC 36, amplifier 35, DAC 38.
A variety of current control circuit mechanisms are possible. As noted, one embodiment of the invention can also include a master control circuit which adjusts master current based on temperature in the manner described and illustrated with respect to
It should be noted that any temperature dependant signal or property in an imager can be corrected using the temperature sensor system described above. For example, voltage signals or circuit impedance can be corrected using the temperature values determined using the above described system use well known voltage, impedance or other circuit correction circuits.
Referring to
Referring to
Referring to
Referring to
It should be noted with reference to
While exemplary embodiments of the invention have been described and illustrated, it should be apparent that many changes and modifications can be made without departing from the spirit or scope of the invention. Accordingly, the invention is not limited by the description above, but is only limited by the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 10290397 | Nov 2002 | US |
Child | 11217350 | Sep 2005 | US |