These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
The optical disc 1 is a storage medium which data can be recorded onto and/or reproduced from by using a laser beam. The optical disc 1 may be, but is not limited to being, a low density optical disc such as a compact disc (CD) or a digital versatile disc (DVD), and a high density optical disc such as a Blu-ray recordable disc (BD-R), a Blu-ray rewritable disc (BD-RW) or a high density DVD (HD-DVD). The low density optical disc may further be a read only disc such as a CD, a compact disc-read only memory (CD-ROM), a DVD-ROM, a recordable disc such as a mini disc (MD), a compact disc-recordable disc (CD-R), a CD-rewritable disc (CD-RW), a DVD+RW disc, and a DVD-random access memory (DVD-RAM). Other types of low density and high density optical discs may also be used in accordance with aspects of the present invention. The invention is not limited to discriminating between HD-DVDs, DVD-ROMS, recorded DVD-Rs, and non-recorded DVD-Rs. Instead, aspects of the present invention may be utilized to discriminate between many different types of optical discs which have similar substrate thicknesses. Thus, although an embodiment of the present invention is described using HD-DVDs, DVD-ROMS, recorded DVD-R, and non-recorded DVD-R as an example embodiment, the present invention may work with many other types of optical discs.
The optical pickup 10 irradiates a laser beam onto the surface of the optical disc 1, receives light reflected from the surface of the optical disc 1, and outputs a radio frequency (RF) signal. The optical pickup 10 includes a DVD/CD laser diode 11, which irradiates a laser beam having a wavelength of 650 nm onto the optical disc 1, and a Blu-ray disc (BD) laser diode 12, which irradiates a laser beam having a wavelength of 405 nm onto the optical disc 1. The optical pickup 10 further includes a first photodiode 13 which receives light reflected from the optical disc 1, for example, a DVD or a CD, through four light-detection split surfaces and converts the reflected light into electric signals, and a second photodiode 14 which receives light reflected from the optical disc 1, for example, a Blu-ray disc (BD), through the four light-detection split surfaces and converts the reflected light into electric signals. Also, the optical pickup 10 further includes a DVD/CD objective lens 16 which has an aperture ratio of 0.65, focuses the laser beam irradiated from the DVD/CD laser diode 11 and forms a spot on the DVD or the CD, a BD objective lens 17 which has an aperture ratio of 0.85, focuses the laser beam irradiated from the BD laser diode 12 and forms a spot on the BD, and an actuator 15 which moves the objective lenses 16 and 17.
An optical path to record and reproduce the DVD or CD and an optical path to record and reproduce the BD are separately located in the optical pickup 10. Although not shown in
The RF amplifier 20 receives electric signals from the first and second photodiodes 13 and 14 in the optical pickup 10, generates the RF signal (i.e., reproduction data), and generates a focus error (FE) signal and a track error (TE) signal. The TE signal may be obtained using a variety of methods. In the present embodiment, a track error signal TE=phase[D(A+D)−D(B+C)] is generated by a differential phase detection (DPD) method using phase differences between electric signals outputted from the four light-detection split surfaces A, B, C and D of the first and second photodiodes 13 and 14 shown in
The servo unit 30 generates a drive signal to focus, track and control a spindle in the optical pickup 10, using the FE signal and the TE signal outputted from the RF amplifier 20 and a spindle error signal outputted from the microcomputer 50. The signal processing unit 40 processes the RF signal outputted from the RF amplifier 20. The microcomputer 50 controls the optical pickup 10, the RF amplifier 20, the servo unit 30 and the signal processing unit 40 according to an input command of a user.
Hereinafter, the operation and the results of the apparatus and method to discriminate the optical disc type, according to aspects of the present invention, will be described.
A focal point of the laser beam passes through a recording layer of the optical disc 1 by the focus search to control the vertical movement of the DVD/CD objective lens 16. Accordingly, an S-curve (see Korean Laid-Open Patent Publication No. 2005-0031010) is generated in the FE signal generated in the RF amplifier 20 when the focal point of the laser beam passes through the recording layer. At this time, the output interval of the S-curve varies depending on the type of the optical disc 1 inserted into the optical disc drive.
Since the distance between a surface layer and the recording layer of the optical disc 1 varies depending on the optical disc 1 (for example, the BD distance is 0.1 mm, the DVD and the HD-DVD distance is 0.6 mm, and the CD distance is 1.2 mm), the moment when the focal point of the laser beam passes through the recording layer of the optical disc 1, as the DVD/CD objective lens 16 moves at a constant speed, varies depending on the type of the optical disc 1 reflecting the laser beam. Accordingly, a point of time that the S-curve is outputted varies depending on the type of the optical disc 1 reflecting the laser beam.
The microcomputer 50 measures the output interval of the S-curve in the FE signal generated in the RF amplifier 20 to discriminate the type of the optical disc 1 (Operation S102), and determines whether the discriminated optical disc 1 is a type of optical disc in the DVD series (Operation S104). In order to discriminate the type of the optical disc 1 using the output interval of the S-curve in the FE signal, the output intervals of the S-curve corresponding to the type of the optical disc 1 such as a CD, a DVD and a BD are previously stored in the microcomputer 50.
As the result of the comparison of operation S104, if the inserted optical disc 1 is the DVD series, the microcomputer 50 must accurately determine whether the optical disc 1 is a DVD or a HD-DVD, because the HD-DVD and the DVD are similar to each other in reflectivity, as well as in the distance between the surface layer and the recording layer of the optical disc. When the inserted optical disc 1 is the DVD series, the microcomputer 50 adjusts an input gain of a servo signal based on the result of performing the focus search, and then drives the actuator 15 so that the focal point of the laser beam accurately traces the recording layer of the optical disc 1 by operating a focus servo system to control a vertical movement of the DVD/CD objective lens 16 (Operation S106).
The RF amplifier 20 generates the track error signal component TE=phase[D(A+D)−D(B+C)] using the DPD method, which uses the phase differences between the electric signals outputted from the four light-detection split surfaces A, B, C and D shown in
The microcomputer 50 determines whether the level of the track error signal component generated by the DPD method and outputted from the RF amplifier 20 is greater than or equal to the predetermined reference value of the DPD method (DPD actual≧DPD reference) (Operation S110). The predetermined reference value of the DPD method (i.e., the predetermined level of the DPD track error signal) to determine whether the track error signal component generated by the DPD method is a normal signal may be previously stored in the microcomputer 50.
After the determination of operation S110, if the level of the track error signal component generated by the DPD method is less than the predetermined DPD level (DPD actual<DPD reference), the microcomputer 50 determines whether the level of the track error signal generated by the PP method received from the RF amplifier 20 is greater than or equal to the predetermined PP level so as to accurately determine whether the inserted optical disc is an HD-DVD or a non-recorded DVD-R (Operation S112). The predetermined reference value of the PP method (i.e., the predetermined level of the PP track error signal), which is used to determine whether the track error signal of the PP manner is a normal signal, may be previously stored in the microcomputer 50.
As the determined result of operation S112, if the level of the track error signal component generated by the PP method is less than the predetermined PP level (PP actual<PP reference), the microcomputer 50 determines that the inserted optical disc 1 is an HD-DVD (Operation S114).
Meanwhile, if the microcomputer 50 determines in operation S112 that the level of the track error signal component generated by the PP method is greater than or equal to the predetermined PP level (PP actual≧PP reference), the microcomputer 50 determines that the inserted optical disc 1 is a non-recorded DVD-R (Operation S116).
As the result of the determination of operation S110, if the microcomputer 50 determines that the level of the track error signal component generated by the DPD method is greater than or equal to the predetermined DPD level (DPD actual≧DPD reference), the microcomputer 50 determines whether the level of the track error signal component generated by the PP method outputted from the RF amplifier 20 is greater than or equal to the predetermined PP level in Operation S120 to accurately determine whether the inserted optical disc 1 is a DVD-ROM or a recorded DVD-R.
As the result of the determination of operation S120, if the microcomputer 50 determines that the level of the track error signal component generated by the PP method is less than the predetermined PP level (PP actual<PP reference), the microcomputer 50 determines that the inserted optical disc 1 is a DVD-ROM (Operation S122).
Meanwhile, as the result of the determination of operation S120, if the microcomputer 50 determines that the level of the track error signal generated by the PP method is greater than or equal to the predetermined PP level (PP actual≧PP reference), the microcomputer 50 determines that the inserted disc 1 is the recorded DVD-R (Operation S124).
According to aspects of the present invention, it is possible to accurately discriminate between a DVD and a HD-DVD using both the levels of the track error signal component generated by the PP method and the track error signal component generated by the DPD method, without being influenced by various set deviations, such as a deviation in sensitivity of the photodiodes 13 and 14, or a light output deviation. Furthermore, when the inserted disc is a DVD, it is possible to accurately and quickly discriminate whether the inserted disc is a DVD-ROM, a recorded DVD-R, or a non-recorded DVD-R. When the type of the inserted optical disc is discriminated, the recording and reproducing operations of the optical disc 1 are performed according to the operation command of the user.
As described above, according to aspects of the present invention, it is possible to accurately discriminate the type of the optical disc inserted into an optical disc system which records and/or reproduces data to and/or from high density optical discs and low density optical discs.
Since aspects of the present invention make it possible to discriminate between a DVD and an HD-DVD using an optical system which records and/or reproduces data to and/or from a general DVD, it is possible to accurately discriminate a disc type and to reduce the amount of time necessary to discriminate the disc type. Furthermore, since aspects of the present invention only use information on the level of a track error signal, the optical disc discrimination is unlikely to be influenced by a set deviation, and thus yield can increase.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-60996 | Jun 2006 | KR | national |