APPARATUS AND METHOD FOR DISCRIMINATING OPTICAL DISC TYPE

Information

  • Patent Application
  • 20080002548
  • Publication Number
    20080002548
  • Date Filed
    May 04, 2007
    17 years ago
  • Date Published
    January 03, 2008
    16 years ago
Abstract
An apparatus and method to accurately discriminate an optical disc type in an optical disc system which records and/or reproduces data to and/or from high density optical discs and low density optical discs includes irradiating a laser beam onto a given one of the optical discs, measuring a track error signal generated from light reflected by the given optical disc, comparing a level of the track error signal with a predetermined reference value, and discriminating a type of the given optical disc according to a comparison result.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:



FIG. 1 is a block diagram showing the configuration of an apparatus to discriminate an optical disc type in an optical disc system, according to an embodiment of the present invention;



FIG. 2 is a schematic view showing the structure of a photodiode to detect light reflected from an optical disc;



FIG. 3 is a flowchart illustrating a method to discriminate an optical disc type in an optical disc system, according to another embodiment of the present invention;



FIG. 4 is a view showing laser spots formed on recording layers of a digital versatile disc (DVD) and a high density digital versatile disc (HD-DVD);



FIG. 5 is a waveform diagram of a track error signal generated by a differential phase detection (DPD) method and a track error signal generated by a push-pull (PP) method measured for an HD-DVD;



FIG. 6 is a waveform diagram of a track error signal generated by the DPD method and a track error signal generated by the PP method measured for a non-recorded DVD-readable (DVD-R);



FIG. 7 is a waveform diagram of a track error signal generated by the DPD method and a track error signal generated by the PP method measured for a DVD-read only memory (DVD-ROM); and



FIG. 8 is a waveform diagram of a track error signal generated by the DPD method and a track error signal generated by the PP method measured for a recorded DVD-readable (DVD-R).





DETAILED DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.



FIG. 1 is a block diagram showing an apparatus to discriminate an optical disc type in an optical disc system, according to an embodiment of the present invention. The apparatus includes an optical disc 1, an optical pickup 10, a radio frequency (RF) amplifier 20, a servo unit 30, a signal processor 40 and a controller 50. According to an embodiment of the present invention, the controller 50 is a microcomputer. However, the controller 50 is not limited to being a microcomputer, and may instead be many other types of computing devices.


The optical disc 1 is a storage medium which data can be recorded onto and/or reproduced from by using a laser beam. The optical disc 1 may be, but is not limited to being, a low density optical disc such as a compact disc (CD) or a digital versatile disc (DVD), and a high density optical disc such as a Blu-ray recordable disc (BD-R), a Blu-ray rewritable disc (BD-RW) or a high density DVD (HD-DVD). The low density optical disc may further be a read only disc such as a CD, a compact disc-read only memory (CD-ROM), a DVD-ROM, a recordable disc such as a mini disc (MD), a compact disc-recordable disc (CD-R), a CD-rewritable disc (CD-RW), a DVD+RW disc, and a DVD-random access memory (DVD-RAM). Other types of low density and high density optical discs may also be used in accordance with aspects of the present invention. The invention is not limited to discriminating between HD-DVDs, DVD-ROMS, recorded DVD-Rs, and non-recorded DVD-Rs. Instead, aspects of the present invention may be utilized to discriminate between many different types of optical discs which have similar substrate thicknesses. Thus, although an embodiment of the present invention is described using HD-DVDs, DVD-ROMS, recorded DVD-R, and non-recorded DVD-R as an example embodiment, the present invention may work with many other types of optical discs.


The optical pickup 10 irradiates a laser beam onto the surface of the optical disc 1, receives light reflected from the surface of the optical disc 1, and outputs a radio frequency (RF) signal. The optical pickup 10 includes a DVD/CD laser diode 11, which irradiates a laser beam having a wavelength of 650 nm onto the optical disc 1, and a Blu-ray disc (BD) laser diode 12, which irradiates a laser beam having a wavelength of 405 nm onto the optical disc 1. The optical pickup 10 further includes a first photodiode 13 which receives light reflected from the optical disc 1, for example, a DVD or a CD, through four light-detection split surfaces and converts the reflected light into electric signals, and a second photodiode 14 which receives light reflected from the optical disc 1, for example, a Blu-ray disc (BD), through the four light-detection split surfaces and converts the reflected light into electric signals. Also, the optical pickup 10 further includes a DVD/CD objective lens 16 which has an aperture ratio of 0.65, focuses the laser beam irradiated from the DVD/CD laser diode 11 and forms a spot on the DVD or the CD, a BD objective lens 17 which has an aperture ratio of 0.85, focuses the laser beam irradiated from the BD laser diode 12 and forms a spot on the BD, and an actuator 15 which moves the objective lenses 16 and 17.


An optical path to record and reproduce the DVD or CD and an optical path to record and reproduce the BD are separately located in the optical pickup 10. Although not shown in FIG. 1, a collimator lens, which converts divergent light into parallel light, and a beam splitter, which splits incident light, are both provided in each of the optical paths. The optical pickup 10 can record data on a DVD, a CD or a BD and/or reproduce data from a DVD, a CD or a BD.


The RF amplifier 20 receives electric signals from the first and second photodiodes 13 and 14 in the optical pickup 10, generates the RF signal (i.e., reproduction data), and generates a focus error (FE) signal and a track error (TE) signal. The TE signal may be obtained using a variety of methods. In the present embodiment, a track error signal TE=phase[D(A+D)−D(B+C)] is generated by a differential phase detection (DPD) method using phase differences between electric signals outputted from the four light-detection split surfaces A, B, C and D of the first and second photodiodes 13 and 14 shown in FIG. 2, and a track error signal TE=(A+D)−(B+C) is generated by a push-pull (PP) method using differences between electric signals outputted from the four light-detection split surfaces A, B, C and D are obtained. Other methods of obtaining a TE signal may also be used in accordance with the present invention.


The servo unit 30 generates a drive signal to focus, track and control a spindle in the optical pickup 10, using the FE signal and the TE signal outputted from the RF amplifier 20 and a spindle error signal outputted from the microcomputer 50. The signal processing unit 40 processes the RF signal outputted from the RF amplifier 20. The microcomputer 50 controls the optical pickup 10, the RF amplifier 20, the servo unit 30 and the signal processing unit 40 according to an input command of a user.


Hereinafter, the operation and the results of the apparatus and method to discriminate the optical disc type, according to aspects of the present invention, will be described.



FIG. 3 is a flowchart showing a method to discriminate an optical disc type in the optical disc system, according to aspects of the present invention. In FIG. 3, when a user inserts the optical disc 1 into a drive of the optical disc system, the optical disc system automatically discriminates the type of the optical disc 1. Specifically, at this point, in the optical disc system, in order to discriminate the type of the optical disc 1, the DVD/CD laser diode 11 is driven to irradiate a laser beam having a wavelength of 650 nm onto the optical disc 1. When the laser beam having the wavelength of 650 nm is irradiated, the actuator 15 is driven to perform a focus search to control a vertical movement of the DVD/CD objective lens 16 so that the DVD/CD objective lens 16 approaches or moves away from the optical disc 1 (Operation S100).


A focal point of the laser beam passes through a recording layer of the optical disc 1 by the focus search to control the vertical movement of the DVD/CD objective lens 16. Accordingly, an S-curve (see Korean Laid-Open Patent Publication No. 2005-0031010) is generated in the FE signal generated in the RF amplifier 20 when the focal point of the laser beam passes through the recording layer. At this time, the output interval of the S-curve varies depending on the type of the optical disc 1 inserted into the optical disc drive.


Since the distance between a surface layer and the recording layer of the optical disc 1 varies depending on the optical disc 1 (for example, the BD distance is 0.1 mm, the DVD and the HD-DVD distance is 0.6 mm, and the CD distance is 1.2 mm), the moment when the focal point of the laser beam passes through the recording layer of the optical disc 1, as the DVD/CD objective lens 16 moves at a constant speed, varies depending on the type of the optical disc 1 reflecting the laser beam. Accordingly, a point of time that the S-curve is outputted varies depending on the type of the optical disc 1 reflecting the laser beam.


The microcomputer 50 measures the output interval of the S-curve in the FE signal generated in the RF amplifier 20 to discriminate the type of the optical disc 1 (Operation S102), and determines whether the discriminated optical disc 1 is a type of optical disc in the DVD series (Operation S104). In order to discriminate the type of the optical disc 1 using the output interval of the S-curve in the FE signal, the output intervals of the S-curve corresponding to the type of the optical disc 1 such as a CD, a DVD and a BD are previously stored in the microcomputer 50.


As the result of the comparison of operation S104, if the inserted optical disc 1 is the DVD series, the microcomputer 50 must accurately determine whether the optical disc 1 is a DVD or a HD-DVD, because the HD-DVD and the DVD are similar to each other in reflectivity, as well as in the distance between the surface layer and the recording layer of the optical disc. When the inserted optical disc 1 is the DVD series, the microcomputer 50 adjusts an input gain of a servo signal based on the result of performing the focus search, and then drives the actuator 15 so that the focal point of the laser beam accurately traces the recording layer of the optical disc 1 by operating a focus servo system to control a vertical movement of the DVD/CD objective lens 16 (Operation S106).



FIG. 4 shows a state where the laser beam is focused on the recording layer of the DVD or the HD-DVD to form a spot thereon. In FIG. 4, each black line H represents a track on the optical disc 1, and black portions in the track represent marks with a space defined therebetween on the optical disc 1. As shown in FIG. 4, the track pitch of the HD-DVD is smaller than that of the DVD. Accordingly, while one track is covered by the spot irradiated onto the DVD, several tracks are covered by the same spot irradiated onto the HD-DVD.


The RF amplifier 20 generates the track error signal component TE=phase[D(A+D)−D(B+C)] using the DPD method, which uses the phase differences between the electric signals outputted from the four light-detection split surfaces A, B, C and D shown in FIG. 2, and generates the track error signal component TE=(A+D)−(B+C) using by the PP method, which uses the differences between the electric signals outputted from the four light-detection split surfaces A, B, C and D shown in FIG. 2. After obtaining these two track error signal components, the RF amplifier 20 transmits the two track error signal components to the microcomputer 50 (Operation S108). Hereinafter, the track error signal component generated by the DPD method will be designated as “DPD actual,” the track error signal component generated by the PP method will be designated as “PP actual,” the predetermined reference value of the DPD method will be designated as “DPD reference,” and the predetermined reference value of the PP method will be designated as “PP reference.”


The microcomputer 50 determines whether the level of the track error signal component generated by the DPD method and outputted from the RF amplifier 20 is greater than or equal to the predetermined reference value of the DPD method (DPD actual≧DPD reference) (Operation S110). The predetermined reference value of the DPD method (i.e., the predetermined level of the DPD track error signal) to determine whether the track error signal component generated by the DPD method is a normal signal may be previously stored in the microcomputer 50.


After the determination of operation S110, if the level of the track error signal component generated by the DPD method is less than the predetermined DPD level (DPD actual<DPD reference), the microcomputer 50 determines whether the level of the track error signal generated by the PP method received from the RF amplifier 20 is greater than or equal to the predetermined PP level so as to accurately determine whether the inserted optical disc is an HD-DVD or a non-recorded DVD-R (Operation S112). The predetermined reference value of the PP method (i.e., the predetermined level of the PP track error signal), which is used to determine whether the track error signal of the PP manner is a normal signal, may be previously stored in the microcomputer 50.


As the determined result of operation S112, if the level of the track error signal component generated by the PP method is less than the predetermined PP level (PP actual<PP reference), the microcomputer 50 determines that the inserted optical disc 1 is an HD-DVD (Operation S114). FIG. 5 shows waveforms of the track error signal component generated by the DPD method and the track error signal generated by the PP method measured when an HD-DVD is inserted into the optical disc drive. Referring to FIG. 5, since the level of the focal point of the laser beam is greater than that of a recording unit in the HD-DVD, the track error signal component generated by the DPD method is not generated normally. Accordingly, when the optical disc 1 is an HD-DVD, the level of the track error signal component generated by the DPD method is close to 0 and the level of the track error signal component generated by the PP method is also close to 0.


Meanwhile, if the microcomputer 50 determines in operation S112 that the level of the track error signal component generated by the PP method is greater than or equal to the predetermined PP level (PP actual≧PP reference), the microcomputer 50 determines that the inserted optical disc 1 is a non-recorded DVD-R (Operation S116). FIG. 6 shows waveforms of the track error signal generated by the DPD method and the track error signal generated by the PP method measured in a non-recorded DVD-R inserted into the optical disc drive. Referring to FIG. 6, in the non-recorded DVD-R, the level of the track error signal component generated by the DPD method is close to 0, but the track error signal of the PP manner is outputted normally.


As the result of the determination of operation S110, if the microcomputer 50 determines that the level of the track error signal component generated by the DPD method is greater than or equal to the predetermined DPD level (DPD actual≧DPD reference), the microcomputer 50 determines whether the level of the track error signal component generated by the PP method outputted from the RF amplifier 20 is greater than or equal to the predetermined PP level in Operation S120 to accurately determine whether the inserted optical disc 1 is a DVD-ROM or a recorded DVD-R.


As the result of the determination of operation S120, if the microcomputer 50 determines that the level of the track error signal component generated by the PP method is less than the predetermined PP level (PP actual<PP reference), the microcomputer 50 determines that the inserted optical disc 1 is a DVD-ROM (Operation S122). FIG. 7 shows waveforms of the track error signal generated by the DPD method and the track error signal generated by the PP method measured when a DVD-ROM is inserted into the optical disc drive. Referring to FIG. 7, when the inserted optical disc 1 is a DVD-ROM, the track error signal component generated by the DPD method is outputted normally, but the level of the track error signal component generated by the PP method is close to 0.


Meanwhile, as the result of the determination of operation S120, if the microcomputer 50 determines that the level of the track error signal generated by the PP method is greater than or equal to the predetermined PP level (PP actual≧PP reference), the microcomputer 50 determines that the inserted disc 1 is the recorded DVD-R (Operation S124). FIG. 8 shows waveforms of the track error signal component generated by the DPD method and the track error signal component generated by the PP method measured when a recorded DVD-R is inserted into the optical disc drive. Referring to FIG. 8, in the recorded DVD-R, both the track error signal component generated by the DPD method and the track error signal component generated by the PP method are outputted normally. It is understood that the recorded DVD-R may have regions which are not recorded on the recorded DVD-R, and that the non-recorded DVD-R may have regions which are recorded on the non-recorded DVD-R.


According to aspects of the present invention, it is possible to accurately discriminate between a DVD and a HD-DVD using both the levels of the track error signal component generated by the PP method and the track error signal component generated by the DPD method, without being influenced by various set deviations, such as a deviation in sensitivity of the photodiodes 13 and 14, or a light output deviation. Furthermore, when the inserted disc is a DVD, it is possible to accurately and quickly discriminate whether the inserted disc is a DVD-ROM, a recorded DVD-R, or a non-recorded DVD-R. When the type of the inserted optical disc is discriminated, the recording and reproducing operations of the optical disc 1 are performed according to the operation command of the user.


As described above, according to aspects of the present invention, it is possible to accurately discriminate the type of the optical disc inserted into an optical disc system which records and/or reproduces data to and/or from high density optical discs and low density optical discs.


Since aspects of the present invention make it possible to discriminate between a DVD and an HD-DVD using an optical system which records and/or reproduces data to and/or from a general DVD, it is possible to accurately discriminate a disc type and to reduce the amount of time necessary to discriminate the disc type. Furthermore, since aspects of the present invention only use information on the level of a track error signal, the optical disc discrimination is unlikely to be influenced by a set deviation, and thus yield can increase.


Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.

Claims
  • 1. A method to discriminate an optical disc type in an optical disc system which records and/or reproduces data to and/or from a plurality of optical discs having different recording capacities, the method comprising: irradiating a laser beam onto a given one of the optical discs and measuring a track error signal obtained from light reflected by the given optical disc;comparing a level of the measured track error signal with a predetermined reference value; anddiscriminating a type of the given optical disc according to the comparison.
  • 2. The method according to claim 1, wherein the measurement of the track error signal comprises measuring the track error signal by operating a focus servo system which controls a vertical movement of an objective lens relative to the given optical disc, wherein the objective lens forms a laser spot on the given optical disc.
  • 3. The method according to claim 1, wherein the track error signal comprises a track error signal component generated by a push-pull (PP) method and a track error signal component generated by a differential phase detection (DPD)method.
  • 4. The method according to claim 3, wherein the track error signal component generated by the PP method is generated using a difference between electric signals outputted from a plurality of split surfaces of a photodiode, which detects the light reflected by the given optical disc.
  • 5. The method according to claim 3, wherein the track error signal component generated by the DPD method is generated using a phase difference between electric signals outputted from a plurality of split surfaces of a photodiode, which detects the light reflected by the given optical disc.
  • 6. The method according to claim 3, wherein the predetermined reference value comprises a predetermined reference value corresponding to the track error signal component generated by the PP method and a predetermined reference value corresponding to the track error signal component generated by the DPD, to determine whether the track error signal components are outputted normally.
  • 7. The method according to claim 6, wherein the optical discs of different recording capacities have approximately the same substrate thicknesses.
  • 8. The method according to claim 7, wherein if both a level of the track error signal component generated by the DPD method and a level of the track error signal component generated by the PP method are less than the corresponding reference values, the optical disc is determined to be a first type, and otherwise, the optical disc is determined to be a second type.
  • 9. The method according to claim 8, wherein the first type comprises a high-density digital versatile disc, and the second type comprises one of a recorded digital versatile disc-recordable (DVD-R), a digital versatile disc-read only memory (DVD-ROM), or a non-recorded digital versatile disc-recordable (DVD-R).
  • 10. The method according to claim 9, wherein the discrimination of the type of the given optical disc comprises determining that the given optical disc is the high density digital HD-DVD if both the levels of the track error signal component generated by the DPD method and the track error signal component generated by the PP method are less than the corresponding reference values.
  • 11. The method according to claim 9, wherein the discrimination of the type of the given optical disc comprises determining that the given optical disc is the non-recorded DVD-R if the level of the track error signal component generated by the DPD method is less than the corresponding reference value and the level of the track error signal component generated by the PP method is greater than or equal to the corresponding reference value.
  • 12. The method according to claim 9, wherein the discrimination of the type of the given optical disc comprises determining that the given optical disc is the DVD-ROM if the level of the track error signal component generated by the DPD method is greater than or equal to the corresponding reference value and the level of the track error signal component generated by the PP method is less than the corresponding reference value.
  • 13. The method according to claim 9, wherein the discrimination of the type of the given optical disc comprises determining that the given optical disc is the recorded DVD-R if both the levels of the track error signal component generated by the DPD method and the track error signal component generated by the PP method are greater than or equal to the corresponding reference values.
  • 14. An apparatus to discriminate an optical disc type in an optical disc system which records and/or reproduces data to and/or from a plurality of optical discs having different recording capacities, the apparatus comprising: an optical pickup to irradiate a laser beam onto a given one of the optical discs and to measure a track error signal obtained from light reflected by the given optical disc; anda controller to compare a level of the measured track error signal with a predetermined reference value and to discriminate a type of the given optical disc according to the comparison.
  • 15. The apparatus of claim 14, wherein the controller comprises a microcontroller.
  • 16. The apparatus according to claim 14, wherein the optical pickup controls a vertical movement of an objective lens relative to the given optical disc so that the laser beam accurately traces a recording layer of the given optical disc and so that the objective lens forms a spot on the given optical disc.
  • 17. The apparatus according to claim 14, wherein the optical pickup drives a laser diode having a wavelength of 650 nm, which is used to record data to and/or reproduce data from a DVD, in order to measure the track error signal.
  • 18. The apparatus according to claim 14, wherein the optical pickup moves an objective lens having an aperture ratio of 0.65, which is used to record data to and/or reproduce data from a DVD, in order to measure the track error signal.
  • 19. The apparatus according to claim 14, wherein the controller stores predetermined reference values, which have predetermined levels corresponding to a track error signal component generated by a push-pull (PP) method and corresponding to a track error signal component generated by a differential phase detection (DPD) method, to determine whether the track error signal component generated by the PP method and the track error signal component generated by the DPD method are outputted normally, in order to determine whether the given optical disc is a first type or a second type according to a level of the track error signal component generated by the PP method and a level of a track error signal component generated by the DPD method.
  • 20. The apparatus of claim 19, wherein the first type comprises an HD-DVD, and the second type comprises one of a recorded digital versatile disc-recordable (DVD-R), a digital versatile disc-read only memory (DVD-ROM), or a non-recorded digital versatile disc-recordable (DVD-R).
  • 21. The apparatus according to claim 20, wherein the controller determines that the given optical disc is the HD-DVD if both the level of the track error signal component generated by the DPD method and the level of the track error signal component generated by the PP method are less than the corresponding predetermined levels.
  • 22. The apparatus according to claim 20, wherein the controller determines that the optical disc is the non-recorded DVD-R if the level of the track error signal component generated by the DPD method is less than the corresponding predetermined level and the level of the track error signal component generated by the PP method is greater than or equal to the corresponding predetermined level.
  • 23. The method according to claim 20, wherein the controller determines that the given optical disc is the DVD-ROM if the level of the track error signal component generated by the DPD method is greater than or equal to the corresponding predetermined level and the level of the track error signal component generated by the PP method is less than the corresponding predetermined level.
  • 24. The method according to claim 20, wherein the controller determines that the given optical disc is the recorded DVD-R if both the levels of the track error signal component generated by the DPD method and the levels of the track error signal component generated by the PP method are greater than or equal to the corresponding predetermined levels.
  • 25. An apparatus to discriminate an optical disc type in an optical disc system which records and/or reproduces data to and/or from a plurality of optical discs having different recording capacities, the apparatus comprising: an optical pickup to irradiate a laser beam onto a given one of the optical discs, to measure a track error signal component, PP actual, generated by a push-pull (PP) method, and to measure a track error signal component, DPD actual, generated by a differential phase detection (DPD) method; anda controller to compare PP actual to a predetermined reference value PP reference and to compare DPD actual to a predetermined reference value DPD reference, wherein the controller determines that the given optical disc is a first type of disc if:PP actual<PP reference, andDPD actual<DPD reference,and otherwise, determines that the given optical disc is a second type of disc.
  • 26. The apparatus of claim 25, wherein the controller comprises a microcomputer.
  • 27. The apparatus of claim 25, wherein the optical discs of different recording capacities have approximately the same substrate thicknesses.
  • 28. The apparatus of claim 25, wherein the first type comprises an HD-DVD and the second type comprises one of a recorded DVD-R, a non-recorded DVD-R, or a DVD-ROM.
  • 29. The apparatus of claim 28, wherein the controller determines that the given optical disc is the non-recorded DVD-R if: PP actual≧PP reference, andDPD actual<DPD reference.
  • 30. The apparatus of claim 28, wherein the controller determines that the given optical disc is the DVD-ROM if: PP actual<PP reference, andDPD actual≧DPD reference.
  • 31. The apparatus of claim 28, wherein the controller determines that the given optical disc is the recorded DVD-R if: PP actual≧PP reference, andDPD actual≧DPD reference.
  • 32. A method to discriminate an optical disc type in an optical disc system which records and/or reproduces data to and/or from a plurality of optical discs having different recording capacities, the method comprising: irradiating a laser beam onto a given one of the optical discs and measuring a track error signal level obtained from light reflected by the given optical disc;comparing the level of the measured track error signal with a predetermined reference value; anddiscriminating a type of the given optical disc according to the comparison, using only the measured track error signal level.
Priority Claims (1)
Number Date Country Kind
2006-60996 Jun 2006 KR national