The present disclosure relates generally to media content communication and more specifically to an apparatus and method for distributing three-dimensional media content.
Media consumption has become a multibillion dollar industry that continues to grow rapidly. High resolution displays are being introduced into the marketplace that can now present movies and games with three-dimensional perspective having clarity never seen before.
As the quality of the media content is improving, the bandwidth requirements for consumers is increasing. Also, the load on networks to transport the media content is increasing.
One embodiment of the present disclosure can entail a server having a controller to receive three-dimensional (3D) image content that has a plurality of left eye frames and a plurality of right eye frames. Each left eye frame of the plurality of left eye frames can have a first image that corresponds with a second image of a right eye frame of the plurality of right eye frames, and the corresponding first and second images can be at different perspectives. The controller can be operable to remove a portion of pixels from each left eye frame and from the corresponding right eye frame and combine remaining pixels from each left eye frame of the plurality of left eye frames with remaining pixels from the corresponding right eye frame of the plurality of right eye frames, The combined remaining pixels can form a plurality of transport frames, and can form an alternating pattern of pixels based on either alternating rows of pixels or alternating columns of pixels from each left eye frame and the corresponding right eye frame. The controller can also be operable to encode the plurality of transport frames and transmit the encoded plurality of transport frames over an Internet Protocol Television network for decoding by a media processor into the 3D image content.
One embodiment of the present disclosure can entail a non-transitory computer-readable storage medium operating in a media processor, where the storage medium includes computer instructions to receive a plurality of transport frames and generate a left eye frame and a right eye frame from each of the plurality of transport frames. The left eye frame can be generated from first alternating rows of pixels or first alternating columns of pixels of each of the plurality of transport frames. The right eye frame can be generated from second alternating rows of pixels or second alternating columns of pixels of each of the plurality of transport frames. The computer instructions can also include presenting three-dimensional content on a display device using the generated left and right eye frames.
One embodiment of the present disclosure can entail a method including obtaining 3D image content having a plurality of left eye frames and a plurality of right eye frames. The method can also include interleaving pixels from each left eye frame of the plurality of left eye frames with pixels from the corresponding right eye frame of the plurality of right eye frames in an alternating fashion to form a plurality of transport frames for delivery to a media processor.
The VHS 114 can distribute multimedia broadcast programs via an access network 118 to commercial and/or residential buildings 102 housing a gateway 104 (such as a residential or commercial gateway). The access network 118 can represent a group of digital subscriber line access multiplexers (DSLAMs) located in a central office or a service area interface that provides broadband services over optical links or copper twisted pairs 119 to buildings 102. The gateway 104 can use common communication technology to distribute broadcast signals to media processors 106 such as Set-Top Boxes (STBs) or gaming consoles, which in turn present broadcast channels to media devices 108 such as computers, television sets, managed in some instances by a media controller 107 (such as an infrared or RF remote control, gaming controller, etc.).
The gateway 104, the media processors 106, and media devices 108 can utilize tethered interface technologies (such as coaxial, phone line, or powerline wiring) or can operate over a common wireless access protocol such as Wireless Fidelity (WiFi). With these interfaces, unicast communications can be invoked between the media processors 106 and subsystems of the IPTV media system for services such as video-on-demand (VoD), browsing an electronic programming guide (EPG), or other infrastructure services. The present disclosure also contemplates delivery of media content to a plurality of display devices without using set top boxes. For instance, the gateway 104 can receive media content in various formats and convert the media content into a format that is compatible with the display devices, such as the Digital Living Network Alliance standard.
Some of the network elements of the IPTV media system can be coupled to one or more computing devices 130. The computing devices 130, or a portion thereof, can operate as a web server for providing portal services over an Internet Service Provider (ISP) network 132 to wireline media devices 108 or wireless communication devices 116 (e.g., cellular phone, laptop computer, etc.) by way of a wireless access base station 117. The base station 117 can operate according to common wireless access protocols such as WiFi, or cellular communication technologies (such as GSM, CDMA, UMTS, WiMAX, Software Defined Radio or SDR, and so on).
A satellite broadcast television system can be used in place of, or in addition to, the IPTV media system. In this embodiment, signals transmitted by a satellite 115 carrying media content can be intercepted by a common satellite dish receiver 131 coupled to the building 102. Modulated signals intercepted by the satellite dish receiver 131 can be transferred to the media processors 106 for decoding and distributing broadcast channels to the media devices 108. The media processors 106 can be equipped with a broadband port to the ISP network 132 to enable services such as VoD and EPG described above.
In yet another embodiment, an analog or digital broadcast distribution system such as cable TV system 133 can be used in place of, or in addition to, the IPTV media system described above. In this embodiment the cable TV system 133 can provide Internet, telephony, and interactive media services.
It is contemplated that the present disclosure can apply to any present or next generation over-the-air and/or landline media content services system. In one embodiment, an IP Multimedia Subsystem (IMS) network architecture can be utilized to facilitate the combined services of circuit-switched and packet-switched systems in delivering the media content to one or more viewers.
The computing devices 130 can include a controller 175 for pre-encoding 3D image content prior to delivery to the gateway 104 and/or media processors 106. For instance, the computing devices 130 can apply pre-compression geometric re-arranging of pixels in the frames that make up the 3D content in order to increase the pixel-to-pixel correlation. By increasing the pixel correlation, standard spatial frequency transform methods (e.g., H.264 protocol) can yield more efficient compression. Additional compression gains may be accomplished since there is no hard discontinuity in the middle of the frame. In one embodiment, the removal or reduction of discontinuity in the frame can facilitate tracking macroblocks for motion-based algorithms.
In one embodiment, the computing devices 130 can receive left and right eye pairs of the 3D content and can combine the pairs into single frames for compression and transport. For example, portions of the pixels in each of the pairs can be removed, such as alternating rows or alternating columns, and then the resulting frame can be generated by providing the frame with rows of pixels or columns of pixels that are selected from the left and right eye pairs in an alternating fashion. In one embodiment, the resulting content can be encoded to generate a plurality of transport frames, which can be delivered to the media processors 106 in a single stream.
The 3D image content can be in various forms, including still images, moving images and video games. The computing devices can receive or otherwise obtain the 3D content in a number of different ways, including via broadcast.
In another embodiment the pre-encoding can be performed by the computing devices 130 in real-time. The 3D image content can be presented by the media processor 106 and the display device 108 using various techniques including polarization, anaglyphics, active shuttering (such as alternate frame sequencing), autostereoscopy, and so forth.
The UI 304 can include a depressible or touch-sensitive keypad 308 with a navigation mechanism such as a roller ball, joystick, mouse, or navigation disk for manipulating operations of the communication device 300. The keypad 308 can be an integral part of a housing assembly of the communication device 300 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth. The keypad 308 can represent a numeric dialing keypad commonly used by phones, and/or a Qwerty keypad with alphanumeric keys. The UI 304 can further include a display 310 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 300. In an embodiment where the display 310 is touch-sensitive, a portion or all of the keypad 308 can be presented by way of the display 310.
The UI 304 can also include an audio system 312 that utilizes common audio technology for conveying low volume audio (such as audio heard only in the proximity of a human ear) and high volume audio for hands free operation. The audio system 312 can further include a microphone for receiving audible signals from an end user. The audio system 312 can also be used for voice recognition applications. The UI 304 can further include an image sensor 313 such as a charged coupled device (CCD) camera for capturing still or moving images.
The power supply 314 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and charging system technologies for supplying energy to the components of the communication device 300 to facilitate long-range or short-range portable applications. The location detector 316 can utilize common location technology such as a global positioning system (GPS) receiver for identifying a location of the communication device 300 based on signals generated by a constellation of GPS satellites, thereby facilitating common location services such as navigation.
The communication device 300 can use the transceiver 302 to also determine a proximity to a cellular, WiFi or Bluetooth access point by common power sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or a signal time of arrival (TOA) or time of flight (TOF). The controller 306 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies.
The communication device 300 can be adapted to perform the functions of the media processor 106, the media devices 108, or the portable communication devices 116 of
The media processor 106 can be adapted to communicate with accessories such as the viewing apparatus 502 of the illustrative embodiment 500 depicted in
The viewing apparatus 502 can represent an apparatus for viewing two-dimensional (2D) or 3D stereoscopic images which can be still or moving images. The viewing apparatus 502 can be an active shutter viewing apparatus. In this embodiment, each lens has a liquid crystal layer which can be darkened or made to be transparent by the application of one or more bias voltages. Each lens 504, 506 can be independently controlled. Accordingly, the darkening of the lenses 504, 506 can alternate, or can be controlled to operate simultaneously.
Each viewing apparatus 502 can include all or portions of the components of the communication device 300 illustrated in
The viewing apparatus 502 can utilize a controller 306 to control operations thereof, and a portable power supply (not shown). The viewing apparatus 502 can have portions of the UI 304 of
The viewing apparatus 502 can also include an audio system 312 with one or more speakers in the extensions of the housing assembly such as shown by references 516, 520 to produce localized audio 518, 520 near a user's ears. Different portions of the housing assembly can be used to produce mono, stereo, or surround sound effects. Ear cups (not shown) such as those used in headphones can be used by the viewing apparatus 502 (as an accessory or integral component) for a more direct and low-noise audio presentation technique. The volume of sound presented by the speakers 514, 516 can be controlled by a thumbwheel 510 (or up/down buttons—not shown).
It would be evident from the above descriptions that many embodiments of the viewing apparatus 502 are possible, all of which are contemplated by the present disclosure.
Referring to the pixel arrangements 800 and 900 of
The combined frame can be assembled as a matrix of elements as shown in the interleaving pixel arrangement of Ls and Rs frames of Table 1:
In this embodiment, each alternate column of Table 1 belongs to a different re-sampled frame (Rs or Ls) corresponding to a horizontal interlacing. In a side-side decoding mechanism, reconstruction of the side-side image at the decoder (e.g., a 3DTV or an STB) can be performed by reversing the process and recreating the two frames (Ro or Lo).
The recombining algorithm provides for efficient digital computation (e.g., integer arithmetic). In one embodiment, the recombining algorithm can be incorporated into a field programmable gate array, such as in a 3DTV or STB.
In one embodiment the exemplary methods described herein can be utilized with any pixel packing technique that separates left and right eye frames (or images) into separate panels (side-side, top-bottom, and so forth). For example, the exemplary methods can create a single image with extended edges creating an overall image whose pixels are more closely correlated and will produce improved compression gains when encoded.
If on the other hand, the media content is 3D content then in step 1006 selected portions of pixels from each of the left and right eye frames can be removed. The portions of pixels that are removed can be based on a number of factors and can be in a number of different patterns. For instance, one or more rows and/or columns of pixels can be removed from each of the left and right eye pairs. In another embodiment, alternating rows and/or alternating columns of pixels can be removed from each of the left and right eye pairs. In yet another embodiment, the removals of the portion of pixels can be based on either or both of previous and subsequent pairs of frames. The removal of a portion of the pixels can be based on filtering and re-sampling techniques, including along the horizontal, vertical and/or diagonal directions.
In one embodiment, the filtering and re-sampling can be applied equally to both the left and right eye frame pairs. For instance, the filtering and re-sampling can be applied to the left eye frame to determine which pixels are to be removed. Rather than re-applying filtering and re-sampling to the corresponding right eye frame, in one exemplary embodiment, the computing devices 130 can remove the same pixels (e.g., based on a position of the pixels within a shared coordinate system of the frame pairs) from the right eye frame. The present disclosure also contemplates removal of different pixels from the left and right eye frame pairs. For instance, the filtering and re-sampling can be applied equally to a portion of each of the left and right eye frames, such as a center region of the frames, but can be unequally applied along the outer regions of the frames.
In one embodiment, the filtering and re-sampling can be applied to reduce the left and right eye frames to half-resolution so that the left and right eye frames can be combined into the single transport frame. In another embodiment, the filtering and re-sampling can be applied to obtain other resolutions for the left and right eye frames. For example, first and second sets of left and right eye pairs can be filtered and re-sampled to quarter-resolution frames. All four frames can then be combined into the single transport frame, such as by having the columns or rows of pixels in the transport frame selected from each of the frames in a four-way alternating fashion, such as a pixel column arrangement in the transport frame of 1L11R12L12R11L21R22L22R21L31R32L32R3 . . . , where 1L and 1R are the first left and right eye frame pair and 2L and 2R are the second left and right eye frame pair, and where the subscript is the column number in the first and second eye frame pairs.
In step 1008, the remaining pixels for each left and right eye pair can be combined into single frames. The plurality of single frames, which each include the remaining pixels from the corresponding left and right eye pairs of frames, can then be encoded in step 1010. The particular transport encoding can vary. For example, compression techniques, such as MPEG2, MPEG4-AVC, or other coding methods that use frequency transforms (e.g., discrete cosine transform and others), can be applied to the plurality of frames. In one embodiment, the compression techniques can include those which allow for the resulting coefficients to be quantized based on quasi polynomial factor and rate control algorithms, as well as motion compensation.
Once encoded, the plurality of frames can be transmitted to the media processor for display of the 3D content on a display device. The transmission can be based on multicast, unicast and/or broadcast.
In one embodiment, if the display device is incapable of presenting 3D content then each of the plurality of frames can be processed by the media processor 106 to remove either the left or right eye pixels from the single frame. Interpolation or other imaging techniques can be utilized to generate and replace the removed pixels.
If on the other hand the display device is capable of presenting the 3D content and such a presentation is desired then the media processor 106 (such as the STB's) can generate the 3D content based on the left and right eye pixels in each of the single frames that can be utilized for generating left and right eye frame pairs. In one embodiment, the techniques used to remove select portions of pixels during the filtering and re-sampling process can also be utilized by the media processor 106 to add pixels to each of the left and right eye frame pairs. Various other techniques are contemplated for adding pixels to the left and right eye frame pairs, including interpolation based on previous and or subsequent pairs of frames, as well as based on other pixels within the same left and right eye frames.
The left and right eye frame pairs can then be sequentially presented at the display device and viewed utilizing active shutter glasses. In another embodiment, the left and right pairings can be combined but oppositely polarized and viewed utilizing polarized glasses. The exemplary embodiments contemplate other techniques for generating the three-dimensional content from the two-dimensional content and the depth map. The particular methodology employed to provide or render the three-dimensional image content can vary and can include active shutter (alternate frame sequencing), polarization and other techniques. The media content map can be received by the media processor from various sources, such as via a broadcast over an IPTV network, cable, DBS and so forth.
The exemplary embodiments contemplate a viewing apparatus (such as active shutter glasses or passive polarization glasses) being detected through various means. The detection can be performed by the media processor, although other devices can also be utilized for this purpose as well. The detection can be based upon a number of thresholds, including recognizing that a viewer is wearing the viewing apparatus; detecting that the viewing apparatus is in a line of sight with a display device upon which the media content is or will be displayed; and determining that the viewing apparatus is within a pre-determined distance of the display device. The techniques and components utilized for detecting the viewing apparatus can vary. For example, the media processor can scan for the presence of the viewing apparatus. This can include two-way communication between the media processor and the viewing apparatus. In one embodiment, the viewing apparatus can emit a signal which is detected by the media processor. Presence and/or distance can be determined based on the signal, including utilizing signal strength. Location techniques can also be used for determining a position of the viewing apparatus, including triangulation and so forth.
Upon reviewing the aforementioned embodiments, it would be evident to an artisan with ordinary skill in the art that said embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. The embodiments described above can be adapted to operate with any device capable of performing in whole or in part the steps described for method 800. For example, a cellular phone can be adapted to receive the plurality of transport frames and generate left and right eye frame pairs therefrom for presentation of 3D content.
In one embodiment, different frames or groups of frames can be subjected to different pre-encoding processes. For instance, one or more first pairs of frames can be combined using column interleaving where the resulting frame is arranged in pixel columns that are selected from the left and right eye pairs in an alternating fashion, while one or more second pairs of frames can be combined using row interleaving where the resulting frame is arranged in pixel columns that are selected from the left and right eye pairs in an alternating fashion.
In another embodiment, the alternating pattern of pixels can be non-uniform. For instance, the center area of the resulting frame can have a uniform pattern of alternating pixels selected from the left and right eye pairs where as one or more edges of the resulting frame can have a non-uniform pattern, such as having a series of columns or a series of rows selected from either the left eye frame or the right eye frame.
In another embodiment, the filtering and re-sampling of pixels to produce the left eye and right eye half-frames or other lower resolution versions of the left and right eye frames can be performed on selected portions of the left and right eye frames. For instance, a greater number of pixels can be removed near the outer regions of the left and right eye frames while maintaining more pixels in the center region of the left and right eye frames.
Other suitable modifications can be applied to the present disclosure without departing from the scope of the claims below. Accordingly, the reader is directed to the claims section for a fuller understanding of the breadth and scope of the present disclosure.
The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a device of the present disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The computer system 1100 may include a processor 1102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 1104 and a static memory 1106, which communicate with each other via a bus 1108. The computer system 1100 may further include a video display unit 1110 (e.g., a liquid crystal display (LCD), a flat panel, a solid state display, or a cathode ray tube (CRT)). The computer system 1100 may include an input device 1112 (e.g., a keyboard), a cursor control device 1114 (e.g., a mouse), a disk drive unit 1116, a signal generation device 1118 (e.g., a speaker or remote control) and a network interface device 1120.
The disk drive unit 1116 may include a machine-readable medium 1122 on which is stored one or more sets of instructions (e.g., software 1124) embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions 1124 may also reside, completely or at least partially, within the main memory 1104, the static memory 1106, and/or within the processor 1102 during execution thereof by the computer system 1100. The main memory 1104 and the processor 1102 also may constitute machine-readable media.
Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.
In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
The present disclosure contemplates a machine readable medium containing instructions 1124, or that which receives and executes instructions 1124 from a propagated signal so that a device connected to a network environment 1126 can send or receive voice, video or data, and to communicate over the network 1126 using the instructions 1124. The instructions 1124 may further be transmitted or received over a network 1126 via the network interface device 1120.
While the machine-readable medium 1122 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.
The term “machine-readable medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; and/or a digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.
Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same functions are considered equivalents.
The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
The Abstract of the Disclosure is provided with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 12/831,826 filed Jul. 7, 2010 by Pierre Costa et al., entitled “Apparatus and Method for Distributing Three Dimensional Media Content.” All sections of the aforementioned application(s) are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2832821 | Du Mont | Apr 1958 | A |
4649425 | Pund | Mar 1987 | A |
5012351 | Isono | Apr 1991 | A |
5293529 | Yoshimura et al. | Mar 1994 | A |
5353269 | Kobayashi et al. | Oct 1994 | A |
5392266 | Kobayashi et al. | Feb 1995 | A |
5465175 | Woodgate | Nov 1995 | A |
6014164 | Woodgate | Jan 2000 | A |
6115177 | Vossler | Sep 2000 | A |
6144375 | Jain et al. | Nov 2000 | A |
6188442 | Narayanaswami | Feb 2001 | B1 |
6243054 | DeLuca | Jun 2001 | B1 |
6285368 | Sudo | Sep 2001 | B1 |
6535241 | McDowall | Mar 2003 | B1 |
6559813 | DeLuca | May 2003 | B1 |
6654721 | Handelman | Nov 2003 | B2 |
6725463 | Birleson | Apr 2004 | B1 |
6859549 | Oliensis | Feb 2005 | B1 |
6924833 | McDowall | Aug 2005 | B1 |
6965381 | Kitamura | Nov 2005 | B2 |
7106358 | Valliath et al. | Sep 2006 | B2 |
7137558 | Aigeldinger | Nov 2006 | B2 |
7204592 | O'Donnell | Apr 2007 | B2 |
7245430 | Kobayashi | Jul 2007 | B2 |
7327410 | Cho | Feb 2008 | B2 |
7391443 | Kojima et al. | Jun 2008 | B2 |
7613927 | Holovacs | Nov 2009 | B2 |
7785201 | Hashimoto | Aug 2010 | B2 |
7813543 | Modén | Oct 2010 | B2 |
8111282 | Cutler et al. | Feb 2012 | B2 |
8117281 | Robinson et al. | Feb 2012 | B2 |
8130256 | Trachtenberg et al. | Mar 2012 | B2 |
8254668 | Mashitani | Aug 2012 | B2 |
8305914 | Thielman et al. | Nov 2012 | B2 |
8370873 | Shintani | Feb 2013 | B2 |
8373744 | Akka | Feb 2013 | B2 |
8416278 | Kim et al. | Apr 2013 | B2 |
8436888 | Baldino et al. | May 2013 | B1 |
8438502 | Friedman et al. | May 2013 | B2 |
8456507 | Mallappa et al. | Jun 2013 | B1 |
8471888 | George et al. | Jun 2013 | B2 |
8552983 | Chiu | Oct 2013 | B2 |
8625769 | Allen et al. | Jan 2014 | B1 |
8644467 | Catchpole et al. | Feb 2014 | B2 |
8675067 | Chou et al. | Mar 2014 | B2 |
8687042 | Karaoguz | Apr 2014 | B2 |
9032470 | Bedingfield, Sr. et al. | May 2015 | B2 |
9049033 | Lemmey et al. | Jun 2015 | B2 |
9077846 | Pradeep | Jul 2015 | B2 |
9325943 | Wilson et al. | Apr 2016 | B2 |
9379900 | Lemmey | Jun 2016 | B2 |
9830680 | Meuninck et al. | Nov 2017 | B2 |
20020009137 | Nelson | Jan 2002 | A1 |
20020114072 | Hong | Aug 2002 | A1 |
20020122145 | Tung | Sep 2002 | A1 |
20020122585 | Swift et al. | Sep 2002 | A1 |
20030043262 | Takemoto | Mar 2003 | A1 |
20030090592 | Callway et al. | May 2003 | A1 |
20030128273 | Matsui et al. | Jul 2003 | A1 |
20030128871 | Naske et al. | Jul 2003 | A1 |
20030132951 | Sorokin et al. | Jul 2003 | A1 |
20030214630 | Winterbotham | Nov 2003 | A1 |
20030223499 | Routhier | Dec 2003 | A1 |
20030231179 | Suzuki | Dec 2003 | A1 |
20040013252 | Craner et al. | Jan 2004 | A1 |
20040027452 | Yun | Feb 2004 | A1 |
20040104864 | Nakada | Jun 2004 | A1 |
20040109093 | Small-Stryker | Jun 2004 | A1 |
20040130614 | Valliath et al. | Jul 2004 | A1 |
20040150585 | Tomisawa et al. | Aug 2004 | A1 |
20040164154 | Aigeldinger | Aug 2004 | A1 |
20040218104 | Smith | Nov 2004 | A1 |
20040233275 | Tomita et al. | Nov 2004 | A1 |
20050041736 | Butler-Smith et al. | Feb 2005 | A1 |
20050057702 | Cho | Mar 2005 | A1 |
20050066165 | Peled et al. | Mar 2005 | A1 |
20050084006 | Lei | Apr 2005 | A1 |
20050123171 | Kobayashi et al. | Jun 2005 | A1 |
20050169553 | Maurer | Aug 2005 | A1 |
20050185711 | Pfister | Aug 2005 | A1 |
20050190180 | Jin et al. | Sep 2005 | A1 |
20050270367 | McDowall | Dec 2005 | A1 |
20060001596 | Cuffaro et al. | Jan 2006 | A1 |
20060046846 | Hashimoto | Mar 2006 | A1 |
20060109200 | Alden | May 2006 | A1 |
20060136846 | Im et al. | Jun 2006 | A1 |
20060139312 | Sinclair et al. | Jun 2006 | A1 |
20060161410 | Hamatani et al. | Jul 2006 | A1 |
20060200518 | Sinclair et al. | Sep 2006 | A1 |
20060203085 | Tomita | Sep 2006 | A1 |
20060252978 | Vesely | Nov 2006 | A1 |
20060274197 | Yoo | Dec 2006 | A1 |
20070039032 | Goldey et al. | Feb 2007 | A1 |
20070052672 | Ritter et al. | Mar 2007 | A1 |
20070153122 | Ayite | Jul 2007 | A1 |
20070171275 | Kenoyer | Jul 2007 | A1 |
20070242068 | Han | Oct 2007 | A1 |
20070250567 | Erion et al. | Oct 2007 | A1 |
20070263003 | Ko | Nov 2007 | A1 |
20070266412 | Trowbridge | Nov 2007 | A1 |
20070296721 | Chang et al. | Dec 2007 | A1 |
20080015997 | Moroney et al. | Jan 2008 | A1 |
20080024454 | Everest | Jan 2008 | A1 |
20080044079 | Chao et al. | Feb 2008 | A1 |
20080052759 | Kronlund et al. | Feb 2008 | A1 |
20080062125 | Kitaura | Mar 2008 | A1 |
20080080852 | Chen | Apr 2008 | A1 |
20080100547 | Cernasov | May 2008 | A1 |
20080151092 | Vilcovsky et al. | Jun 2008 | A1 |
20080199070 | Kim et al. | Aug 2008 | A1 |
20080247610 | Tsunoda | Oct 2008 | A1 |
20080247670 | Tam et al. | Oct 2008 | A1 |
20080256572 | Chen | Oct 2008 | A1 |
20080303895 | Akka | Dec 2008 | A1 |
20080303896 | Lipton | Dec 2008 | A1 |
20080310499 | Kim | Dec 2008 | A1 |
20090033737 | Goose et al. | Feb 2009 | A1 |
20090046895 | Pettersson et al. | Feb 2009 | A1 |
20090096858 | Jeong et al. | Apr 2009 | A1 |
20090097771 | Jiang | Apr 2009 | A1 |
20090100474 | Migos | Apr 2009 | A1 |
20090122134 | Joung et al. | May 2009 | A1 |
20090128620 | Lipton | May 2009 | A1 |
20090160934 | Hendrickson et al. | Jun 2009 | A1 |
20090174708 | Yoda et al. | Jul 2009 | A1 |
20090221368 | Yen et al. | Sep 2009 | A1 |
20090278917 | Dobbins et al. | Nov 2009 | A1 |
20090304265 | Khan et al. | Dec 2009 | A1 |
20090310851 | Arcas et al. | Dec 2009 | A1 |
20090315977 | Jung | Dec 2009 | A1 |
20090319178 | Khosravy | Dec 2009 | A1 |
20090327418 | Zhang et al. | Dec 2009 | A1 |
20100007582 | Zalewski et al. | Jan 2010 | A1 |
20100013738 | Covannon et al. | Jan 2010 | A1 |
20100026783 | Chiu et al. | Feb 2010 | A1 |
20100026809 | Curry et al. | Feb 2010 | A1 |
20100031202 | Morris et al. | Feb 2010 | A1 |
20100039428 | Kim et al. | Feb 2010 | A1 |
20100045772 | Roo et al. | Feb 2010 | A1 |
20100045779 | Kwon | Feb 2010 | A1 |
20100066816 | Kane | Mar 2010 | A1 |
20100073454 | Lovhaugen et al. | Mar 2010 | A1 |
20100073468 | Kutner | Mar 2010 | A1 |
20100076642 | Hoffberg | Mar 2010 | A1 |
20100079585 | Nemeth | Apr 2010 | A1 |
20100085416 | Hegde et al. | Apr 2010 | A1 |
20100085424 | Kane et al. | Apr 2010 | A1 |
20100086200 | Stankiewicz et al. | Apr 2010 | A1 |
20100098299 | Muquit et al. | Apr 2010 | A1 |
20100103106 | Chui | Apr 2010 | A1 |
20100103822 | Montwill et al. | Apr 2010 | A1 |
20100114783 | Spolar | May 2010 | A1 |
20100134411 | Tsumura | Jun 2010 | A1 |
20100150523 | Okubo | Jun 2010 | A1 |
20100171697 | Son et al. | Jul 2010 | A1 |
20100171814 | Routhier | Jul 2010 | A1 |
20100177161 | Curtis | Jul 2010 | A1 |
20100177172 | Ko | Jul 2010 | A1 |
20100182404 | Kuno | Jul 2010 | A1 |
20100188488 | Birnbaum et al. | Jul 2010 | A1 |
20100188511 | Matsumoto | Jul 2010 | A1 |
20100192181 | Friedman | Jul 2010 | A1 |
20100194857 | Mentz | Aug 2010 | A1 |
20100199341 | Foti et al. | Aug 2010 | A1 |
20100201790 | Son | Aug 2010 | A1 |
20100212509 | Tien et al. | Aug 2010 | A1 |
20100215251 | Klein Gunnewiek et al. | Aug 2010 | A1 |
20100225576 | Morad | Sep 2010 | A1 |
20100225735 | Shaffer et al. | Sep 2010 | A1 |
20100226288 | Scott et al. | Sep 2010 | A1 |
20100228825 | Hegde et al. | Sep 2010 | A1 |
20100235871 | Kossin | Sep 2010 | A1 |
20100238273 | Luisi et al. | Sep 2010 | A1 |
20100241999 | Russ et al. | Sep 2010 | A1 |
20100250120 | Waupotitsch | Sep 2010 | A1 |
20100303442 | Newton et al. | Dec 2010 | A1 |
20100306800 | Jung et al. | Dec 2010 | A1 |
20100309287 | Rodriguez | Dec 2010 | A1 |
20100315494 | Ha et al. | Dec 2010 | A1 |
20100328475 | Thomas et al. | Dec 2010 | A1 |
20110001806 | Nakahata | Jan 2011 | A1 |
20110012896 | Ji | Jan 2011 | A1 |
20110012992 | Luthra | Jan 2011 | A1 |
20110019669 | Ma et al. | Jan 2011 | A1 |
20110029893 | Roberts et al. | Feb 2011 | A1 |
20110032328 | Raveendran et al. | Feb 2011 | A1 |
20110037837 | Chiba et al. | Feb 2011 | A1 |
20110043614 | Kitazato | Feb 2011 | A1 |
20110050860 | Watson | Mar 2011 | A1 |
20110050866 | Yoo | Mar 2011 | A1 |
20110050869 | Gotoh | Mar 2011 | A1 |
20110078737 | Kanemaru | Mar 2011 | A1 |
20110085017 | Robinson et al. | Apr 2011 | A1 |
20110096155 | Choo | Apr 2011 | A1 |
20110109715 | Jing et al. | May 2011 | A1 |
20110119640 | Berkes | May 2011 | A1 |
20110119709 | Kim et al. | May 2011 | A1 |
20110122152 | Glynn | May 2011 | A1 |
20110122220 | Roberts et al. | May 2011 | A1 |
20110128354 | Tien et al. | Jun 2011 | A1 |
20110138334 | Jung | Jun 2011 | A1 |
20110157329 | Huang et al. | Jun 2011 | A1 |
20110164110 | Fortin et al. | Jul 2011 | A1 |
20110164111 | Karaoguz | Jul 2011 | A1 |
20110164122 | Hardacker | Jul 2011 | A1 |
20110169913 | Karaoguz | Jul 2011 | A1 |
20110187821 | Routhier | Aug 2011 | A1 |
20110193946 | Apitz | Aug 2011 | A1 |
20110199460 | Gallagher | Aug 2011 | A1 |
20110199469 | Gallagher | Aug 2011 | A1 |
20110211049 | Bassali et al. | Sep 2011 | A1 |
20110216153 | Tasker et al. | Sep 2011 | A1 |
20110221874 | Oh | Sep 2011 | A1 |
20110221897 | Haddick et al. | Sep 2011 | A1 |
20110225611 | Shintani | Sep 2011 | A1 |
20110228040 | Blanche et al. | Sep 2011 | A1 |
20110254921 | Pahalawatta | Oct 2011 | A1 |
20110255003 | Pontual | Oct 2011 | A1 |
20110258665 | Fahrny et al. | Oct 2011 | A1 |
20110267422 | Garcia et al. | Nov 2011 | A1 |
20110267437 | Abeloe | Nov 2011 | A1 |
20110267439 | Chen | Nov 2011 | A1 |
20110271304 | Loretan | Nov 2011 | A1 |
20110285828 | Bittner | Nov 2011 | A1 |
20110286720 | Obana et al. | Nov 2011 | A1 |
20110298803 | King et al. | Dec 2011 | A1 |
20110301760 | Shuster et al. | Dec 2011 | A1 |
20110304613 | Thoresson | Dec 2011 | A1 |
20110310234 | Sarma | Dec 2011 | A1 |
20120007948 | Suh et al. | Jan 2012 | A1 |
20120026396 | Banavara | Feb 2012 | A1 |
20120033048 | Ogawa | Feb 2012 | A1 |
20120050456 | Arnao et al. | Mar 2012 | A1 |
20120050458 | Mauchly et al. | Mar 2012 | A1 |
20120050507 | Keys | Mar 2012 | A1 |
20120075407 | Wessling et al. | Mar 2012 | A1 |
20120092445 | McDowell et al. | Apr 2012 | A1 |
20120128322 | Shaffer et al. | May 2012 | A1 |
20120169730 | Inoue | Jul 2012 | A1 |
20120169838 | Sekine | Jul 2012 | A1 |
20120206558 | Setton et al. | Aug 2012 | A1 |
20120212509 | Benko et al. | Aug 2012 | A1 |
20120249719 | Lemmey et al. | Oct 2012 | A1 |
20120249741 | Maciocci et al. | Oct 2012 | A1 |
20120274731 | Shanmukhadas et al. | Nov 2012 | A1 |
20120327174 | Hines et al. | Dec 2012 | A1 |
20120327178 | Hines et al. | Dec 2012 | A1 |
20130070045 | Meek et al. | Mar 2013 | A1 |
20130120522 | Lian et al. | May 2013 | A1 |
20130271560 | Diao et al. | Oct 2013 | A1 |
20130307942 | Dini | Nov 2013 | A1 |
20160142698 | Hines | May 2016 | A1 |
20160243442 | Friedman | Aug 2016 | A1 |
20160269722 | King et al. | Sep 2016 | A1 |
20160309117 | Hines et al. | Oct 2016 | A1 |
20160323546 | Hines | Nov 2016 | A1 |
20160344976 | Hines et al. | Nov 2016 | A1 |
20170150098 | Hines | May 2017 | A1 |
20170230727 | Meuninck | Aug 2017 | A1 |
20170318278 | Hines et al. | Nov 2017 | A1 |
20170353715 | King et al. | Dec 2017 | A1 |
20180068415 | Meuninck et al. | Mar 2018 | A1 |
Entry |
---|
Edwards, , “Active Shutter 3D Technology for HDTV”, PhysOrg.com; 12 pages; Sep. 25, 2009; http://www.physorg.com/news173082582.html; web site last visited May 10, 2010. |
Number | Date | Country | |
---|---|---|---|
20150222872 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12831826 | Jul 2010 | US |
Child | 14688125 | US |