For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Referring first to
It will be understood by those of ordinary skill in the art that methods and apparatuses in accordance with this invention are not limited to use with a semisubmersible platform 12 as illustrated in
Turning now to
To steer (i.e., change the direction of drilling), one or more of blades 150 are extended and exert a force against the borehole wall. The rotary steerable tool 100 is moved away from the center of the borehole by this operation, altering the drilling path. It will be appreciated that the tool 100 may also be moved back towards the borehole axis if it is already eccentered. To facilitate controlled steering, the tool 100 is constructed so that the housing 110, which houses the blades 150, remains stationary, or substantially stationary, with respect to the borehole during steering operations. The rotation rate of the housing is typically less than 0.1 rpm during drilling, although the invention is not limited in this regard. If the desired change in direction requires moving the center of the rotary steerable tool 100 a certain direction from the centerline of the borehole, this objective is achieved by actuating one or more of the blades 150. By keeping the blades 150 in a substantially fixed position with respect to the circumference of the borehole (i.e., by preventing rotation of the housing 110), it is possible to steer the tool without constantly extending and retracting the blades 150. The housing 110, therefore, is constructed in a rotationally non-fixed or floating fashion.
In general, increasing the offset (i.e., increasing the distance between the tool axis and the borehole axis) tends to increase the curvature (dogleg severity) of the borehole upon subsequent drilling. In the exemplary embodiment shown, rotary steerable tool 100 includes near-bit stabilizer 120, and is therefore configured for “point-the-bit” steering in which the direction (tool face) of subsequent drilling tends to be in the opposite direction (or nearly the opposite; depending, for example, upon local formation characteristics) of the offset between the tool axis and the borehole axis. The invention is not limited to the mere use of a near-bit stabilizer. It is equally well suited for “push-the-bit” steering in which there is no near-bit stabilizer and the direction of subsequent drilling tends to be in the same direction as the offset between the tool axis and borehole axis.
The rotation of the drill string and the drilling force it exerts are transmitted through the rotary steerable tool 100 to the drill bit 32 by a rigid shaft 115. The shaft 115 is typically a thick-walled, tubular member capable of withstanding the large forces encountered in drilling situations. The tubular shaft 115 typically also includes a relatively small bore that is required to allow flow of drilling fluid to the drill bit 32. Since the shaft 115 is rotationally coupled with the drill string and the housing 110 is substantially non-rotating with respect to the borehole, the rotation rate of the shaft 115 relative to that of the housing has been found to be a reliable indicator of drill string rotation. For example, in one application using a “push-the-bit” configuration, housing 110 was found to rotate one revolution every 2 or 3 hours (a rotation rate of less than 0.01 rpm), while the shaft was rotating at rate between about 100 and 200 rpm. Moreover, as described in more detail below, measurement of the instantaneous rotation rate of the shaft 115 has been found to be a reliable indicator of stick/slip conditions during drilling.
In one advantageous embodiment, sensor 210 includes a Hall-effect sensor and markers 215 are magnetic markers, although the invention is not limited in this regard. Other sensor and marker arrangements may be utilized. For example, in one alternative embodiment, sensor arrangement 200 may include an infrared sensor configured to sense a marker including, for example, a mirror reflecting infrared radiation from a source located near the sensor. In another alternative embodiment, sensor arrangement 200 may include one or more ultrasonic receivers (sensors) and ultrasonic transmitters (markers) deployed on the shaft 215 and housing 210. In still another alternative embodiment, sensor arrangement 200 may include one or more electrical switches (sensors) and a plurality of cams (markers) disposed to open and close the switches as they rotate past one another.
With reference now to
The rotation rates of the shaft 115 may be determined at 404, for example, by counting the number of sensed pulses in a predetermined time period. This may be expressed mathematically, for example, as follows:
where RPM represents the rotation rate of the shaft 115 in revolutions per minute, N represents the number of pulses recorded in the predetermine time period, At represents the length of the predetermined time period in seconds, and n represents the number of magnetic markers utilized in sensor 200 (e.g., 3 as shown on
The rotation rates may also be determined at 404 from the elapsed time interval between one or more pulses. This may be expressed mathematically, for example, as follows:
where RPM and n are as defined above in Equation 1 and δt represents the time interval between the m pulses in seconds. Equation 2 may also be utilized to determine both instantaneous and average rotation rates. To determine an instantaneous rotation rate, m is typically in the range from about 1 to 10. To determine an average rotation rates, m is typically in the range from about 50 to 200. To illustrate, an elapsed time interval δt of 0.1 second between sequential pulses (m=1) for a sensor arrangement having 3 markers yields an instantaneous rotation rate of 200 rpm. It will be appreciated that in moderate to severe stick/slip conditions, the drill string (and therefore shaft 215) can stop rotating for up to several seconds. In such conditions it may be advantageous to set a predetermined maximum elapsed time interval between sequential pulses. For example, if no pulses are sensed for a whole second (a rotation rate of 20 rpm or less in an embodiment having three markers), then the rotation rate may be arbitrarily set to zero until the next pulse is received. It will be appreciated that such an approach is consistent with stick/slip conditions in which a drill string essentially stops rotating for some period of time due to frictional forces and then rotates rapidly for a short period of time during which the torsional energy is released.
With continued reference to
where SSN represents a normalized stick/slip parameter, RPMMAX and RPMMIN represent maximum and minimum instantaneous rotation rates during some predetermined time period, and RPMAVE represents the average rotation rate during the predetermine time period (e.g., 20 seconds).
It will, of course, be appreciated that the stick/slip parameter SS need not be normalized as shown in Equation 3, but may instead be expressed as the difference between the maximum and minimum instantaneous rotation rates as follows:
SS=RPMMAX−RPMMIN˜RPMMAX Equation 4
In many applications, as described above, stick/slip conditions cause the drill string to temporarily stop rotating (i.e., RPMMIN=0). In such conditions, as shown in Equations 3 and 4, the stick/slip parameter is essentially equal to or proportional to the maximum instantaneous rotation rate. As such, it will be understood that RPMMAX may be a suitable alternative metric for quantifying stick/slip conditions. Such an alternative metric may be suitable for many applications, especially since damage and wear to the drill bit, rotary steerable tool, and other downhole tools is generally understood to be related to the maximum instantaneous drill string rotation rate.
It will, of course, be appreciated that the sensor pulses need not be converted to rotation rates in order to determine the stick/slip parameter. For example, SS and SSN may also be equivalently expressed mathematically as follows:
where SS and SSN are as defined above, NMIN and NMAX represent the minimum and maximum number of pulses recorded during a plurality of short duration time periods, and NAVE represents the average number of pulses recorded in the plurality of short time periods.
A suitable stick/slip parameter may also be determined by differentiating the sensor pulses (e.g., the Hall-effect counts) or the rotation rate of the shaft as a function time. For example, stick/slip and/or normalized stick/slip parameters may alternatively be expressed mathematically, for example, as follows:
where SS and SSN represent stick/slip and normalized stick/slip parameters, d(RPM(t))/dt represents the differential of the instantaneous rotation rate with time, and RPM(t) and RPM(t−1) represent instantaneous rotation rates of the shaft in sequential time periods. It will be appreciated by those of ordinary skill in the art that Equations 7 and 8 essentially determine the variability of the rotation rate (or the instantaneous rotation rate) with time. As described above, stick/slip conditions typically result in a highly variable rotation rate. It will also be appreciated, that such variability (and therefore a stick/slip parameter) may be equivalently determined by differentiating (i) the number of electrical pulses as a function of time or (ii) the time interval δt between pulses (or groups of pulses). It will also be appreciated that the normalized stick/slip parameter can be noisy when the average rotation rate is relatively small (e.g., 10 RPM or less). To prevent false notification of severe stick/slip (due to the measurement noise), the firmware may include instructions, for example, to ignore normalized stick/slip parameters when the average rotation rate is less than some predetermined threshold.
Referring now to
Suitable accelerometers for use in sensor 300 are preferably chosen from among commercially available devices known in the art. For example, suitable accelerometers may include Part Number 979-0273-001 commercially available from Honeywell, and Part Number JA-5H175-1 commercially available from Japan Aviation Electronics Industry, Ltd. (JAE). Suitable accelerometers may alternatively include micro-electro-mechanical systems (MEMS) solid-state accelerometers, available, for example, from Analog Devices, Inc. (Norwood, Mass.). Such MEMS accelerometers may be advantageous for certain rotary steerable applications since they tend to be shock resistant, high-temperature rated, and inexpensive.
The use of a tri-axial arrangement of accelerometers for determining survey parameters, such as tool face and borehole inclination, is known in the art. Since housing 110 is substantially non-rotating with respect to the borehole, the x, y, and z components of the gravitational field (measured by the tri-axial arrangement of accelerometers) may be utilized to determine gravity tool face and inclination of the rotary steerable tool. This may be accomplished, for example, by averaging the accelerometer measurements over a predetermined period of time (e.g., from about 10 to about 60 seconds) to essentially average out the effects of tool vibration and using the following known equations:
. . . assuming √{square root over (GX2+Gy2+Gz2)} is approximately 1 G
where GTF represents the gravity tool face, Inc represents the inclination, and Gx, Gy, and Gz represent the time-averaged x, y, and z components of the gravitational field. As described in more detail below, sensor set 310 (including the tri-axial arrangement of accelerometers) may also be advantageously utilized to simultaneously determine axial (bit bounce) and lateral vibration components during drilling.
With reference now to
The accelerometer measurements are typically averaged over relatively short time intervals (e.g., from about 0.1 to about 1 second intervals) to determine substantially instantaneous tri-axial acceleration components. Tool vibration components (e.g., bit bounce and lateral vibration) may then be determined at 512 from the instantaneous acceleration components. It will be appreciated that tool vibration components are typically determined along each of the tool axes (x, y, and z). For example, a bit bounce parameter may be determined from the z-axis (axial) acceleration measurements and a lateral vibration parameter may be determined from the x- and y-axis (cross-axial) acceleration components. Tool vibration components may be determined mathematically, for example, as follows:
where TV represents a tool vibration component (e.g., bit bounce or a lateral vibration component), i represents one of the x, y, or z axes such that Gi represents an instantaneous acceleration component along one of the x, y, or z axes, GiAVE represents an average acceleration component over a relatively longer period of time (e.g., from about 10 to 60 seconds to determine the gravitational acceleration component), GiMAx and GiMIN represent maximum and minimum instantaneous acceleration components during a relatively longer period of time, and Gi(t) and Gt(t−1) represent sequential instantaneous acceleration components. It will, of course, be appreciated that the tool vibration components determined in Equations 11-15 can also be normalized, for example, as shown above with respect to the stick/slip parameter in Equations 3 and 8.
While housing 110 (
Exemplary method embodiments in accordance with this invention advantageously enable downhole dynamics to be determined using existing rotary steerable sensor deployments. Such methods may therefore improve tool reliability as compared to prior art dynamics measurement systems in that additional, dedicated sensor deployments are not required. Moreover, the sensors (e.g., the Hall-effect sensor and accelerometers) are all deployed in the rotary steerable housing. Such deployment is also advantageously very low in the BHA (i.e., close to the drill bit) and in close proximity to sensitive rotary steerable electronics and hydraulics components in the rotary steerable housing. It will be understood that due to the mechanical coupling of the housing and shaft (e.g., via thrust bearings and bearing packs) vibration measurements made in the housing, while not direct measurements of drill bit vibration, are typically indicative of (e.g., proportional to) vibration at the drill bit and elsewhere in the BHA.
With continued reference to
It will be understood that the telemetered dynamics parameters may be advantageously used in combination with surface indications of downhole dynamic conditions. For example, in shallow wells, stick/slip is often manifest as a variation in surface torque (or even a temporarily stalled drill string in severe conditions). A driller may optionally compare and contrast surface torque with the telemetered stick/slip parameter to obtain a more complete understanding of downhole stick/slip conditions.
It will also be understood that the dynamics components (stick/slip and tool vibration) may be advantageously saved to downhole memory with much greater precision and frequency than they can be telemetered to the surface (due to the constraints bandwidth constraints of conventional telemetry techniques). This enables analysis of the dynamics data after the rotary steerable tool has been tripped out of the borehole (e.g., after completion of the well). Such post-run analysis may be advantageously utilized for a variety of purposes, for example, including improving the drill bit and rotary steerable configurations and correlating tool wear and failure with particular dynamics conditions. The saved dynamics data may also be correlated with surface observations recorded in a drilling log.
Referring now to
In the exemplary embodiment shown, A/D converter 630 is electronically coupled to a digital processor 650, for example, via a 16-bit bus. Substantially any suitable digital processor may be utilized, for example, including an ADSP-2191M microprocessor, available from Analog Devices, Inc. In the exemplary embodiment shown, rotation rate sensor 200 (
It will be understood that while not shown in
A suitable controller typically includes a timer including, for example, an incrementing counter, a decrementing time-out counter, or a real-time clock. The controller may further include multiple data storage devices, various sensors, other controllable components, a power supply, and the like. The controller may also include conventional receiving electronics, for receiving and amplifying pulses from sensor 200. The controller may also optionally communicate with other instruments in the drill string, such as telemetry systems that communicate with the surface. It will be appreciated that the controller is not necessarily located in the rotary steerable tool 100, but may be disposed elsewhere in the drill string in electronic communication therewith. Moreover, one skilled in the art will readily recognize that the multiple functions described above may be distributed among a number of electronic devices (controllers).
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alternations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.