This application claims the benefit of the Korean Patent Application No. P2006-25407 filed in Korea on Mar. 20, 2006, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to an apparatus and method for driving a liquid crystal display (LCD) device, and more particularly, to an apparatus that improves display quality of the moving image on the LCD screen by removing blurring of the moving images, and method of driving such apparatus.
2. Discussion of the Related Art
Generally, liquid crystal display (LCD) devices adjust light transmittance of liquid crystal cells in accordance with an applied video signal to display an image. An active matrix type LCD device is suitable for displaying a moving image because a switching element is provided for every liquid crystal cell. A thin film transistor (TFT) is used as the switching element of the active matrix type LCD device.
The image display unit 2 includes a thin film transistor array substrate, a color filter array substrate, a spacer, and a liquid crystal material interposed between the two array substrates. The thin film transistor array substrate and the color filter array substrate face each other and are bonded to each other. The spacer uniformly maintains a cell gap between the two substrates. The liquid crystal material is filled in a cell gap formed by the spacer.
The thin film transistor array substrate includes a TFT formed in the region (i.e., liquid crystal cell) defined by intersecting the gate lines GL1 to GLn and the data lines DL1 to DLm. The liquid crystal cells are connected to the TFT. The TFT supplies the analog video signals provided from the data lines DL1 to DLm to the liquid crystal cells in response to the scan signals provided from the gate lines GL1 to GLn. The liquid crystal cell includes common electrodes that face each other where the liquid crystal material is interposed between the two common electrodes, and pixel electrodes that are connected to the TFT. Therefore, the liquid crystal cell functions as a liquid crystal capacitor Clc. In addition, the liquid crystal cell includes a storage capacitor Cst to maintain the analog video signals charged in the liquid crystal capacitor Clc until the next analog video signals are charged therein.
As discussed earlier, the timing controller 8 aligns the input data RGB to desired signals in order to drive the image display unit 2. The timing controller 8 supplies the aligned RGB data to the data driver 4. In addition, the timing controller 8 generates the data control signals DCS and the gate control signals GCS using a dot clock DCLK, a data enable signal DE, and horizontal and vertical synchronizing signals Hsync and Vsync, all of which are externally provided, to control driving timings of the data driver 4 and the gate driver 6.
The gate driver 6 includes a shift register that sequentially generates scan signals (i.e., gate high signals in response to the gate control signals GCS from the timing controller 8). The gate driver 6 sequentially supplies the gate high signals to the gate lines GLs (i.e., GL1 to GLn) to turn on the TFT connected to the each gate lines GLs.
As shown in
The related art LCD device has a problem in that response speed is slow due to physical properties of the liquid crystal material, such as an inherent viscosity and an elasticity of the liquid crystal material. Although the response speed of the liquid crystal material may depend on the physical properties and cell gap of the liquid crystal material, it is common for the liquid crystal cells to have a rising time in a range of 20 ms to 80 ms and a falling time in a range of 20 to 30 ms, and this response speed is longer than the one frame period (i.e., 16.67 ms in National Television Standards Committee (NTSC) format).
Accordingly, as shown in
As shown in
Accordingly, the present invention is directed to an apparatus and method for driving the liquid crystal display (LCD) device which substantially obviates one or more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide an apparatus that removes blurring of moving images on an LCD screen to improve the display quality.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, an apparatus for driving an liquid crystal display (LCD) device includes an image display unit having liquid crystal cells formed in respective regions defined by a plurality of gate lines and a plurality of data lines; an over-driving apparatus to detect a signal of a moving image based on externally supplied source data and to detect modulated data in accordance with the detected signal, wherein the modulated data changes a response speed of a liquid crystal based on the detected signal; a gate driver to supply scan signals to the gate lines; a data driver to convert the modulated data into analog video signals and to supply the analog video signals to the data lines; and a timing controller to align the modulated data and to generate data control signal and gate control signal, wherein the timing controller outputs the aligned data and the data control signal to the data driver and outputs the gate control signal to the gate driver.
In another aspect, a method for driving an liquid crystal display (LCD) device having an image display unit to display an image includes detecting a signal of a moving image from externally supplied source data and generating modulated data based on the detected signal, wherein the modulated data changes a response speed of a liquid crystal based on the detected signal; supplying scan signals to respective gate lines; and converting the modulated data into analog video signals at a time when the conversion is synchronized with the scan signals and supplying the analog video signals to respective data lines.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Reference will be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
The image display unit 102 includes a thin film transistor array substrate, a color filter array substrate, a spacer, and a liquid crystal. The thin film transistor array substrate and the color filter array substrate face each other and are bonded to each other. The spacer uniformly maintains a cell gap between the two substrates. The liquid crystal is filled in the gap created by the spacer between the two substrates.
In addition, the image display unit 102 includes a TFT formed in the respective region defined by intersecting the gate lines GLs (i.e., GL1 to GLn) and the data lines DLs (i.e., DL1 to DLm). Furthermore, the image display unit 102 includes the liquid crystal cells connected to the TFT. The TFT supplies the analog video signals received from the data lines DLs to the liquid crystal cells in response to the scan pulses received from the gate lines GLs. The liquid crystal cell includes common electrodes facing each other where the liquid crystal is disposed therebetween and pixel electrodes connected to the TFT. Thus, the liquid crystal cell functions as a liquid crystal capacitor Clc. In addition, the liquid crystal cell includes a separate storage capacitor Cst to maintain the analog video signals stored in the liquid crystal capacitor Clc until the next analog video signals are stored therein.
The over-driving apparatus 110 detects changes in a display image (i.e., motion) by comparing the source data RGB of a current frame with the data of a previous frame, and outputs modulated data R′G′B′ that correspond to the speed of motion. The timing controller 108 aligns the modulated data R′G′B′ with the data signals and supplies the aligned data ‘Data’ to the data driver 104. Furthermore, the timing controller 108 generates the data control signals ‘DCS’ and the gate control signals ‘GCS’ using a dot clock DCLK, a data enable signal DE, and horizontal and vertical synchronizing signals Hsync and Vsync, all of which are supplied externally, to control each driving timing of the data driver 104 and the gate driver 106. The data signals ‘Data’ are converted into the analog video signals in the data driver 104. Then, the converted analog video signals are supplied to the data lines DLs.
The gate driver 106 includes a shift register that sequentially generates scan pulses (i.e., gate high signals in response to the gate control signals GCS from the timing controller 108). The gate driver 106 sequentially supplies the gate high signals to the gate lines GLs to turn on the TFT connected to the gate lines GLs.
The data driver 104 converts the data signals ‘Data’ aligned from the timing controller 108 into the analog video signals. The conversion is performed in response to the data control signals ‘DCS’ supplied from the timing controller 108. Then, the converted analog video signals are supplies to the data lines DLs. Each converted analog video signal corresponds to one horizontal line per one horizontal period when the scan signals are supplied to respective gate lines GLs. In detail, the data driver 104 generates the analog video signals by selecting a gamma voltage having a predetermined level based on a gray level value of the data signals ‘Data’. Then, the generated analog video signals are supplied to the data lines DLs. At this time, the data driver 104 inverses polarity of the analog video signals supplied to the data lines DLs in response to a polarity control signal POL.
The memory unit 210 stores the source data RGB of the current frame Fn, and outputs the data of the previous frame Fn-1 to the motion detector unit 310 and the over-driving data generator unit 410. The motion detector unit 310 detects motion vectors X and Y corresponding to X-axis displacement and Y-axis displacement with respect to the source data of the previous frame Fn-1 and the source data of the current frame Fn. Then the motion detector unit 310 detects the motion size signal Ms as expressed in the following equation 1.
Ms=SQRT(X2+Y2) [Equation 1]
The motion detector unit 310 supplies the detected motion size signal Ms to the over-driving data generator unit 410. In this case, the motion size signal Ms represents motion speed that corresponds to the number of pixels changed per frame of the moving image.
As shown in
As shown in
As shown in
The first memory unit 211 stores the data RGB of the current frame Fn, and outputs the data of the previous frame Fn-1 to the motion detector unit 311. The motion detector unit 311 detects motion vectors X and Y corresponding to X-axis displacement and Y-axis displacement with respect to with respect to the source data of the previous frame Fn-1 and the source data of the current frame Fn. Then the motion detector unit 311 detects the motion size signal Ms as expressed in the equation 1 and supplies the detected motion size signal Ms to the over-driving data generator unit 411 and the motion filter unit 214.
As shown in
As shown in
As shown in
the exemplary apparatus and method of driving the LCD device according to the second exemplary embodiment of the present invention, the plurality of over-driving data are generated using the plurality of look-up tables. Then the modulated data is selected from the plurality of over-driving data based on the motion size signal, wherein the data of the current and previous frames are filtered to generate undershoot in the boundary of the moving image. In this way, since the modulated data is output in accordance with the motion size signal (i.e., respective motion of the moving image), blurring of the moving image on the display screen can be prevented.
It will be apparent to those skilled in the art that various modifications and variations can be made in the apparatus and method of driving liquid crystal display device of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0025407 | Mar 2006 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5920300 | Yamazaki et al. | Jul 1999 | A |
20030095090 | Ham | May 2003 | A1 |
20030142118 | Funamoto et al. | Jul 2003 | A1 |
20050030302 | Nishi et al. | Feb 2005 | A1 |
20050068343 | Pan et al. | Mar 2005 | A1 |
20050156852 | Kwon | Jul 2005 | A1 |
20050190164 | Velthoven et al. | Sep 2005 | A1 |
20050232356 | Gomi et al. | Oct 2005 | A1 |
20050237316 | Huang et al. | Oct 2005 | A1 |
20060158416 | Ku | Jul 2006 | A1 |
20070057895 | Kong et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
10 2006 029 710 | Apr 2007 | DE |
1 494 169 | Jan 2005 | EP |
02-153688 | Jun 1990 | JP |
04-288589 | Oct 1992 | JP |
09-258167 | Oct 1997 | JP |
2004-233949 | Aug 2004 | JP |
2005-043864 | Feb 2005 | JP |
200414114 | Aug 2004 | TW |
200601236 | Jan 2006 | TW |
Entry |
---|
Taiwanese Office Action dated Jun. 8, 2011. |
Number | Date | Country | |
---|---|---|---|
20070216629 A1 | Sep 2007 | US |