The present invention relates to an apparatus for controlling or regulating a production machine, a machine tool or an automated handling unit having a rotating device, that can be rotated at different rotational speeds, an actuator device that is operatively connected to the rotating device, and a voltage supply device for supplying the actuator device with a drive voltage. The present invention also relates to a corresponding method for controlling or regulating a production machine or a machine tool or an automated handling unit. In particular, the present invention relates to knitting machines.
In the case of industrial knitting machines, such as flat-knitting and circular-knitting machines, the movement of the needles, for example, is usually triggered by piezoceramic bending transducers. In this case, the bending transducers are driven using a fixed supply voltage of 190 VDC, for example. This supply voltage is at such a level that the switching speed of the transducers meets the requirements for the knitting machine even at high rotational speeds.
However, practical experience has shown that a DC voltage in the region of 190 volts presents considerable problems in a knitting machine. For example, the DC voltage may cause the lubricating oil used to form crystals, resulting in undesired conductive transition effects. This often results in the piezoceramic transducers, the printed circuit boards used, and other electrical and mechanical components failing.
The object of the present invention is, therefore, to propose a method and an apparatus for controlling or regulating a production machine, or a machine tool or an automated handling unit, which make it possible to reduce breakdowns of the production machine, the machine tool or the automated handling unit.
This object is achieved according to the invention by an apparatus for controlling or regulating a production machine, a machine tool, or an automated handling unit having a rotating device which can be rotated at different rotational speeds, an actuator device which is operatively connected to the rotating device, and a voltage supply device for supplying the actuator device with a drive voltage, it being possible to set the drive voltage for the actuator device as a function of the rotational speed of the rotating device.
The invention also provides a method for controlling or regulating a production machine, a machine tool or an automated handling unit having a rotating device which can be rotated at different rotational speeds, and an actuator device that is operatively connected to the rotating device by driving the actuator device using a drive voltage, the drive voltage for the actuator device being set as a function of the rotational speed of the rotating device.
The invention is based on the knowledge that the number of breakdowns of knitting machines, for example, increases, and the life of the knitting machines or their actuators is reduced, in proportion to the voltage applied and with respect to time. A basic starting point is to reduce the operating voltage of the piezoceramic transducers by a few volts, it always being necessary to maintain the required switching speed. However, the minimum switching time or maximum switching speed of the bending transducers is only required when a knitting machine is operating at its maximum rotational speed. This means that the switching speed of the transducers must increase in proportion to, or as a function of, the rotational speed. As a result of this a maximum supply voltage need also only be applied to the bending transducers at a maximum rotational speed. It has been established in tests that at low rotational speeds, i.e. with a slow switching time, an actuating force for the actuators that is produced by a low voltage is reliably sufficient for driving the needles.
Since, in continuous operation, a knitting machine operates at only approximately 60% of the maximum rotational speed, and, in addition, there are downtimes when the system is switched on, a reduction in the breakdown rate or an improvement of the quality and an increase in the life of the knitting machine can be expected when the supply voltage to the bending transducers is dependent on the rotational speed.
The production machine described in general above is preferably a textile production machine, and in particular a knitting machine, as has already been described. Furthermore, as has likewise already been mentioned, the actuator device preferably comprises at least one electromechanical transducer and, in particular, one or more piezoelectric elements.
The apparatus may also have a sensor device for sampling the rotational speed and/or position of the rotating device, the sensor device being connected to the voltage supply device. The actual rotational speed or the present absolute or relative position of the rotating device can thus be established and used for setting the drive voltage. As an alternative to this, the drive voltage or the drive current for the rotating device is used indirectly as the control variable for the drive voltage of the actuator device.
The voltage supply device preferably has a control device for a large number of actuators having a data line to the actuator device and a controllable voltage-transforming unit having a power supply line for supplying power to the large number of actuators at the same time. The drive voltage for the actuator device may be a DC voltage. For this purpose, the voltage supply device has, for example, an AC voltage/DC voltage converter. At a rotational speed of zero, the drive voltage should have a minimum value other than zero or a minimum amplitude other than zero. This makes it possible for a minimum bending state or minimum loading of the piezoceramic element to be maintained even over longer downtimes. If the piezoceramic transducers are not completely relieved of load, their total movement extent is reduced, which increases their life.
A textile production machine, in particular a knitting machine, is preferably equipped with the abovementioned apparatus.
The present invention will now be explained in more detail by way of example with reference to the attached drawings, in which:
The embodiment explained in more detail below is a preferred exemplary embodiment of the present invention. A knitting machine is symbolized in
Each actuator 2 is logically controlled by a control device 4 via a data line 3. For this purpose, the rotational speed of the needle cylinder 1 or its relative or absolute position is transmitted as a needle pulse signal in a sensor line 6 to the control system 4 by means of an incremental angle encoder 5.
A voltage supply unit 7, in this case an AC/DC converter, supplies each of the actuators 2 with a DC voltage via a power supply line 8. Via a control line 9, the controllable voltage supply unit 7 receives a needle clock from the control device 4. This makes it possible for the level of the supply voltage for the actuators to be set as a function of the rotational speed.
The relationship between the voltage at the actuators 2 and the rotational speed is illustrated by way of example in
The characteristic illustrated in
In any case, driving the actuators as a function of rotational speed increases the life of the generally relatively expensive actuators.
Number | Date | Country | Kind |
---|---|---|---|
103 24 663.0 | May 2003 | DE | national |