The present invention relates to an apparatus and method for launch and recovery of a boat stowed in a marine vessel, and more specifically, to such an apparatus and method of a dock system in which the boat is contained within a dock located in a stern part of the marine vessel (mother ship).
A miranda system, a slipway system and a dock system are known as typical systems of the launch and recovery apparatus and method, which launch and recover a boat, such as a lifeboat, a rescue boat, or a high-speed surveillance and rescue boat.
The launch and recovery apparatus of the miranda system is known as a miranda davit, in which a davit member is mounted on a deck of a marine vessel, a cradle moves upward and downward on a track of the davit member, and they are used for launching and recovering the boat with the boat being held by the cradle (e.g., Japanese Patent Laid-Open Publications Nos. 56-25083, 61-184194 and 9-71292). Further, the launch and recovery apparatus of the slipway system has an arrangement in which the boat is launched or recovered along a slope provided in a stern part of a marine vessel. The apparatus of the miranda or slipway systems can perform such a launch and recovery of the boat only when the marine vessel stays in a substantially stationary condition.
On the other hand, the dock system is known as a system in which the boat is accommodated in the dock provided at the stern part of the marine vessel and so forth. In general, the launch and recovery apparatus of the dock system includes a stern gate which can open and close. The dock opens backward of the vessel when the gate opens. Since the seawater in the rear of the vessel flows into the dock through the stern opening, a water level necessary for maneuverability of the boat is kept in the dock. Therefore, the boat in the dock can move outboard through the stern opening when the gate opens, and the boat in the outboard area can enter the dock through the stern opening when the gate opens. According to such a launch and recovery apparatus, launch and recovery of the boat through the stern opening can be carried out during headway navigation of the marine vessel.
However, if the gate is opened during high-speed headway navigation, a suction effect expelling the water from the dock occurs, and therefore, the water level in the dock tends to lower. Simultaneously, a flow field in the rear of the vessel tends to rise relative to the water level in the dock, in connection with an affection of propeller race of the marine vessel. The boat has difficulty in entering the dock, owing to such descent of the water level in the dock and elevation of the rear flow field. Therefore, in the conventional dock system, the launch and recovery operation of the boat cannot be carried out during high-speed headway navigation of the vessel, but it is merely possible to perform the launch and recovery operation of the boat only in a condition of low-speed navigation of the vessel (during navigation at headway speeds up to 5 knots).
On the other hand, during low-speed headway navigation or stoppage state of the marine vessel, the water in the dock is kept at rest with respect to the vessel (mother ship), and therefore, rising of the rear flow field does not occur. However, a driving resistance of the boat approaching the dock rapidly decreases immediately after it enters the dock, and therefore, the boat approaching the dock tends to suddenly accelerate immediately after entering the dock, in connection with rapid reduction of the driving resistance. In fact, this results in, e.g., an excessive impact acting on the hull owing to impingement of the suddenly accelerated boat against the end wall of the dock, or difficulty in maneuvers of the boat in the dock. In order to avoid such a situation, it is necessary to promptly and properly control the thrust of the boat at the time of entry of the boat into the dock. However, this imposes a burdensome task on an operator of the boat.
Further, if the gate is opened in a high-wave state, especially in a following-wave state, the waves entering the dock impinge against the end wall of the dock, so that impacts act on the hull. Therefore, it is difficult to launch or recover the boat in such a sea state.
It is an object of the present invention to provide an apparatus and method of a dock system for launch and recovery of a boat stowed in a marine vessel, which can launch and recover the boat while the vessel makes headway at a high speed.
It is another object of the present invention to provide an apparatus and method of a dock system for launch and recovery of a boat stowed in a marine vessel, which can overcome a problem of difficulty in maneuvering of the boat entering the dock of the vessel in low headway speed navigation or stoppage condition; a problem on difficulty in maneuvering of the boat during launch or recovery operation under a following-wave state, and a problem of an impact on a hull or the like occurring in such launch or recovery operation, whereby launch and recovery operation of the boat is facilitated.
The present invention provides an apparatus for launch and recovery of a boat stowed in a marine vessel, which is provided with a stern dock for containing the boat therein and which is so arranged as to launch the boat outboard through a stern opening of the dock and recover the boat by entry of the boat into the dock; comprising
a conduit device which carries out intake of water around the vessel and which delivers the water to the dock so that a backward water stream to be discharged to the outboard area through the stern opening is generated in the dock.
The present invention provides a method for launch and recovery of a boat stowed in a marine vessel, in which the boat contained in a stern dock is launched through a stern opening of the dock to an outboard area and the boat is recovered from the outboard area to the dock by entry of the boat into the dock,
wherein an intake of water around the vessel is carried out and a flow of the intake water is delivered to the dock, so that a backward water stream to be discharged through the stern opening to the outboard area is generated in the dock.
According to the arrangement of the present invention as set forth above, a horizontal and backward momentum is given to the stern flow field by the backward water stream discharged rearward through the stern opening, so that rising of the stern flow field is restricted, which may otherwise occur while the vessel makes headway at high speeds. Further, the water level in the dock is raised by the water current delivered into the dock, and therefore, descent of the water level in the dock is restricted, which may be otherwise caused by the suction effect. Thus, the problem of rising of the stern flow field caused during navigation of the vessel at high headway speeds can be overcome, and a desired water level in the dock can be ensured in such navigation of the vessel. Accordingly, the present invention enables the launch and recovery of the boat during navigation of the vessel at high headway speeds.
Further, since the driving resistance due to the backward water stream acts on the boat entering the dock, it is unnecessary for the operator of the boat to perform rapid control of the thrust of the boat, and also, need of difficult steering and turning operations during entry of the boat into the dock is eliminated. In addition, the problem of impingement of the boat against the end wall of the dock can be prevented, since the boat in the dock is subjected to the driving resistance owing to the backward water stream.
Furthermore, the backward water stream is generated in the dock as a countercurrent against the waves entering the dock, and therefore, impacts of the waves impinging against the end wall of the dock can be prevented from occurring.
According to a preferred embodiment of the present invention, the conduit device has a water intake port which opens on a side surface of a hull under a water level for passively receiving a relative water current caused around the vessel by headway navigation of the vessel; an outlet port opening to the dock; and a water conduit for fluid-communication of the intake port with the outlet port. Intake of the water is effected by a dynamic pressure of the relative water current around the vessel and the backward stream is generated in the dock. With such an arrangement, equipment of a power device for forming and ensuring the backward water stream in the dock can be omitted.
According to another preferred embodiment of the present invention, the conduit device has the water intake port which opens on an exterior surface of the hull under the water level; the outlet port opening to the dock; the water conduit for fluid-communication of the water intake port and the outlet port; and a forcible pumping device provided on the conduit for drawing the water through the water intake port and delivering the backward water stream from the outlet port. With such an arrangement, the conduit device draws the water under a suction pressure of the pumping device, and causes a water stream in the dock under a delivery pressure of the pumping device. Therefore, the backward water stream is actively generated in the dock during navigation at low headway speeds or stoppage condition of the vessel.
Preferably, the launch and recovery apparatus is provided with a water level limiting means for discharging the water from the gate to the outboard area when the water level inside of the gate rises over a predetermined limit of the water level. The water level limiting means includes, e.g., an actively or passively operated hatch provided on the gate for limiting the water level, and means for operating the hatch on the basis of detection of the water pressure or the water level in the dock. The water level limiting means allows the water to be naturally or forcibly discharged from the inside of the gate to the outside of the gate, when the inside water level exceeds the predetermined limit.
Basically, the plural outlet ports are disposed on an end wall portion of the dock so as to make the parallel backward streams in the waterway within the dock. However, it is desirable that the outlet ports deliver the backward stream to the waterway in directions oblique to a center axis of the dock, so that centering forces toward the center axis act on the boat.
Preferably, the launch and recovery apparatus has a controller, which controls the water stream in the dock in association with operation of the gate and the headway speed of the vessel. For instance, the controller sets an opening ratio of the water intake port, a flow rate of the pumping device and so forth, in accordance with the headway speed of the vessel; or otherwise, the controller controls opening and closing operation of the water intake port, operation of the pumping device, or the like, in association with timing of operation of the gate. In such arrangements, it is desirable that generation and cessation of the water stream in the dock are controlled in association with operation of the gate, and that augmentation of the water stream in the dock is controlled by a water intake resistance or a pumping power.
With reference to the attached drawings, a preferred embodiment of the present invention is described in detail hereinafter.
The marine vessel (mother ship) 1 as shown in
The dock 2 is equipped with a slipway 5 on which the boat 10 can lie. Fenders 6, which function as bumper means, are arranged on the slipway 5. A bumper zone 7 for reliving impacts of waves is located near an end wall of the dock in association with the slipway 5. A stop bumper 8 is further positioned on the end wall. A walkable platform deck 9 is arranged in side and end portions of the dock 2. A power winch 20 (shown by phantom lines) for towing the boat 10 is located on the platform deck 9.
When the boat 10 is to be launched from the stern, the gate 3 is opened in a stoppage state of the vessel 1 or its state of low headway speed navigation up to 5 knots. The boat 10 departs from the slipway 5 to move backward relative to the vessel 1. Thus, the boat 10 makes a relative motion toward the outside of the dock, as shown by dotted lines in
On the other hand, when the boat 10 is to be retrieved to the stern, the boat 10 enters the dock from the rear of the hull in a stoppage state of the vessel 1 or its navigation state at low headway speeds up to 5 knots, as shown in
In
If the headway speed is increased with the gate 3 being opened, the water level of each of the flow fields I, II remarkably lowers, owing to a suction or suction effect outwardly inducing the water of the dock through the opening of the dock. In connection with such an action, the seawater near the opening of the dock rises to elevate the water level outside of the dock. As the result, relatively significant rising of the seawater surface occurs in the flow field II near the gate, as previously described.
Such rising of the seawater surface makes it difficult to launch or recover the boat 10. In fact, the conventional launch and recovery apparatus as shown in
The dock 2 as shown in
As shown in
While the marine vessel 1 makes headway at a high speed, a dynamic pressure of the seawater corresponding to the headway speed of the vessel 1 acts on the hull. Therefore, the seawater on a side of the hull flows into the port 12 when the gate 3 and the hatch 15 are opened in the high-speed headway navigation. The conduit 14 is arranged to conduct the intake water to the water outlet port 13, and the water effluent from the port 13 flows into the dock from a part of the bow-side partition wall. As shown in
When the gate 3 and the hatch 15 are opened during navigation of the marine vessel 1, the seawater surrounding the hull passively flows into the port 12, passes through the conduit 14 and flows from the port 13 into the dock. The water effluent from the port 13 flows into a waterway 2a of the dock 2 through the openings of the slipway 5, and then, flows outboard through the stern opening of the dock 2. Thus, backward water streams parallel with the center axis of the dock 2 are generated in the dock.
The variation of the water level in the dock is shown in
Results of measurement of the water level in the dock are indicated in
When the opening ratio is set to be 10%, the water level of the waterway 2a is significantly raised, in comparison with the water level obtained when the opening ratio is set to be 0%. When the opening ratio is set to be 25%, the water level of the waterway 2a is further raised. The difference in the water level substantially disappears between the flow field II in the dock and the flow field III out of the dock. That is, rising of the water surface of the flow field III near the gate substantially disappears.
The relationships between the headway speed of the marine vessel 1 and the water level are shown in
The water level in the dock (the flow field I) tends to temporarily descend when the headway speed is raised. However, after the headway speed is fixed at 20 knots, the water level in the dock is stable at a level somewhat higher than the level obtained before increase of the headway speed. Therefore, the water levels inside and outside of the dock are equalized, so that the seawater rising near the gate (the flow field III) substantially disappears.
That is, the backward water stream discharged from the stern opening of the dock 2 gives the horizontal and backward momentum to the flow field III, whereby rising of the stern wave is restricted. The backward water stream also acts to raise the water level of the waterway 2a in the dock so that the water level in the dock is prevented from descending.
According to such an arrangement, rising of the seawater disappears in the stern flow field III, which may, otherwise, result in difficulty of the entry of the boat 10 into the dock. Therefore, it is possible to launch and recover the boat 10 during navigation of the vessel 1 at a high headway speed. Since the backward water stream is normally formed in the dock, it is not necessary for the operator of the boat 10 to rapidly reduce a thrust of the boat 10 when entering the dock. Also, difficult steering or turning maneuvering is not imposed on the operator. Further, a problem of impingement of the boat 10 against the end wall of the dock (i.e., a problem of excessive impact caused by the impingement), which results from rapid reduction of the resistance of the headway movement, can be eliminated. In addition, even if the gate 3 is opened in a following wave condition, impact of the hull resulting from impingement of the waves against the end wall of the dock is avoidable. This is because the backward water streams are constantly generated in the dock, which encounters the oncoming waves in the dock.
Further, the launch and recovery apparatus with the aforementioned arrangement introduces the surrounding water into the dock 2, with use of the dynamic pressure of the seawater acting on the hull in relation with the headway speed. Therefore, the backward flow is caused passively in the dock. According to this apparatus, electric power for causing or ensuring the water stream in the dock is not required, and provision of any additional function on the boat 10 is unnecessary, and therefore, this apparatus is practically very advantageous. When the water stream is formed, the headway resistance of the marine vessel 1 is somewhat increased, and therefore, the headway speed is slightly reduced. However, such reduction of the headway speed is merely an order of speed up to 1 knot (e.g., 0.5 knot).
The device 11 as shown in
The device 11 as shown in
According to the conduit device 11 equipped with the pumping device 17, the water stream in the dock can be actively produced by shut-off of the valve 16 and operation of the device 17, during stoppage state or low-speed headway navigation of the marine vessel 1. As previously described, the water stream in the dock, which is caused in the stoppage or low-speed headway condition, facilitates operation for entry of the boat into the dock. Further, the streams encounter the waves entering the dock, thereby relieving the impacts on the hull resulting from impingement of the waves against the end wall of the dock.
Each of the conduit devices 11 as shown in
In
In the arrangement as shown in
The divergent water streams in the end zone of the waterway 2a give the entering boat 10 centering forces which act to urge the boat 10 in alignment with the center axis of the dock 2.
In the arrangement as illustrated in
When the boat 10 stowed in the dock 2 is to be launched outboard of the vessel, the gate 3 is opened after confirmation of a mooring rope, and then, the seawater is ejected or delivered through the outlet port 13 by opening of the hatch 15, opening of the valve 16, or operation of the pumping device 17. After rising of the water level in the dock is confirmed, an engine of the boat, such as a water jet engine, is started, and the thrust of the boat 10 is gradually increased by throttle control of the engine. When the tension of the mooring rope completely disappears owing to increase of the thrust of the boat 10, the mooring rope is released and the thrust is gradually reduced by deliberately adjusting the throttle of the engine, whereby the boat 10 slowly moves backward under the action of the water streams in the dock and exits from the stern opening of the dock 2 to the outboard area. If desired, the boat 10 may be driven backward by its astern power when the boat exits the vessel 1, in view of an effect of a propeller race of the vessel 1.
After a predetermined outboard action or role of the boat 10 is completed, recovery of the boat 10 to the dock 2 is performed. The boat 10 approaches the dock 2 from the rear of the vessel 1 and enters the dock 2. As previously described, the problems on rising of the water surface near the gate and rapid reduction of the headway resistance occurring upon entry of the boat into the dock are overcome by the effect of the water streams in the dock. Therefore, the boat 10 can smoothly enter the dock 2 while its thrust is deliberately reduced by throttle control. After the mooring rope is confirmed, ejection or delivery of the seawater from the port 13 is stopped by closing the hatch 15, shutting the valve 16 or stopping the operation of the pumping device 17.
As the suction effect acts on the water in the dock, owing to the headway navigation of the vessel 1, the water level in the dock gradually lowers. The thrust of the boat 10 is gradually reduced by throttle control, until the boat 10 lies on the slipway 5. Thereafter, the gate 3 is closed and thus, the launch and recovery process is completed.
In a case where the vessel 1 is navigated at a relatively high headway speed, the water level in the dock is discharged outboard by the suction effect, before the gate is closed. If desired, the electric winch 20 may be used for obtaining a suitable traction force of the boat 10, upon lying-on or lifting of the boat 10.
The water stream is caused inside of the gate in association with the closing or opening operation of the gate 3, as previously described. However, if such a water stream occurs when the gate is closed, the water level inside of the gate may be extraordinarily raised. Therefore, the gate 3 has a water-level limiting device 30 as means for preventing the water level inside of the gate from being extraordinarily raised.
The device 30 is constituted from an opening 33 of the gate 3, a water level limiting hatch 31 for opening and closing the opening 33, a hinge means 32 pivotably supporting the hatch 31, and a stopper 34 abutting against a lower end portion of the hatch 31. The stopper 34 extends over the whole width of the opening 33. The limit of water level SL depends on an upper end level of the stopper 34.
If an unexpected water stream occurs in the dock by malfunction of the device 11 and so forth when the gate 3 is closed, the water level inside of the gate is raised. When the water level exceeds the limit SL, the hatch 31 pivotally moves outside about a pivot axis of the hinge means 32, owing to a water pressure inside of the gate. Therefore, the water inside of the dock overflows a dam of the stopper 34 to the outboard area, and the water level inside of the dock is limited under the limit SL.
Alternatively, a water level detector 35 is located in the dock and the hinge means 32 is designed to be an electric or hydraulic type of hinge driving device. In such a case, when the detector 35 detects the water level exceeding the limit SL, the hinge means 32 forcibly opens the hatch 31 for discharging the water from the dock to the outboard area.
The conduit device 11 is provided with a controller which carries out control of the opening ratio of the hatch 15 and so forth. As shown in
A headway speed signal representing the current or present headway speed of the vessel 1 is inputted to the input part of the controller from a headway speed detector. A control part of the controller performs operation to obtain the flow rate of the conduit 14 for formation of suitable water streams in the dock. The controller further carries out setting of the opening ratio of the hatch 15, the opening ratio of the valve 16, or the power of the device 17, and outputs a driving signal (or inoperative signal) to a driving part of each of the hatch 15, the valve 16 and the device 17.
The control part also outputs the driving signal to a driving part of the hinge means 32 when the water level signal indicates an abnormal water level, and the hinge means 32 forcibly opens the hatch 31 (
In
A manner of control performed for recovery of the boat is shown in
Thus, the controller functions as interlocking means which associates the opening/closing operation of the gate 3 with the operation of the conduit device 11. In a case where the launch and recovery apparatus includes the active means for limiting the water level, the controller functions as means for relating the water level in the dock and the operation of the conduit device 11 with each other.
Although the present invention has been described as to a preferred embodiment, the present invention is not limited thereto, but may be carried out in any of various modifications or variations without departing from the scope of the invention as defined in the accompanying claims.
For example, the configurations of the intake hatches, intake ports and outlet ports, the positions thereof, and so forth, may be optimized from hydrodynamic viewpoints so as to be suitable for the structures and configurations of the hull and so forth. Therefore, various modifications or variations of designs of these elements can be employed.
Further, the dock illustrated in the drawings is closed at its top portion by a deck, but the present invention can be applied to a dock with its top portion being opened.
Furthermore, in the embodiment as set forth above, the present invention is applied to the launch and recovery apparatus with the single dock, but the present invention can be equally applied to the apparatus with a plurality of docks.
The present invention is applied to an apparatus and method for launch and recovery of a boat, which is of a dock system and which is located in a stern part of a marine vessel, wherein the boat is launched or recovered through a stern opening. According to the present invention, it is possible to carry out launching and recovering of the boat with use of the stern dock while the vessel makes headway at a high speed. Further, in accordance with the present invention, launching and recovering operations of the boat can be relatively easily performed by means of the stern dock, even in low headway speed navigation or stoppage condition, or in navigation under a following-wave state.
Number | Date | Country | Kind |
---|---|---|---|
2005-141968 | May 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/309771 | 5/10/2006 | WO | 00 | 11/13/2007 |