The present teachings generally relate to power converters, and more specifically to a method and apparatus for the shut-down of a charge pump in a power converter.
The challenges encountered during the shutdown or disablement of adiabatic step-down power converter include, for example, issues such as i) which path through the charge pump does the inductor current take when discharging, and whether this discharge path is safe and/or whether mitigating strategies regarding the path of the discharging inductor current are efficient in terms of die area, system area and/or component count, and ii) oscillation at node Vx after the discharge of the inductor current. Node Vx may oscillate with a magnitude and frequency that depends on the discharge path and the parasitics associated with the discharge path. Under certain circumstances, the oscillation of node Vx may exceed the safe voltage rating of the transistors used as switches within the charge pump.
Accordingly, there is a need for an apparatus and method for efficient shutdown of adiabatic charge pumps.
The present disclosure provides solutions regarding the path of discharging inductor current that are efficient in terms of die area, system area and/or component count, and solutions to safely shut down a charge pump. Various embodiments of a method and apparatus for efficient shutdown of adiabatic charge pumps are disclosed.
In one disclosed embodiment, a power converter is implemented on an integrated circuit (IC). The power converter includes a charge pump, an electro-static discharge (ESD) element at the output of the charge pump, an adiabatic element such as an inductor, and a controller circuit. The power converter provides a stable output voltage to the load. Shutting down or disabling of the adiabatic charge pump while the output load current is non-zero introduces issues such as i) which path through the charge pump does the inductor current take when discharging, and whether this discharge path is safe and/or whether mitigating strategies regarding the path of the discharging inductor current are efficient in terms of die area, system area and/or component count, and ii) oscillation at node Vx after the discharge of the inductor current. To mitigate these issues, a switch is introduced which connects across the inductor. This switch can be opened or closed according to a control signal from the controller. During the adiabatic operation of the charge pump, the switch is kept in the open position. Prior to the shutdown of the charge pump, a control signal places the switch in a closed position, thus disabling the adiabatic operation. As the switch closes while the power converter is still operating, the current in the inductor decreases towards zero while the current through the switch increases. Thus, the sum of the currents through the adiabatic element remains equal to the output load current. In this manner, when a control signal is sent to discharge the charge pump, the inductor has already fully or mostly discharged, and there will be very little, if any, subsequent ringing of the voltage at node Vx. The controller can even use an alternate signal to close the switch in a gradual or controlled manner, in order to minimize the transients on the output voltage during the switch over of current from the inductor to the switch.
In another embodiment, the passive ESD element at the output of the charge pump is replaced by an active ESD element. The active ESD element is controlled such that it acts as an ESD element except upon the shutdown of the charge pump when it carries the inductor discharge current, thus preventing the issues of oscillation at node Vx and unsafe discharge of the inductor current.
In yet another embodiment, a shutdown control-sequence is applied to some of the control signals provided by the controller circuit. In this embodiment, an existing pair of switches, including a low-side switch and a high-side switch within the charge pump, is simultaneously enabled, thus causing a shoot-through condition. This pair of switches effectively acts like an active discharge switch. Therefore, the inductor current is safely discharged, and undesired ringing at node Vx is avoided.
In an alternate embodiment, the power converter controls its own output load current. In this embodiment, in response to receiving a command to shut down the power converter, the controller sends commands to a load in order to decrease the magnitude of the current drawn by the load. Thus, voltage transients at the output of the power converter are minimized because the load current is reduced over a transition time prior to the shutdown of the charge pump. The inductor current is at or close to zero when the charge pump is shut down. This embodiment can be particularly useful in applications for light emitting diodes (LED), where a programmable current sink can control the total current drawn by the LED load, which is also the power converter output load current.
In yet another alternate embodiment, an circuital arrangement is presented, the circuital arrangement comprising a charge pump having a controller, a cascade multiplier having a plurality of high side and low side switches, wherein the controller is configured to receive a pair of external signals, and to correspondingly drive the plurality of high side and low side switches in the cascade multiplier, and a first pair of high side and low side switches from the plurality of high side and low side switches are enabled simultaneously, such that the first pair of high side and low side switches act as an active discharge switch for the charge pump.
The disclosed method and apparatus, in accordance with one or more various embodiments, are described with reference to the following figures. The drawings are provided for purposes of illustration only and merely depict examples of some embodiments of the disclosed method and apparatus. These drawings are provided to facilitate the reader's understanding of the disclosed method and apparatus. They should not be considered to limit the breadth, scope, or applicability of the claimed invention.
Like reference numbers and designations in the various drawings indicate like elements.
Electronic devices typically demand a stable DC power supply for correct operation. In many circuits, the power that is available to drive the circuit may not be in a form that the circuit demands. To correct this, it is useful to provide a power converter that converts the available power into a form that conforms to the circuit's requirements. One common type of power converter is a switch-mode power converter. A switch-mode power converter produces an output voltage by switching reactive circuit elements into different electrical configurations using a switch network. A switched capacitor power converter is a type of switch-mode power converter that primarily utilizes capacitors to transfer energy. Such converters are called “charge pumps”.
In particular, the charge pump 120 receives the input voltage VIN, generates an intermediate voltage VX that is lower than the input voltage VIN, across an intermediate capacitor 124, and then provides that intermediate voltage VX to the adiabatic element 110. The adiabatic element 110 then transforms the intermediate voltage VX into an output voltage VOUT. The inclusion of the adiabatic element 110 allows the charge pump 120 to charge adiabatically.
The controller 106 receives a set of input signals and produces a set of output signals. Some of these input signals arrive along an input-signal path 23. These input signals carry information that is indicative of the power converter's operation. The controller 106 also receives a clock signal CLK and external signals IO that are either analog, digital, or a combination of both. Based upon the signals that the controller 106 receives, it produces first, second, third, and fourth control signals 25, 26, 21, 22 that together control the operation of the adiabatic element 110 and the charge pump 120.
Examples of charge pumps 120 include Ladder, Dickson, Series-Parallel, Fibonacci, and Doubler, all of which can be adiabatically charged and configured into multi-phase or single-phase networks. A particularly useful charge pump 120 is an adiabatically charged version of a full-wave cascade multiplier. However, diabatically charged versions can also be used.
As used herein, changing the charge on a capacitor “adiabatically” means causing at least some of the charge stored in that capacitor to change by passing it through a non-capacitive element. A positive adiabatic change in charge on the capacitor is considered adiabatic charging while a negative adiabatic change in charge on the capacitor is considered adiabatic discharging. Examples of non-capacitive elements include inductors, magnetic elements, resistors, and combinations thereof.
In some cases, a capacitor can be charged adiabatically for part of the time and diabatically for the rest of the time. Such capacitors are considered to be adiabatically charged. Similarly, in some cases, a capacitor can be discharged adiabatically for part of the time and diabatically for the rest of the time. Such capacitors are considered to be adiabatically discharged.
Diabatic charging includes all charging that is not adiabatic and diabatic discharging includes all discharging that is not adiabatic.
As used herein, an adiabatically charged switching network is a switching network having at least one capacitor that is both adiabatically charged and adiabatically discharged. A diabatically charged switching network is a switching network that is not an adiabatically charged switching network.
In the following paragraphs, the disclosed method and apparatus, in accordance with one or more various embodiments, are described with reference to the following figures.
When controller 106 receives an input signal to disable the charge pump 120 switching, either from an input-signal path 23 or from one of the external signals IO, controller 106 can first send the third control signal 21 to close switch SL before sending the first control signal 25 to disable the charge pump's switching. As the switch SL closes while the power converter 100 is still operating and delivering current to the output load 105, the current in the inductor L decreases towards zero while the current through switch SL increases, such that the sum of the currents through the adiabatic element remains equal to the output load current IOUT. When the first control signal 25 is sent to disable the charge pump 120 switching, the inductor current is already at or close to zero, and the inductor will already be fully or mostly discharged, thus there will be very little, if any, subsequent voltage ringing on node Vx. The controller 106 may even use the third control signal 21 to close the switch SL in a gradual or controlled manner, in order to minimize output voltage VOUT transients during the switchover of current from inductor L to switch SL.
Alternatively, controller 106 can send the third control signal 21 to close switch SL at the same time as sending the first control signal 25 to disable charge pump 120 switching. In either case, this method can be applied when the output load current IOUT is either positive (i.e. flowing from power converter 100 towards output load 105) or negative (i.e. flowing from output load 105 towards power converter 100).
The main disadvantage of adding switch SL lies in the additional die area consumed and the design complexity needed to control its turn-on and turn-off.
A cascade multiplier is a switched-capacitor network that can provide a high conversion gain. As used herein, conversion gain represents a voltage gain if the switched-capacitor network produces an output voltage that is larger than the input voltage, or a current gain if the switched-capacitor network produces an output voltage that is smaller than the input voltage. Energy is transferred from the input to the output by cycling the cascade multiplier through different topological states. Charge is transferred from input voltage to the output voltage via a charge transfer path. The number and configuration of the capacitors in each topological state sets the conversion gain.
When the input received at the third active-discharge terminal VPDON (see
When the input received at the third active-discharge terminal VPDON (see
At some point during the second biasing state when the inductor current decreases to zero, having the active-discharge circuit 470 stay in the second biasing state will cause the inductor to charge again, but this time in the opposite direction. The current through the inductor will begin to increase, flowing from the output capacitor 104 into the third charge pump terminal 63, and from the VPOS terminal to the VNEG terminal. This can be an undesirable situation in the application as such reverse current flow through power converter 100 will discharge the output capacitor 104 upon termination of charge pump 120 switching. Therefore, some method of terminating the second biasing state for the active-discharge circuit 470 is necessary once the inductor current has been detected to have reached zero.
When the input received at third current-sense terminal VOFF is logic-low, the current-sense comparator 574 is disabled and its output OUT is logic-low. The output of inverter G5 is logic-high, which causes the output of logic-OR gate G4 to also be logic-high. The SET input of logic-latch G3 is logic-low while its RESET input is logic-high, causing its Q output driving fourth current-sense terminal VPDON to be logic-low.
When the input received at third current-sense terminal VOFF is logic-high, the current-sense comparator 574 is enabled and senses the differential voltage across the first and second current-sense terminals VPOS and VNEG. The output of inverter G5 is logic-low, which causes the output of logic-OR gate G4 to depend solely on the output of current-sense comparator 574 for its polarity. The SET input of logic-latch G3 is logic-high while its RESET input is logic-low, causing its Q output driving the fourth current-sense terminal VPDON to be logic-high. If the voltage at the first current-sense terminal VPOS is lower or more negative than the voltage at the second current-sense terminal VNEG, the output of current-sense comparator 574 will be logic-low. If the voltage at the first current-sense terminal VPOS is equal to, higher or more positive than the voltage at the second current-sense terminal VNEG, the output of current-sense comparator 574 will be logic-high. This causes the output of logic-OR gate G4 and subsequently, the RESET input of logic-latch G3 to go logic-high, thereby resetting the Q output of logic-latch G3 and the output signal at fourth current-sense terminal VPDON.
Turning back to the description of
Similar methodology can be employed with alternate topologies of the cascade multiplier. For example, in response to receiving a command to terminate charge pump 120 (see
At some point when the inductor current decreases to zero, the differential voltage across the third and fourth charge pump terminals 63 and 64 will be equal to zero. This causes the output of the current-sense comparator 574 to transition from logic-low to logic-high, thereby causing the second active-control signal VPDON to transition from logic-high to logic-low, thus turning off transistor M0 within active-discharge circuit 470.
In
The cascade multiplier 405 includes first, second, third, fourth, and fifth stack-switches S1, S2, S3, S4, S5. Of these, the first, third, and fifth stack-switches S1, S3, S5 define a set of “odd stack-switches” and the second and fourth stack-switches S2, S4 define a set of “even stack-switches.”
The cascade multiplier 405 also includes first and second low-side phase-switches S7, S8 as well first and second high-side phase-switches S6, S9. The first and second low-side phase-switches S7, S8 connect first and second phase-nodes P1, P2 to a second common node VSS that connects to the fourth charge pump terminal 64. The second charge pump terminal 62 connects to first common node VEE that typically shares the same voltage as second common node VSS, but can also be a different voltage in other embodiments. The first and second high-side phase-switches S6, S9 connect the first and second phase-nodes P1, P2 to an output node VX that connects to the third charge pump terminal 63. For convenience in discussing switching sequences, the first high-side phase-switch S6 and the second low-side phase-switch S8 will sometimes be referred to collectively as the “even phase-switches” and the first low-side phase-switch S7 and the second high-side phase-switch S9 will sometimes be referred collectively to as the “odd phase-switches.”
The cascade multiplier 405 has four stages. The first stage includes the first stack-switch S1, a first stack-node VC1, and a first pump-capacitor C1; the second stage includes the second stack-switch S2, a second stack-node VC2 and a second pump-capacitor C2; the third stage includes the third stack-switch S3, a third stack-node VC3 and a third pump-capacitor C3; and the fourth stage includes the fourth stack-switch S4, a fourth stack-node VC4, and a fourth pump-capacitor C4.
In
The first pump-capacitor C1 connects the first phase-node P1 to the first stack-node VC1; the third pump capacitor C3 connects the first phase-node P1 to the third stack-node VC3; the second pump capacitor C2 connects the second phase-node P2 to the second stack-node VC2; and the fourth pump capacitor C4 connects the second phase-node P2 to the fourth stack-node VC4.
In response to receiving one or more input signals at its first and second controller inputs 25, 26, a charge pump controller 466 places control signals on a control-signal path 460. These control signals cause the first, second, third, fourth, and fifth stack-switches S1, S2, S3, S4, S5, the first and second low-side phase-switches S7, S8, and the first and second high-side phase-switches S6, S9 to change states according to a specific sequence. As a result, the charge pump 120 repeatedly transitions between first and second operating-states at a specific frequency.
For example, during a first operating-state, the charge pump controller 466 closes the odd stack-switches S1, S3, S5, the first low-side phase-switch S7, and the second high-side phase-switch S9 and opens the even stack-switches S2, S4, the first high-side phase-switch S6, and the second low-side phase-switch S8. In contrast, during a second operating-state, the charge pump controller 466 opens the odd stack-switches S1, S3, S5, the first low-side phase-switch S7, and the second high-side phase-switch S9 and closes the even stack-switches S2, S4, the first high-side phase-switch S6 and the second low-side phase-switch S8.
A first ESD protection block 700 connects across the first and second charge pump terminals 61, 62 in order to channel the energy from an ESD event away from any switches and any circuitry within cascade multiplier 405. Similarly, a second ESD protection block 750 connects across the third and fourth charge pump terminals 63, 64 in order to channel the energy from an ESD event away from any switches and circuitry within cascade multiplier 405. Since the input voltage received by charge pump 120 across the first and second charge pump terminals 61, 62 is five times higher than the output voltage produced across the third and fourth charge pump terminals 63, 64, this typically requires different voltage ratings and implementations between the first and second ESD protection blocks 700 and 750.
It will be understood by those skilled in the art that the ESD protection block 750 might get used as a possible discharge path for the inductor L using the ESD's diode path from VSS to VX during the shutdown of the charge pump. However, because the ESD protection block is ordinarily sized for human body model of 2000V, the ESD protection block may be too small to handle the inductor discharge from a load that could be in excess of 2 A.
In accordance with yet another embodiment of the disclosed method and apparatus,
In particular,
In response to receiving a command to shut down the power converter 100 from one of the external signals IO, controller 106 sends one or more commands along the control signal 153 to programmable current sink 150 in order to decrease the magnitude of the currents drawn through each LED string to zero. Controller 106 may choose to decrease the currents in more than one step size or time step in order to minimize voltage transients at the output voltage VOUT. After controller 106 has programmed the currents to or near zero, controller 106 can then send a first control signal 25 to disable charge pump 120 switching.
The
It can be seen in
The series-parallel topology 1105 also includes first, second, third and fourth phase-switches S10, S12, S14, S16. The first, second, third and fourth phase-switches S10, S12, S14, S16 connect first, second, third and fourth phase-nodes P1, P2, P3, P4 to first and second common nodes VEE, VSS.
The series-parallel topology 1105 has four stages. The first stage includes the first and second stack-switches S1-S2, a first stack-node VC1, and a first pump-capacitor C1; the second stage includes the third and fourth stack-switches S3-S4, a second stack-node VC2 and a second pump-capacitor C2; the third stage includes the fifth and sixth stack-switches S5-S6, a third stack-node VC3 and a third pump-capacitor C3; and the fourth stage includes the seventh and eighth stack-switches S7-S8, a fourth stack-node VC4, and a fourth pump-capacitor C4. The ninth stack-switch S9 connects the fourth stage to an output node VX.
The first pump-capacitor C1 connects the first phase-node P1 to the first stack-node VC1; the second pump capacitor C2 connects the second phase-node P2 to the second stack-node VC2; the third pump capacitor C3 connects the third phase-node P3 to the third stack-node VC3; and the fourth pump capacitor C4 connects the fourth phase-node P4 to the fourth stack-node VC4.
In response to receiving one or more input signals at its first and second controller inputs 25, 26 (see
For example, during a first operating-state, the charge pump controller 466 closes the odd stack-switches S1, S3, S5, S7, S9 and opens the even stack-switches S2, S4, S6, S8 as well as the first second, third and fourth phase-switches S10, S12, S14, S16. In contrast, during a second operating-state, the charge pump controller 466 opens the odd stack-switches S1, S3, S5, S7, S9 and closes the even stack-switches S2, S4, S6, S8 as well as the first second, third and fourth phase-switches S10, S12, S14, S16.
It can be seen in
The
The first pump capacitor C1 connects the first phase-node P1 to the first stack-node VC1; the second pump capacitor C2 connects the second phase-node P2 to the second stack-node VC2. When closed, the first phase-switch S1B connects the first phase-node P1 to an output node VX. When closed, the second phase-switch S2B connects the first phase-node P1 to the second phase-node P2. When closed, the third phase-switch S3B connects the second phase-node P2 to first and second common nodes VEE, VSS.
In response to receiving one or more input signals at its first and second controller inputs 25, 26 (see
For example, during a first operating state, the charge pump controller 466 closes the third stack-switch S3A and the first and second phase-switches S1B, S2B while opening stack-switches S1A, S2A as well as the third phase-switch S3B. During a second operating-state, the charge pump controller 466 closes the second stack-switch S2A and the first and third phase-switches S1B, S3B while opening stack-switches S1A, S3A as well as the second phase-switch S2B. During a third operating state, the charge pump controller 466 closes the first stack-switch S1A and the second and third phase-switches S2B, S3B while opening stack-switches S2A, S3A as well as the first phase-switch S1B. More operating states are possible and alternate sequences of these operating states are also possible.
It can be seen in
It will be understood by those skilled in the art that the shutdown method disclosed in paragraphs 72-74 is also applicable to the embodiments in
In the
In the
In the below described
The n+ source and drain regions with the p-type body region form two p-n junctions, the first between the drain and body regions, and the second between the source and body regions. Each p-n junction behaves like a diode in allowing current flow in one direction while blocking current flow in a reverse direction, depending on the voltage bias and voltage polarity across the p-n junction. The anode of the p-n junction diode is the p-type body region while the cathode is the n+ drain region or source region.
It will be understood by those skilled in the art that the tub diode in
The absence of a body region that can support electric carrier flow in either the partially-depleted or fully-depleted SOI transistor prevents the formation of a body diode, unlike the non-SOI transistors of
There are many types of high electron mobility transistors (HEMT),
A HEMT is a field-effect transistor incorporating a junction between two materials with different band gaps (i.e. a heterojunction) as the channel instead of a doped region (as is generally the case for MOSFET). To allow conduction, semiconductors are doped with impurities which donate either mobile electrons or holes. However, these electrons are slowed down through collisions with the impurities (dopants) used to generate them in the first place. HEMTs avoid this through the use of high mobility electrons generated using the heterojunction of a highly doped wide-bandgap n-type donor-supply layer (AlGaAs in
The electrons generated in the thin n-type AlGaAs layer drop completely into the GaAs layer to form a depleted AlGaAs layer, because the heterojunction created by different band-gap materials forms a quantum well (a steep canyon) in the conduction band on the GaAs side where the electrons can move quickly without colliding with any impurities because the GaAs layer is undoped, and from which they cannot escape. The effect of this is to create a very thin layer of highly mobile conducting electrons with very high concentration, giving the channel very low resistivity (or to put it another way, “high electron mobility”). These accumulated electrons are also known as 2DEG or two-dimensional electron gas.
Because of the very high electron mobility of the 2DEG, these devices can provide higher performance devices than silicon devices that rely upon an inversion channel with low mobility due to scattering. Another benefit is the higher band gap of these materials (GaAs=1.42 eV, GaN=3.4 eV) vs. 1.12 eV for silicon. The larger band gap results in a higher breakdown field, so a for a given length of material, these materials can withstand a larger voltage gradient (or electric field) without undergoing avalanche breakdown, resulting higher performance devices when compared to silicon.
It will be understood by those skilled in the art that GaAs and GaN transistors inherently lack a body diode, or a tub/well diode. Therefore, implementations of adiabatic charge pumps in these technologies will need to utilize the method and apparatus disclosed herein in order to avoid the issues related to the discharge of the inductor current.
As should be readily apparent to one of ordinary skill in the art, various embodiments of the invention can be implemented to meet a wide variety of specifications. Unless otherwise noted above, selection of suitable component values is a matter of design choice and various embodiments of the invention may be implemented in any suitable IC technology (including but not limited to MOSFET structures), or in hybrid or discrete circuit forms. Integrated circuit embodiments may be fabricated using any suitable substrates and processes, including but not limited to standard bulk silicon, silicon-on-insulator (SOI), and silicon-on-sapphire (SOS). Unless otherwise noted above, the invention may be implemented in other transistor technologies such as bipolar, GaAs HBT, GaN HEMT, GaAs pHEMT, and MESFET technologies. Fabrication in CMOS on SOI or SOS processes enables circuits with low power consumption, the ability to withstand high power signals during operation due to FET stacking, good linearity, and high frequency operation (i.e., radio frequencies up to and exceeding 50 GHz). Monolithic IC implementation is particularly useful since parasitic capacitances generally can be kept low (or at a minimum, kept uniform across all units, permitting them to be compensated) by careful design.
Voltage levels may be adjusted, or voltage and/or logic signal polarities reversed depending on a particular specification and/or implementing technology (e.g., NMOS, PMOS, or CMOS, and enhancement mode or depletion mode transistor devices). Component voltage, current, and power handling capabilities may be adapted as needed, for example, by adjusting device sizes, serially “stacking” components (particularly FETs) to withstand greater voltages, and/or using multiple components in parallel to handle greater currents. Additional circuit components may be added to enhance the capabilities of the disclosed circuits and/or to provide additional functional without significantly altering the functionality of the disclosed circuits.
The term “MOSFET”, as used in this disclosure, means any field effect transistor (FET) with an insulated gate and comprising a metal or metal-like, insulator, and semiconductor structure. The terms “metal” or “metal-like” include at least one electrically conductive material (such as aluminum, copper, or other metal, or highly doped polysilicon, graphene, or other electrical conductor), “insulator” includes at least one insulating material (such as silicon oxide or other dielectric material), and “semiconductor” includes at least one semiconductor material.
A number of embodiments of the invention have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, or parallel fashion.
Various features, aspects, and embodiments of switched-capacitor power-converters have been described herein. The features, aspects, and numerous embodiments described are susceptible to combination with one another as well as to variation and modification, as will be understood by those having ordinary skill in the art. The present disclosure should, therefore, be considered to encompass such combinations, variations, and modifications.
Additionally, the terms and expressions that have been employed herein are used as terms of description and not of limitation. There is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described, or portions thereof. It is recognized that various modifications are possible within the scope of the claims. Other modifications, variations, and alternatives are also possible. Accordingly, the claims are intended to cover all such equivalents.
It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the following claims, and that other embodiments are within the scope of the claims.
This application is a continuation of, and claims the benefit of priority under 35 USC § 120 of, commonly assigned and co-pending prior U.S. application Ser. No. 16/291,766, filed Mar. 4, 2019, “Apparatus and Method for Efficient Shutdown of Adiabatic Charge Pumps”, the disclosure of which is incorporated herein by reference in its entirety. The present application may be related to U.S. Patent Publication No. 2017/0085172 A1 published on Mar. 23, 2017, entitled “Charge Balanced Charge Pump Control”, the contents of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4214174 | Dickson | Jul 1980 | A |
4812961 | Essaff et al. | Mar 1989 | A |
5132606 | Edward | Jul 1992 | A |
5301097 | McDaniel | Apr 1994 | A |
5737201 | Meynard et al. | Apr 1998 | A |
5761058 | Kanda et al. | Jun 1998 | A |
5801987 | Dinh | Sep 1998 | A |
5907484 | Kowshik et al. | May 1999 | A |
5978283 | Hsu et al. | Nov 1999 | A |
6107864 | Fukushima et al. | Aug 2000 | A |
6476666 | Palusa et al. | Nov 2002 | B1 |
6486728 | Kleveland | Nov 2002 | B2 |
6501325 | Meng | Dec 2002 | B1 |
6504422 | Rader et al. | Jan 2003 | B1 |
6759766 | Hiratsuka et al. | Jul 2004 | B2 |
6927441 | Pappalardo et al. | Aug 2005 | B2 |
6980181 | Sudo | Dec 2005 | B2 |
7145382 | Ker et al. | Dec 2006 | B2 |
7190210 | Azrai et al. | Mar 2007 | B2 |
7224062 | Hsu | May 2007 | B2 |
7239194 | Azrai et al. | Jul 2007 | B2 |
7250810 | Tsen | Jul 2007 | B1 |
7408330 | Zhao | Aug 2008 | B2 |
7511978 | Chen et al. | Mar 2009 | B2 |
7595682 | Lin et al. | Sep 2009 | B2 |
7724551 | Yanagida et al. | May 2010 | B2 |
7777459 | Williams | Aug 2010 | B2 |
7782027 | Williams | Aug 2010 | B2 |
7786712 | Williams | Aug 2010 | B2 |
7807499 | Nishizawa | Oct 2010 | B2 |
7812579 | Williams | Oct 2010 | B2 |
7928705 | Hooijschuur et al. | Apr 2011 | B2 |
7999601 | Schlueter et al. | Aug 2011 | B2 |
8018216 | Kakehi | Sep 2011 | B2 |
8040174 | Likhterov | Oct 2011 | B2 |
8048766 | Joly et al. | Nov 2011 | B2 |
8111054 | Yen et al. | Feb 2012 | B2 |
8120934 | Pauritsch et al. | Feb 2012 | B2 |
8159091 | Yeates | Apr 2012 | B2 |
8193604 | Lin et al. | Jun 2012 | B2 |
8212541 | Perreault et al. | Jul 2012 | B2 |
8339184 | Kok et al. | Dec 2012 | B2 |
8350549 | Kitabatake | Jan 2013 | B2 |
8354828 | Huang et al. | Jan 2013 | B2 |
8384467 | O'Keeffe et al. | Feb 2013 | B1 |
8395914 | Klootwijk et al. | Mar 2013 | B2 |
8456874 | Singer et al. | Jun 2013 | B2 |
8503203 | Szczeszynski et al. | Aug 2013 | B1 |
8619445 | Low et al. | Dec 2013 | B1 |
8643347 | Giuliano et al. | Feb 2014 | B2 |
8723491 | Giuliano | May 2014 | B2 |
8803492 | Liu | Aug 2014 | B2 |
8817501 | Low et al. | Aug 2014 | B1 |
9007092 | Kozuma | Apr 2015 | B2 |
9559589 | Petersen | Jan 2017 | B2 |
9742266 | Giuliano et al. | Aug 2017 | B2 |
10128745 | Low et al. | Nov 2018 | B2 |
10374511 | Salem et al. | Aug 2019 | B2 |
10389236 | Low et al. | Aug 2019 | B1 |
10686367 | Low | Jun 2020 | B1 |
20020008567 | Henry | Jan 2002 | A1 |
20030169096 | Hsu et al. | Sep 2003 | A1 |
20030227280 | Vinciarelli | Dec 2003 | A1 |
20040041620 | D'Angelo et al. | Mar 2004 | A1 |
20050007184 | Kamijo | Jan 2005 | A1 |
20050207133 | Pavier et al. | Sep 2005 | A1 |
20070210774 | Kimura et al. | Sep 2007 | A1 |
20070230221 | Lim et al. | Oct 2007 | A1 |
20080150621 | Lesso et al. | Jun 2008 | A1 |
20080157732 | Williams | Jul 2008 | A1 |
20080157733 | Williams | Jul 2008 | A1 |
20080158915 | Williams | Jul 2008 | A1 |
20080239772 | Oraw et al. | Oct 2008 | A1 |
20080284398 | Qiu et al. | Nov 2008 | A1 |
20080291711 | Williams | Nov 2008 | A1 |
20090059630 | Williams | Mar 2009 | A1 |
20090102439 | Williams | Apr 2009 | A1 |
20090174383 | Tsui et al. | Jul 2009 | A1 |
20090257211 | Kontani et al. | Oct 2009 | A1 |
20090278520 | Perreault et al. | Nov 2009 | A1 |
20090322414 | Oraw et al. | Dec 2009 | A1 |
20100110741 | Lin et al. | May 2010 | A1 |
20100140736 | Lin et al. | Jun 2010 | A1 |
20100202161 | Sims et al. | Aug 2010 | A1 |
20100214746 | Loffi et al. | Aug 2010 | A1 |
20100244189 | Klootwijk et al. | Sep 2010 | A1 |
20100244585 | Tan et al. | Sep 2010 | A1 |
20110026275 | Huang et al. | Feb 2011 | A1 |
20110163414 | Lin et al. | Jul 2011 | A1 |
20110204858 | Kudo | Aug 2011 | A1 |
20110204959 | Sousa et al. | Aug 2011 | A1 |
20120119718 | Song | May 2012 | A1 |
20120139515 | Li | Jun 2012 | A1 |
20120146177 | Choi et al. | Jun 2012 | A1 |
20120153907 | Carobolante et al. | Jun 2012 | A1 |
20120170334 | Menegoli et al. | Jul 2012 | A1 |
20120313602 | Perreault et al. | Dec 2012 | A1 |
20120326684 | Perreault et al. | Dec 2012 | A1 |
20130049714 | Chiu | Feb 2013 | A1 |
20130069614 | Tso et al. | Mar 2013 | A1 |
20130094157 | Giuliano | Apr 2013 | A1 |
20130154600 | Giuliano | Jun 2013 | A1 |
20130229841 | Giuliano | Sep 2013 | A1 |
20140070787 | Amo | Mar 2014 | A1 |
20140152388 | Lesso et al. | Jun 2014 | A1 |
20140159681 | Oraw et al. | Jun 2014 | A1 |
20140340158 | Thandri et al. | Nov 2014 | A1 |
20160049861 | Ihs et al. | Feb 2016 | A1 |
20160197552 | Giuliano | Jul 2016 | A1 |
20170085172 | Low | Mar 2017 | A1 |
20170244318 | Giuliano | Aug 2017 | A1 |
20200141993 | Nikic | May 2020 | A1 |
20200161976 | Song et al. | May 2020 | A1 |
Number | Date | Country |
---|---|---|
0773622 | May 1997 | EP |
10327573 | Dec 1998 | JP |
11235053 | Aug 1999 | JP |
2006067783 | Mar 2006 | JP |
2010045943 | Feb 2010 | JP |
20110061121 | Jun 2011 | KR |
2006093600 | Sep 2006 | WO |
2009112900 | Sep 2009 | WO |
2012151466 | Nov 2012 | WO |
M13059446 | Apr 2013 | WO |
M13096416 | Jun 2013 | WO |
Entry |
---|
Low, et al., Preliminary Amendment filed in the USPTO dated Sep. 14, 2016 for U.S. Appl. No. 15/126,050, 7 pgs. |
Almo, Khareem S. Office Action received from the USPTO dated Dec. 1, 2017 for U.S. Appl. No. 15/126,050, 18 pgs. |
Low, et al., Amendment filed in the USPTO dated May 1, 2018 for U.S. Appl. No. 15/126,050, 9 pgs. |
Almo, Khareem S. Notice of Allowance received from the USPTO dated Jul. 18, 2018 for U.S. Appl. No. 15/126,050, 9 pgs. |
Abutbul, et al., “Step-Up Switching-Mode Converter with High Voltage Gain Using a Switched-Capacitor Circuit”, IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, Vo. 50, No. 8, Aug. 2003, pp. 1098-1102 (5 pgs.). |
Axelrod, et al., “Single-Switch Single-Stage Switched-Capacitor Buck Converter”, Proc. of NORPIE 2004, 4th Nordic Workshop on Power and Industrial Electronics, Jun. 2004, 5 pgs. |
Cervera, et al., “A High Efficiency Resonant Switched Capacitor Converter with Continuous Conversion Ratio”, Energy Conversation Congress and Exposition (ECCE), Sep., 2013, pp. 4969-4976, 8 pgs. |
Han, et al., “A New Approach to Reducing Output Ripple in Switched-Capacitor-Based Step-Down DC-DC Converters”, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006, pp. 1548-1555, 8 pgs. |
Lei, et al., “Analysis of Switched-Capacitor DC-DC Converters in Soft-Charging Operation”, 2013 Compel—14th IEEE Workshop on Control and Modeling for Power Electronics, 7 pgs., Jun. 23, 2013. |
Linear Technology data sheet for part LTC3402, “2A, 3MHz Micropower Synchronous Boost Converter”, 2000. |
Ma, et al., “Design and Optimization on Dynamic Power System for Self-Powered Integrated Wireless Sensing Nodes” ACM ISLPED '05 conference (published at pp. 303-306 of the proceedings)., 4 pgs. |
Makowski, et al., “Performance Limits of Switched-Capacitor DC-DC Converters”, IEEE PECS '95 Conference, 1995, 7 pgs. |
Meynard, et al., “Multi-Level Conversion: High Voltage Choppers and Voltage-Source Inverters”, IEEE Power Electronics Specialists Conference, pp. 398-403, 1992, 7 pgs. |
Middlebrook, R.D., “Transformless DC-to-DC Converters with Large Conversion Ratios”, IEEE Transactions on Power Electronics, vol. 3, No. 4, Oct. 1988, pp. 484-488, 5 pgs. |
Ng, et al., “Switched Capacitor DC-DC Converter: Superior Where the Buck Conveter has Dominated”, PhD Thesis, UC Berkeley, Aug. 17, 2011, 141 pgs. |
Ottman, et al., “Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode”, IEEE Power Electronics Specialists Conference, pp. 1988-1994, 2002, 7 pgs. |
Pilawa-Podgurski, et al. “Merged Two-Stage Power Converter Architecture with Soft Charging Switched-Capacitor Energy Transfer”, 39th IEEE Power Electronics Specialists Conference, 2008, 8 pgs. |
Pilawa-Podgurski, et al. “Merged Two-Stage Power Converter with Soft Charging Switched-Capacitor Stage in 180 nm CMOS”, IEEE Journal of Solid-State Circuits, vol. 47, No. 7, Jul. 2012, pp. 1557-1567, 11 pgs. |
Starzyk, et al., “A DC-DC Charge Pump Design Based on Voltage Doublers”, IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, vol. 48, No. 3, Mar. 2001, pp. 350-359, 10 pgs. |
Sun, et al., “High Power Density, High Efficiency System Two-Stage Power Architecture for Laptop Computers”, Power Electronics Specialists Conference, pp. 1-7, Jun. 2006, 7 pgs. |
Texas Instruments data sheet for part TPS54310, “3-V to 6-V Input, 3-A Output Synchronous-Buck PWM Switcher with Integrated FETs”, dated 2002-2005, 17 pgs. |
Umeno, et al., “A New Approach to Low Ripple-Noise Switching Converters on the Basis of Switched-Capacitor Convertes”, IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1077-1080, Jun. 1991, 4 pgs. |
Wood, et al., “Design, Fabrication and Initial Results of a 2g Autonomous Glider”, IEEE Industrial Electronics Society, pp. 1870-1877, Nov. 2005, 8 pgs. |
Xu, et al., “Voltage Divider and its Application in the Two-Stage Power Architecture”, IEEE Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, pp. 499-504, Mar. 2006, 7 pgs. |
Berhane, Adolf D., Office Action received from the USPTO dated Oct. 17, 2019 for U.S. Appl. No. 16/291,766, 31 pgs. |
Berhane, Adolf D., Notice of Allowance received from the USPTO dated Feb. 10, 2020 for U.S. Appl. No. 16/291,766, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20200343808 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16291766 | Mar 2019 | US |
Child | 16880507 | US |